期刊文献+
共找到65,278篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental and numerical study on attenuation of shock waves in ventilation pipes
1
作者 Wenjun Yu Shuxin Deng +5 位作者 Shengyun Chen Bingbing Yu Dongyan Jin Zhangjun Wu Yaguang Sui Huajie Wu 《Defence Technology(防务技术)》 2025年第4期156-168,共13页
With different structural forms of ventilation pipes have various attenuation effects on incident shock waves while meeting ventilation requirements.The attenuation mechanism and the propagation law of shock waves in ... With different structural forms of ventilation pipes have various attenuation effects on incident shock waves while meeting ventilation requirements.The attenuation mechanism and the propagation law of shock waves in ventilation pipes of different structures are investigated by experiments and numerical simulations.Furthermore,for the same structure,the effects of peak pressure and positive pressure time on the attenuation rate are discussed.It is found that the attenuation rate increases with the incident shock wave pressure,and the shock wave attenuation rate tends to reach its limiting value k for the same structure and reasonably short positive pressure time.Under the same conditions,the attenuation rate is calculated using the pressure of the shock wave as follows:diffusion chamber pipe,branch pipe and selfconsumption pipe;the attenuation rate per unit volume is calculated as follows:self-consumption pipe,branch pipe and diffusion chamber pipe.In addition,an easy method is provided to calculate the attenuation rate of the shock wave in single and multi-stage ventilation pipes.Corresponding parameters are provided for various structures,and the margin of error between the formulae and experimental results is within 10%,which is significant for engineering applications. 展开更多
关键词 Hock waves Ventilation pipes Numerical modelling Explosion mechanics
在线阅读 下载PDF
Laser welding of molybdenum socket joint for ultra-high-temperature heat pipes based on niobium alloying
2
作者 Jia-xuan ZHAO Hong-da ZHANG +3 位作者 Lin-jie ZHANG Xiang-dong DING Yuan-jun SUN Guang SUN 《Transactions of Nonferrous Metals Society of China》 2025年第2期511-524,共14页
The influence of Ti and Zr,Nb alloying on the microstructures and performance of laser-welded molybdenum socket joints was investigated.Following Nb alloying,the average microhardness of the fusion zone(FZ)increased f... The influence of Ti and Zr,Nb alloying on the microstructures and performance of laser-welded molybdenum socket joints was investigated.Following Nb alloying,the average microhardness of the fusion zone(FZ)increased from HV 194.7 to HV 283.3.Additionally,Nb can react with O to form dispersed Nb_(2)O_(5) along grain boundaries,impeding grain boundary migration and dislocation movement while reducing the content of volatile Mo oxide along these boundaries.The incorporation of Nb in FZ partially inhibits pore defects and enhances joint load-bearing capacity.In comparison to the laser-welded joints without adding Nb(LW),the tensile strength of the laser-welded joints with Nb alloying(LW-Nb)was significantly improved by approximately 69%from 327.5 to 551.7 MPa.Furthermore,the fracture mechanism of the joints transitioned from intergranular fracture to transgranular fracture. 展开更多
关键词 laser welding MOLYBDENUM heat pipe niobium alloying MICROSTRUCTURE performance
在线阅读 下载PDF
Effect of SurfaceWettability on the Flow and Heat Transfer Performance of Pulsating Heat Pipe
3
作者 Wei Zhang Haojie Chen +1 位作者 Kunyu Cheng Yulong Zhang 《Frontiers in Heat and Mass Transfer》 2025年第1期361-381,共21页
The present work deals with the numerical study of the two-phase flow pattern and heat transfer characteristics of single-loop pulsating heat pipes(PHPs)under three modified surfaces(superhydrophilic evaporation secti... The present work deals with the numerical study of the two-phase flow pattern and heat transfer characteristics of single-loop pulsating heat pipes(PHPs)under three modified surfaces(superhydrophilic evaporation section paired with superhydrophilic,superhydrophobic,and hybrid condensation section).The Volume of Fluid(VOF)model was utilized to capture the phase-change process within the PHPs.The study also evaluated the influence of surface wettability on fluid patterns and thermo-dynamic heat transfer performance under various heat fluxes.The results indicated that the effective nucleation and detachment of droplets are critical factors influencing the thermal performance