The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin w...The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin were investigated through outcrop section measurement,core observation,thin section identification,argon ion polishing,X-ray diffraction,scanning electron microscope,energy spectrum analysis and laser ablation-inductively coupled plasma-mass spectrometry.The diagenetic evolution sequence of clay minerals was clarified,and the sedimentary-diagenetic evolution model of clay minerals was established.The results show that authigenic sepiolite minerals were precipitated in the Si4+and Mg2+-rich cool aragonite sea and sepiolite-bearing strata were formed in the Mao-1 Member.During burial diagenesis,authigenic clay minerals undergo two possible evolution sequences.First,from the early diagenetic stage A to the middle diagenetic stage A1,the sepiolite kept stable in the shallow-buried environment lack of Al3+.It began to transform into stevensite in the middle diagenetic stage A2,and then evolved into disordered talc in the middle diagenetic stage B1and finally into talc in the period from the middle diagenetic stage B2to the late diagenetic stage.Thus,the primary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-stevensite-disordered talc-talc,was formed in the Mao-1 Member.Second,in the early diagenetic stage A,as Al3+carried by the storm and upwelling currents was involved in the diagenetic process,trace of sepiolite started to evolve into smectite,and a part of smectite turned into chlorite.From the early diagenetic stage B to the middle diagenesis stage A1,a part of smectite evolved to illite/smectite mixed layer(I/S).The I/S evolved initially into illite from the middle diagenesis stage A2to the middle diagenesis stage B2,and then totally into illite in the late diagenesis stage.Thus,the secondary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-smectite-chlorite/illite,was formed in the Mao-1 Member.The types and evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata are significant for petroleum geology in two aspects.First,sepiolite can adsorb and accumulate a large amount of organic matters,thereby effectively improving the quality and hydrocarbon generation potential of the source rocks of the Mao-1 Member.Second,the evolution from sepiolite to talc is accompanied by the formation of numerous organic matter pores and clay shrinkage pores/fractures,as well as the releasing of the Mg2+-rich diagenetic fluid,which allows for the dolomitization of limestone within or around the sag.As a result,the new assemblages of self-generation and self-accumulation,and lower/side source and upper/lateral reservoir,are created in the Middle Permian,enhancing the hydrocarbon accumulation efficiency.展开更多
Petrographic analysis combined with various techniques, such as thin section identification, fluid inclusions, isotopic data, petro-physical property testing and oil testing results, was used to study diagenetic evolu...Petrographic analysis combined with various techniques, such as thin section identification, fluid inclusions, isotopic data, petro-physical property testing and oil testing results, was used to study diagenetic evolution and its effect on reservoir-quality of fan delta reservoirs of Es4s in the Bonan sag. The diagenesis is principally characterized by strong compaction, undercompaction, multi-phase of dissolution and cementation. Compaction played a more important role than cementation in destroying the primary porosity of the sandstones. The reservoirs have experienced complicated diagenetic environment evolution of "weak alkalineacid-alkalinity-acid-weak alkalinity" and two-stage of hydrocarbon filling. The diagenetic sequences are summarized as "early compaction/early pyrite/gypsum/calcite/dolomite cementation→feldspar dissolution/the first stage of quartz overgrowth → early hydrocarbon filling→quartz dissolution/anhydrite/Fe-carbonate cementation→Fe-carbonate dissolution/feldspar dissolution/ the second stage of quartz overgrowth→later hydrocarbon filling→later pyrite cementation. In the same diagenetic context, the diagenetic evolution processes that occurred in different sub/micro-facies during progressive burial have resulted in heterogeneous reservoir properties and oiliness. The braided channel reservoirs in fan delta plain are poorly sorted with high matrix contents. The physical properties decrease continually due to the principally strong compaction and weak dissolution. The present properties of braided channel reservoirs are extremely poor, which is evidenced by few oil layers developed in relatively shallow strata while dry layers entirely in deep. The reservoirs both in the underwater distributary channels and mouth bars are well sorted and have a strong ability to resist compaction. Abundant pores are developed in medium-deep strata because of modifications by two-stage of acidic dissolution and hydrocarbon filling. The present properties are relatively well both in the underwater distributary channels and mouth bars and plenty of oil layers are developed in different burial depth. The present reservoir properties both in interdistributary channel and pre-fan delta are poor caused by extensively cementation. Small amounts of oil layers, oil-water layers and oil-bearing layers are developed in relatively shallow strata while dry layers totally in deep.展开更多