of the PHPs.The overall heat transfer performance of the superhydrophobic surface was significantly improved at low heat flux.Under medium to high heat flux,the superhydrophilic condensation section exhibits a strong oscillation effect and leads to the thickening of the liquid film.In addition,the hybrid surface possesses the heat transfer characteristics of both superhydrophilic and superhydrophobic walls.The hybrid condensation section exhibited the lowest thermal resistance by 0.45 K/W at the heat flux of 10731 W/m^(2).The thermal resistance is reduced by 13.1%and 5.4%,respectively,compared to the superhydrophobic and superhydrophilic conditions.The proposed surface-modification method for achieving highly efficient condensation heat transfer is helpful for the design and operation of device-cooling components. 展开更多
关键词 Pulsating heat pipe surface wettability flow pattern heat transfer enhancement
在线阅读 下载PDF
Experimental Study on a Hybrid Battery Thermal Management System Combining Oscillating Heat Pipe and Liquid Cooling
4
作者 Hongkun Lu M.M.Noor K.Kadirgama 《Frontiers in Heat and Mass Transfer》 2025年第1期299-324,共26页
To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling... To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling.The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser,enabling dual heat transfer pathways through liquid cooling plate and OHP.This study experimentally investigates the performance characteristics of the⊥-shaped OHP and hybrid BTMS.Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability,with optimal performance achieved at a 26.1%filling ratio.Acetone,as a single working fluid,exhibited superior heat transfer performance under low-load conditions compared to mixed fluids,while the acetone/ethanol mixture,forming a non-azeotropic solution,minimized temperature fluctuations.At 100 W,the⊥-shaped OHP with a horizontally arranged evaporator demonstrated better heat transfer performance than 2D-OHP designs.Compared to a liquid BTMS using water coolant at 280 W,the hybrid BTMS reduced the equivalent thermal resistance(RBTMS)and maximum temperature difference(ΔTmax)by 8.06%and 19.1%,respectively.When graphene nanofluid was used as the coolant in hybrid BTMS,the battery pack’s average temperature(Tb)dropped from 52.2℃ to 47.9℃,with RBTMS andΔTmax decreasing by 20.1%and 32.7%,respectively.These findings underscore the hybrid BTMS’s suitability for high heat load applications,offering a promising solution for electric vehicle thermal management. 展开更多
关键词 Battery thermal management system oscillating heat pipe liquid cooling hybrid BTMS graphene nanofluid
在线阅读 下载PDF
Nonlinear forced vibration in a subcritical regime of a porous functionally graded pipe conveying fluid with a retaining clip
5
作者 M.GHOLAMI M.EFTEKHARI 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期101-122,共22页
This study examines the nonlinear behaviors of a clamped-clamped porous pipe made of a functionally graded material(FGM)that conveys fluids and is equipped with a retaining clip,focusing on primary resonance and subcr... This study examines the nonlinear behaviors of a clamped-clamped porous pipe made of a functionally graded material(FGM)that conveys fluids and is equipped with a retaining clip,focusing on primary resonance and subcritical dynamics.The nonlinear governing equations for the FGM pipe are derived by the extended Hamilton's principle,and subsequently discretized through the application of the Galerkin method.The direct method of multi-scales is then used to solve the derived equations.A thorough analysis of various parameters,including the clip stiffness,the power-law index,the porosity,and the clip location,is conducted to gain a comprehensive understanding of the system's nonlinear dynamics.Through the analysis of the first natural frequency,the study highlights the influence of the flow velocity and the clip stiffness,while the comparisons with metallic pipes emphasize the role of FGM composition.The examination of the forced response curves reveals saddle-node bifurcations and their dependence on parameters such as the detuning parameter and the power-law index,offering valuable insights into the system's nonlinear resonant behavior.Furthermore,the frequency-response curves illustrate the hardening nonlinearities influenced by factors such as the porosity and the clip stiffness,revealing nuanced effects on the system response and resonance characteristics.This comprehensive analysis enhances the understanding of nonlinear behaviors in FGM porous pipes with a retaining clip,providing key insights for practical engineering applications in system design and optimization. 展开更多