The origin of dolomite in Shahejie Formation shale of Jiyang Depression in eastern China were studied by means of petrologic identification, compositional analysis by X-ray diffraction, stable carbon and oxygen isotop...The origin of dolomite in Shahejie Formation shale of Jiyang Depression in eastern China were studied by means of petrologic identification, compositional analysis by X-ray diffraction, stable carbon and oxygen isotopic composition, and trace element and rare earth element analyses. The results show that the development of dolomite is limited in the lacustrine organic rich shale of Shahejie Formation in the study area. Three kinds of dolomite minerals can be identified: primary dolomite(D1), penecontemporaneous dolomite(D2), and ankerite(Ak). D1 has the structure of primary spherical dolomite, high magnesium and high calcium, with order degree of 0.3-0.5, and is characterized by the intracrystalline corrosion and coexistence of secondary enlargement along the outer edge. D2 has the characteristics of secondary enlargement, order degree of 0.5-0.7, high magnesium, high calcium and containing a little iron and manganese elements. Ak is characterized by high order degree of 0.7-0.9, rhombic crystal, high magnesium, high calcium and high iron. The micritic calcite belongs to primary origin on the basis of the carbon and oxygen isotopic compositions and the fractionation characteristics of rare earth elements. According to the oxygen isotopic fractionation equation between paragenetic dolomite and calcite, it is calculated that the formation temperature of dolomite in the shale is between 36.76-45.83 ℃, belonging to lacustrine low-temperature dolomite. Based on the maturation and growth mechanism of primary and penecontemporaneous dolomite crystals, a dolomite diagenetic sequence and the dolomitization process are proposed, which is corresponding to the diagenetic environment of Shahejie Formation shale in the study area.展开更多
The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controllin...The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controlling factors and formation mechanisms of medium to deep high-quality reservoir were revealed by multiple regression analysis. The results show that the sedimentary microfacies, rigid grains content, and dissolution process are the key factors controlling the formation of high-quality clastic reservoir in middle to deep depth in the Nanpu sag. The formation mechanisms of middle to deep sandstones of the Es in different structural belts differ widely in formation mechanism. The Es1(uppermost member of Es) sandstone reservoirs in the Nanpu No.3 structural belt is low porosity, moderate to high permeability reservoir in the mesodiagenesis A2 stage on the whole, and the formation of high-quality reservoirs is mainly attributed to strong compaction resistance ability primarily, and dissolution process secondarily. The Es3(third member of Es) sandstones in Gaoshangpu structural belt is classified as tight sandstones in the mesodiagenesis A1 stage, in which the development of favorable reservoirs is primarily controlled by dissolution. This study provides references for reservoir evaluation of deep clastic reservoirs and exploration deployment in the Bohai Bay rift basin. As there are high-quality reservoirs, it is believed that the deep clastic reservoirs in the eastern of China, such as Bohai Bay Basin still have significant exploration potential.展开更多
It was showed that understanding of the diagenetic modifications and its associated products in the deeply to ultra-deeply buried tight sandstone reservoirs(DUDTSR)is great important for reservoir characterization and...It was showed that understanding of the diagenetic modifications and its associated products in the deeply to ultra-deeply buried tight sandstone reservoirs(DUDTSR)is great important for reservoir characterization and hydrocarbon prediction.However,the fine characterization of diagenetic evolution via geologic modelling in tight sandstones remains a great challenge as for complexity of lithology,temperature,pressure and formation fluid throughout the entire life cycle of tight sandstone reservoirs.To help get a comprehensive idea of the distribution of diagenetic processes on the formation of DUDTSR in the long geological period,type-I and type-II fine sections of diagenetic stage for clastic reservoirs were creatively proposed and its essence was illustrated using the Paleogene Huagang(EH)Formation in the southern Xihu Sag.Through combination of both quantitative and qualitative methods which began with current formation temperature,vitrinite analysis,illite and I/S mixed layers based on analytical testing of the EH Formation,(1)Paleotemperature(T),vitrinite reflectivity and smectite in mixed layer during burial processes were restored based on numerical analysis,(2)The accurate division of diagenetic evolution was identified from coarse to fine process using new model,(3)And finally the geological significance of fine division of the conventional diagenetic stage was illustrated for low-porosity and tight sandstone reservoirs.展开更多