关键词 functionally graded material(FGM)pipe conveying fuid retaining clip porosity primary resonance subcritical regime
在线阅读 下载PDF
Orthogonality conditions and analytical response solutions of damped gyroscopic double-beam system:an example of pipe-in-pipe system
6
作者 Jinming FAN Zhongbiao PU +2 位作者 Jie YANG Xueping CHANG Yinghui LI 《Applied Mathematics and Mechanics(English Edition)》 2025年第5期927-946,共20页
The double-beam system is a crucial foundational structure in industry,with extensive application contexts and significant research value.The double-beam system with damping and gyroscopic effects is termed as the dam... The double-beam system is a crucial foundational structure in industry,with extensive application contexts and significant research value.The double-beam system with damping and gyroscopic effects is termed as the damped gyroscopic double-beam system.In such systems,the orthogonality conditions of the undamped double-beam system are no longer applicable,rendering it impossible to decouple them in modal space using the modal superposition method(MSM) to obtain analytical solutions.Based on the complex modal method and state space method,this paper takes the damped pipe-in-pipe(PIP) system as an example to solve this problem.The concepts of the original system and adjoint system are introduced,and the orthogonality conditions of the damped PIP system are given in the state-space.Based on the derived orthogonality conditions,the transient and steady-state response solutions are obtained.In the numerical discussion section,the convergence and accuracy of the solutions are verified.In addition,the dynamic responses of the system under different excitations and initial conditions are studied,and the forward and reverse synchronous vibrations in the PIP system are discussed.Overall,the method presented in this paper provides a convenient way to analyze the dynamics of the damped gyroscopic double-beam system. 展开更多
关键词 fluid-conveying pipe transverse vibration pipe-in-pipe(PIP)system gyroscopic double-beam system complex modal superposition method(MSM) analytical solution
在线阅读 下载PDF
Vibration energy harvesting of a three-directional functionally graded pipe conveying fluids
7
作者 Tianchi YU Feng LIANG Hualin YANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第5期795-812,共18页
This paper proposes a novel three-directional functionally graded(3D FG)vibration energy harvesting model based on a bimorph pipe structure.A rectangular pipe has material properties that vary continuously along the a... This paper proposes a novel three-directional functionally graded(3D FG)vibration energy harvesting model based on a bimorph pipe structure.A rectangular pipe has material properties that vary continuously along the axial,width,and height directions,and a steady fluid flows inside the pipe.Two piezoelectric layers are attached to the upper and lower surfaces of the pipe,and are connected in series with a load resistance.The output electricity is predicted theoretically and validated by finite element(FE) simulation.The complex mechanisms regulating the energy harvesting performance are investigated,focusing particularly on the effects of 3D FG material(FGM) parameters,load resistance,fluid-structure interaction(FSI),and geometry.Numerical results indicate that among several material gradient parameters,the axial gradient index has the most significant impact.Increasing the axial and height gradient indices can markedly enhance the energy harvesting performance.The optimal resistances differ between the first two modes.Overall,the maximum power is generated at lower resistances.The FSI effect can also improve the energy harvesting performance;however,higher flow velocities may destabilize the system,causing failure of harvesting energy.This research is capable of providing new insights into the design of a pipe energy harvester in engineering applications. 展开更多
关键词 vibration energy harvesting three-directional functionally graded material(3D FGM) fluid-conveying pipe fluid-structure interaction(FSI) electro-mechanical coupling
在线阅读 下载PDF
Experimental,Numerical,and Analytical Studies on the Bending of Mechanically Lined Pipe 被引量:1
8
作者 WEI Wen-bin YUAN Lin +1 位作者 ZHOU Jia-sheng LIU Zheng 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期221-232,共12页
Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which cau... Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results. 展开更多
关键词 lined pipe BENDING nonlinear ring theory BUCKLING PLASTICITY
在线阅读 下载PDF
Seismic performance evaluation of water supply pipes installed in a full-scale RC frame structure based on a shaking table test 被引量:1
9
作者 Wu Houli Guo Endong +2 位作者 Wang Jingyi Dai Xin Dai Chenxi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期163-178,共16页
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal... As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes. 展开更多
关键词 water supply pipe different materials shaking table test amplification factor seismic fragility
在线阅读 下载PDF
A Comparative Study on the Post-Buckling Behavior of Reinforced Thermoplastic Pipes(RTPs)Under External Pressure Considering Progressive Failure 被引量:1
10
作者 DING Xin-dong WANG Shu-qing +1 位作者 LIU Wen-cheng YE Xiao-han 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期233-246,共14页
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ... The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed. 展开更多
关键词 reinforced thermoplastic pipes post-buckling behavior progressive failure of composites DEBONDING initial ovality
在线阅读 下载PDF
Flow Patterns and Heat Transfer Characteristics of a Polymer Pulsating Heat Pipe Filled with Hydrofluoroether 被引量:1
11
作者 Nobuhito Nagasato Zhengyuan Pei Yasushi Koito 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期49-63,共15页
Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the enti... Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the entire PHP channel.A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer,and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera.The video images were then analyzed to obtain the flow patterns in the PHP.The heat transfer characteristics of the PHPwere discussed based on the flowpatterns and temperature distributions obtainedwith thermocouples.Before starting heating,because of high wettability,large liquid slugs positioned at the evaporator section of the PHP.After starting heating,since the occurrence of boiling divided the large liquid slugs,oscillatory flowof smaller liquid slugs and vapor plugs was found in the PHP.Clear circulation flow of liquid slugs and vapor plugs was observed when the power input to the PHP was larger than 12.0 W.The flow patterns and temperature distributions confirmed that the circulation flow enhanced the heat transfer from the evaporator section to the condenser section of the PHP.In the circulation flow mode,large growth and contraction of vapor plugs were found one after another in all even-numbered PHP channels.However,the analysis of flow patterns clarified that the phase-change heat transfer rate by large growth and contraction of vapor plugs was 19%of the total heat transfer rate of the PHP.Although the generation of large vapor plugs was found in the PHP,most of the heat was transferred by the sensible heat of the working fluid. 展开更多
关键词 Polymer heat pipe VISUALIZATION oscillatory flow circulation flow thermal management 3D printer
在线阅读 下载PDF
A unified fractional flow framework for predicting the liquid holdup in two-phase pipe flows
12
作者 Fuqiao Bai Yingda Lu Mukul M.Sharma 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2614-2624,共11页
Two-phase pipe flow occurs frequently in oil&gas industry,nuclear power plants,and CCUS.Reliable calculations of gas void fraction(or liquid holdup)play a central role in two-phase pipe flow models.In this paper w... Two-phase pipe flow occurs frequently in oil&gas industry,nuclear power plants,and CCUS.Reliable calculations of gas void fraction(or liquid holdup)play a central role in two-phase pipe flow models.In this paper we apply the fractional flow theory to multiphase flow in pipes and present a unified modeling framework for predicting the fluid phase volume fractions over a broad range of pipe flow conditions.Compared to existing methods and correlations,this new framework provides a simple,approximate,and efficient way to estimate the phase volume fraction in two-phase pipe flow without invoking flow patterns.Notably,existing correlations for estimating phase volume fraction can be transformed and expressed under this modeling framework.Different fractional flow models are applicable to different flow conditions,and they demonstrate good agreement against experimental data within 5%errors when compared with an experimental database comprising of 2754 data groups from 14literature sources,covering various pipe geometries,flow patterns,fluid properties and flow inclinations.The gas void fraction predicted by the framework developed in this work can be used as inputs to reliably model the hydraulic and thermal behaviors of two-phase pipe flows. 展开更多