Based on the petrology,isotope geochemistry and fluid inclusions analysis,we established the evolutionary mode of the diagenetic fluid of dawsonite-bearing sandstone in the Jiyang Depression.Dawsonite-bearing sandston...Based on the petrology,isotope geochemistry and fluid inclusions analysis,we established the evolutionary mode of the diagenetic fluid of dawsonite-bearing sandstone in the Jiyang Depression.Dawsonite-bearing sandstone is characterized by double injection of CO_(2)and oil-gas in the Jiyang Depression that have experienced a relatively complex diagenetic fluid evolution process.The diagenetic sequence of secondary minerals involves secondary enlargement of quartz,kaolinite,first-stage calcite,dawsonite,second-stage calcite,ferrocalcite,dolomite and ankerite.Hydrocarbon charging in the dawsonite-bearing sandstone occurred at around 2.6–0 Myr.The CO_(2)charging event occurred during Dongying tectonism,forming the Pingfangwang CO_(2)gas reservoir,which provided an abundant carbon source for dawsonite precipitation.Carbon and oxygen isotopic compositions of dawsonite demonstrate that CO_(2)forming the dawsonite was of an inorganic origin derived from the mantle,and that water mediating the proc-ess during dawsonite precipitation was sequestered brine with a fluid temperature of 82℃.The evolutionary sequence of the diagenetic fluid in the dawsonite-bearing sandstone was:alkaline syngenetic fluids,weak alkaline fluids during organic acid forma-tion,acidic fluids in the early stage of CO_(2)injection,alkaline fluids in the late stage of CO_(2)injection,and weak alkaline fluids during oil and gas charging.The mode indicates an increase in-HCO_(3)because of the CO_(2)injection,and the loss of Ca^(2+)and Mg^(2+)due to the precipitation of carbonate minerals.Therefore,the evolutionary mode of diagenetic fluids is in good agreement with high HCO_(3)^(-),low Ca^(2+)and low Mg^(2+)composition of the present formation water in the dawsonite-bearing sandstone.展开更多
Reconstruction of the diagenetic evolution of reservoirs is one of the most significant tasks in oil and gas exploration and development.Assessing the accurate timing of diagenetic events is critical to better underst...Reconstruction of the diagenetic evolution of reservoirs is one of the most significant tasks in oil and gas exploration and development.Assessing the accurate timing of diagenetic events is critical to better understand the process of reservoir evolution,but the isotope dating of diagenetic events is technically challenging.This paper uses three case studies in the sedimentary basins in China to demonstrate the promising application of recently developed LA-(MC)-ICPMS in-situ U-Pb geochronology.Our results show that the new U-Pb dating method provides a reliable and efficient chronological approach to determine the absolute ages of diagenetic events.For example,the U-Pb age data of the Cambrian carbonate reservoir in the Tarim Basin reveals three diagenetic events at 526±14,515±21,and 481±4.6 Ma,respectively.It is worth noting that microscopic observations are particularly important for improving the success rate of U-Pb dating.In addition,the recent progress and future prospects in the in-situ U-Pb dating method are also discussed in this study,suggesting that this method is currently hindered by the lack of international carbonate standards for data correction.展开更多
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en...Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.展开更多
Based on core observation, thin section examination, fluid inclusions analysis, carbon and oxygen isotopic composition analysis, and other approaches, the structural and burial evolution histories were investigated, a...Based on core observation, thin section examination, fluid inclusions analysis, carbon and oxygen isotopic composition analysis, and other approaches, the structural and burial evolution histories were investigated, and the diagenetic evolution process and genetic/development models were systematically discussed of the Upper Paleozoic Permian clastic rock reservoirs in the Bohai Bay Basin, East China. The Bohai Bay Basin underwent three stages of burial and two stages of uplifting in the Upper Paleozoic. Consequently, three stages of acid dissolution generated by the thermal evolution of kerogen, and two stages of meteoric freshwater leaching occurred. Dissolution in deeply buried, nearly closed diagenetic system was associated with the precipitation of authigenic clay and quartz, leading to a limited increase in storage space. Different structural uplifting–subsidence processes of tectonic zones resulted in varying diagenetic–reservoir-forming processes of the Permian clastic reservoirs. Three genetic models of reservoirs are recognized. The Model I reservoirs with pores formed in shallow strata and buried in shallow to medium strata underwent two stages of exposure to long-term open environment and two stages of meteoric freshwater leaching to enhance pores near the surface, and were shallowly buried in the late stage, exhibiting the dominance of secondary pores and the best physical properties. The Model Ⅱ reservoirs with pores formed in shallow strata and preserved due to modification after deep burial experienced an early exposure-open to late burial-closed environment, where pore types were modified due to dissolution, exhibiting the dominance of numerous secondary solution pores in feldspar and the physical properties inferior to Model I. The Model Ⅲ reservoirs with pores formed after being regulated after multiple periods of burial and dissolution experienced a dissolution of acidic fluids of organic origin under a near-closed to closed environment, exhibiting the dominance of intercrystalline micropores in kaolinite and the poorest physical properties. The target reservoirs lied in the waterflood area in the geological period of meteoric freshwater leaching, and are now the Model Ⅱ deep reservoirs in the slope zone–depression zone. They are determined as favorable options for subsequent exploration.展开更多