关键词 pipe fractional flow Liquid holdup Multiphase pipe flow Gas void fraction
在线阅读 下载PDF
Application of Ice Pigging in a Drinking Water Distribution System:Impacts on Pipes and Bulk Water Quality
13
作者 Yujing Huang Zhiwei Chen +4 位作者 Guilin He Yu Shao Shuang Song Feilong Dong Tuqiao Zhang 《Engineering》 SCIE EI CAS CSCD 2024年第9期122-130,共9页
Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This stud... Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks.Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality.The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes.The bacterial richness and diversity of bulk water decreased significantly after ice pigging.Furthermore,correlations were established between pipe service age,temperature,and chloride and total iron concentrations,and the 15 most abundant taxa in bulk water,which could be used to guide practical ice pigging operations. 展开更多
关键词 Ice pigging pipe cleaning Drinking water distribution system Bacterial community SEDIMENTS
在线阅读 下载PDF
Calculation of Mass Concrete Temperature Containing Cooling Water Pipe Based on Substructure and Iteration Algorithm
14
作者 Heng Zhang Chao Su +2 位作者 Zhizhong Song Zhenzhong Shen Huiguang Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期813-826,共14页
Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for... Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development. 展开更多
关键词 Fourier equation cooling water pipe mass concrete iteration algorithm
在线阅读 下载PDF
Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes
15
作者 Donghai HAN Qi JIA +4 位作者 Yuanyu GAO Qiduo JIN Xin FANG Jihong WEN Dianlong YU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1821-1840,共20页
To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design me... To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design method is proposed for the longitudinal and transverse wave control of fluid-conveying pipes,and a novel periodic structure unit model is constructed for vibration reduction.Based on the bandgap vibration reduction mechanism of the acoustic metamaterial periodic structure,the material parameters,structural parameters,and the arrangement interval of the periodic structure unit are optimized.The finite element method(FEM)is used to predict the vibration transmission characteristics of the fluid-conveying pipe installed with the vibration reduction periodic structure.Then,the wave/spectrum element method(WSEM)and experimental test are used to verify the calculated results above.Lastly,the vibration attenuation characteristics of the structure under different conditions,such as rubber material parameters,mass ring material,and fluid-structure coupling effect,are analyzed.The results show that the structure can produce a complete bandgap of 46 Hz-75 Hz in the low-frequency band below 100 Hz,which can effectively suppress the low broadband vibration of the fluidconveying pipe.In addition,a high damping rubber material is used in the design of the periodic structure unit,which realizes the effective suppression of each formant peak of the pipe,and improves the vibration reduction effect of the fluid-conveying pipe.Meanwhile,the structure has the effect of suppressing both bending vibration and longitudinal vibration,and effectively inhibits the transmission of transverse waves and longitudinal waves in the pipe.The research results provide a reference for the application of acoustic metamaterials in the multi-directional vibration control of fluid-conveying pipes. 展开更多
关键词 fluid-conveying pipe acoustic metamaterial multi-directional vibration reduction local resonance
在线阅读 下载PDF
Novel wreck salvaging method using curved rectangular pipe basing method:A case study of"Yangtze River EstuaryⅡ"ancient shipwreck salvage project
16
作者 Qianwei Zhuang Guofang Gong +5 位作者 Dongrong Zhou Chi Zhang Xin Huang Xiaodong Zhu Weihao Yuan Deng Li 《Underground Space》 SCIE EI CSCD 2024年第5期97-113,共17页