The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the ...The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.展开更多
The Lower Cretaceous Yingcheng Formation in the southern Songliao Basin is the typical tight oil sandstone in China.In order to better predict the petrophysical properties of the tight sandstone reservoirs in the Lowe...The Lower Cretaceous Yingcheng Formation in the southern Songliao Basin is the typical tight oil sandstone in China.In order to better predict the petrophysical properties of the tight sandstone reservoirs in the Lower Cretaceous Yingcheng Formation,Songliao Basin,Northeast China,the diagenesis and porosity evolution was investigated using a suite of petrographic and geochemical techniques including thin section analysis,scanning electron microscopy,mercury intrusion and fluid inclusion analysis,on a set of selected tight sandstone samples.Combined with the histories of burial evolution,organic matter thermal evolution and hydrocarbon charge,the matching relationship between reservoir porosity evolution and hydrocarbon accumulation history is analyzed.The result showed that the tight sandstone reservoirs characterized of being controlled by deposition,predominated by compaction,improved by dissolution and enhanced by cementation.The hydrocarbon accumulation period was investigated using a suite of hydrocarbon generation and expulsion history,microfluorescence determination and temperature measurement technology.According to the homogenization temperature of the inclusions and the history of burial evolution,Yingcheng Formation has mainly two phases hydrocarbon accumulation.The first phase of oil and gas is charged before the reservoir is tightened,the oil and gas generated by Shahezi source rocks enter the sand body of Yingcheng Formation,influenced by the carrying capability of sand conducting layer,oil and gas is mainly conducted by the better properties and higher connectivity sand body and enriched in the east,which belongs to the type of densification after hydrocarbon accumulation.The second phase of oil and gas charge after densification,which belongs to the type of densification before the hydrocarbon accumulation.展开更多
The Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin were studied to understand the genesis and diagenetic evolution of carbonate minerals and their effects on reservoir quality. The results of geoch...The Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin were studied to understand the genesis and diagenetic evolution of carbonate minerals and their effects on reservoir quality. The results of geochemical and petrological analyses show that calcite grains have a negative Ce anomaly indicating they formed in the oxidizing environment of seawater. The high carbonate mineral contents in the margin of basin indicate that calcite grains and cores of dolomite grains appear largely to be of detrital origin. The rhombic rims of dolomite grains and dolomite concretions with the δ^(13)C of –15.46‰ and the enrichment of middle rare earth elements were formed during the sulfate-driven anaerobic oxidation of methane. The calcite in radiolarian were related to the microbial sulfate reduction for the abundant anhedral pyrites and δ^(13)C value of –11.34‰. Calcite veins precipitated in the deep burial stage with homogenization temperature of the inclusions ranging from 146.70 ℃ to 182.90 ℃. The pores in shale are mainly organic matter pores with pore size mainly in the range of 1–20 nm in diameter. Carbonate minerals influence the development of pores through offering storage space for organic matter. When calcite contents ranging from 10% to 20%, calcite grains and cement as rigid framework can preserve primary pores. Subsequently, the thermal cracking of liquid petroleum in primary pores will form organic matter pores. The radiolarian were mostly partially filled with calcite, which combining with microcrystalline quartz preserved a high storage capacity.展开更多
Dune riocks are aeolian sands cemented ty calcium carbonate under subaerial conditions. They have been found in many of the coastal belts of Fujian, Guangdong and Hainan Provinces in South China. The grain composition...Dune riocks are aeolian sands cemented ty calcium carbonate under subaerial conditions. They have been found in many of the coastal belts of Fujian, Guangdong and Hainan Provinces in South China. The grain composition of the dune rocks is mainly quartz sands and shell fragments. The quartz sands are medium and fine sized, relatively well sorted and positively skewed. Their surface texture formed in aeolian environments is characterized ty dishshaped depressions, meniscus depressions and V-shaped depressions with rounded edges. The most common bedding type of the rocks is larg (thickness>1.5m), steeply dipping (32--40°) with cross strata tolaner and convex upward). Mg and Sr contents are very low in the rock chemical composition which is classified into low Mg and low Sr category. The typical species of microfossils in the dune rocks are mainly freshwater ones and lack of typical saltwaer or semi-saltwater ones with incomplete assemblage of marine species. The cement minerals in the rocks are mainly low-Mg calcite and the common cement fabrics are meniscus cement and gravitational cement in response to impermanent water in vadose zones. Therefore, the dune rocks may be apparently distinguished from the beach rocks.展开更多