Shipwreck salvage is a risky,time-consuming,and expensive process.Although there are many sunken ships along coastlines and in the open seas,the salvage process of a sunken ship has rarely been reported.The integrated... Shipwreck salvage is a risky,time-consuming,and expensive process.Although there are many sunken ships along coastlines and in the open seas,the salvage process of a sunken ship has rarely been reported.The integrated salvage of the"Yangtze River EstuaryⅡ"shipwreck used a novel method with 22 closely locked curved rectangular pipes to form a watertight base that wrapped the shipwreck inside.The basing was lifted out of the water using a powerful crane situated on an engineering ship.For the first time,the tunneling method was used in a shipwreck salvage project,significantly reducing the disturbance to the shipwreck and its stowage,thereby preserving the original state and integrity of the shipwreck to the greatest extent.In this study,the basic concepts of the salvage method and process are explained.Solutions to critical issues in the new salvage method are provided,including jacking force prediction and major considerations for the structural design of the salvage system.The design of the salvage system and salvage process of the"Yangtze River EstuaryⅡ"shipwreck are introduced.The monitored jacking force,pipe deformation,and observed water-tightness verified that the proposed method was effective and efficient.Other possible application scenarios for the proposed method are presented at the end. 展开更多
关键词 pipe jacking Shipwreck salvage Yangtze River EstuaryⅡ Structural design
原文传递
Parametric resonance of axially functionally graded pipes conveying pulsating fluid
17
作者 Jie JING Xiaoye MAO +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期239-260,共22页
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio... Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid. 展开更多
关键词 pipe conveying fluid axially functionally graded supercritical resonance multi-scale method parametric resonance
在线阅读 下载PDF
A Composite Transformer-Based Multi-Stage Defect Detection Architecture for Sewer Pipes
18
作者 Zifeng Yu Xianfeng Li +2 位作者 Lianpeng Sun Jinjun Zhu Jianxin Lin 《Computers, Materials & Continua》 SCIE EI 2024年第1期435-451,共17页
Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based ... Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities. 展开更多
关键词 Sewer pipe defect detection deep learning model optimization composite transformer
在线阅读 下载PDF
Experimental Analyses of Flow Pattern and Heat Transfer in a Horizontally Oriented Polymer Pulsating Heat Pipe withMerged Liquid Slugs
19
作者 Zhengyuan Pei Yasushi Koito 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1381-1397,共17页
Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels wi... Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 mm and a height of 1.1 mm.The evaporator and condenser sections were 25 and 50 mm long,respectively,and the adiabatic section in between was 75mmlong.Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene,the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP.The PHP was charged with hydrofluoroether-7100.In the experiments,the evaporator section was heated,and the condenser section was cooled using high-temperature and low-temperature thermostatic baths,respectively.Flow patterns of the working fluid were obtained with temperature distributions of the PHP.A mathematical model was developed to analyze the flow patterns.Themerged liquid slugs were observed in every two channels,and their oscillation characteristics were found to be approximately the same in time and space.It was also found that the oscillations of the merged liquid slugs became slower,but the heat transfer rate of the PHP increased with a decrease in the filling ratio of the working fluid.This is because vapor condensation was enhanced in vapor plugs as the filling ratio decreased.However,the filling ratio had a lower limit,and the heat transfer rate was maximum when the filling ratio was 40.6%in the present experimental range. 展开更多
关键词 Pulsating heat pipe polymer heat pipe visualization experiment flow pattern analysis heat transfer enhancement
在线阅读 下载PDF
Detection of internal crack growth in polyethylene pipe using guided wave ultrasonic testing
20
作者 Jay Kumar Shah Hao Wang Said El-Hawwat 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期319-329,共11页
Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve... Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth. 展开更多
关键词 polyethylene pipes internal cracks guided wave ultrasonic testing torsional modes finite element modeling
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部