基金Supported by the Enterprise Innovation and Development Joint Fund of National Natural Science Foundation of China(U19B6003)National Natural Science Foundation of China(41872150)。
文摘The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin were investigated through outcrop section measurement,core observation,thin section identification,argon ion polishing,X-ray diffraction,scanning electron microscope,energy spectrum analysis and laser ablation-inductively coupled plasma-mass spectrometry.The diagenetic evolution sequence of clay minerals was clarified,and the sedimentary-diagenetic evolution model of clay minerals was established.The results show that authigenic sepiolite minerals were precipitated in the Si4+and Mg2+-rich cool aragonite sea and sepiolite-bearing strata were formed in the Mao-1 Member.During burial diagenesis,authigenic clay minerals undergo two possible evolution sequences.First,from the early diagenetic stage A to the middle diagenetic stage A1,the sepiolite kept stable in the shallow-buried environment lack of Al3+.It began to transform into stevensite in the middle diagenetic stage A2,and then evolved into disordered talc in the middle diagenetic stage B1and finally into talc in the period from the middle diagenetic stage B2to the late diagenetic stage.Thus,the primary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-stevensite-disordered talc-talc,was formed in the Mao-1 Member.Second,in the early diagenetic stage A,as Al3+carried by the storm and upwelling currents was involved in the diagenetic process,trace of sepiolite started to evolve into smectite,and a part of smectite turned into chlorite.From the early diagenetic stage B to the middle diagenesis stage A1,a part of smectite evolved to illite/smectite mixed layer(I/S).The I/S evolved initially into illite from the middle diagenesis stage A2to the middle diagenesis stage B2,and then totally into illite in the late diagenesis stage.Thus,the secondary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-smectite-chlorite/illite,was formed in the Mao-1 Member.The types and evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata are significant for petroleum geology in two aspects.First,sepiolite can adsorb and accumulate a large amount of organic matters,thereby effectively improving the quality and hydrocarbon generation potential of the source rocks of the Mao-1 Member.Second,the evolution from sepiolite to talc is accompanied by the formation of numerous organic matter pores and clay shrinkage pores/fractures,as well as the releasing of the Mg2+-rich diagenetic fluid,which allows for the dolomitization of limestone within or around the sag.As a result,the new assemblages of self-generation and self-accumulation,and lower/side source and upper/lateral reservoir,are created in the Middle Permian,enhancing the hydrocarbon accumulation efficiency.
基金Project(41102058)supported by the National Natural Science Foundation of ChinaProject(2011ZX05006-003)supported by National Oil&Gas Major Project of China+1 种基金Project(U1262203)supported by Key Program for National Natural Science Foundation of ChinaProject(LW140101A)for Excellent Doctoral Dissertation supported by China University of Petroleum,China
文摘Petrographic analysis combined with various techniques, such as thin section identification, fluid inclusions, isotopic data, petro-physical property testing and oil testing results, was used to study diagenetic evolution and its effect on reservoir-quality of fan delta reservoirs of Es4s in the Bonan sag. The diagenesis is principally characterized by strong compaction, undercompaction, multi-phase of dissolution and cementation. Compaction played a more important role than cementation in destroying the primary porosity of the sandstones. The reservoirs have experienced complicated diagenetic environment evolution of "weak alkalineacid-alkalinity-acid-weak alkalinity" and two-stage of hydrocarbon filling. The diagenetic sequences are summarized as "early compaction/early pyrite/gypsum/calcite/dolomite cementation→feldspar dissolution/the first stage of quartz overgrowth → early hydrocarbon filling→quartz dissolution/anhydrite/Fe-carbonate cementation→Fe-carbonate dissolution/feldspar dissolution/ the second stage of quartz overgrowth→later hydrocarbon filling→later pyrite cementation. In the same diagenetic context, the diagenetic evolution processes that occurred in different sub/micro-facies during progressive burial have resulted in heterogeneous reservoir properties and oiliness. The braided channel reservoirs in fan delta plain are poorly sorted with high matrix contents. The physical properties decrease continually due to the principally strong compaction and weak dissolution. The present properties of braided channel reservoirs are extremely poor, which is evidenced by few oil layers developed in relatively shallow strata while dry layers entirely in deep. The reservoirs both in the underwater distributary channels and mouth bars are well sorted and have a strong ability to resist compaction. Abundant pores are developed in medium-deep strata because of modifications by two-stage of acidic dissolution and hydrocarbon filling. The present properties are relatively well both in the underwater distributary channels and mouth bars and plenty of oil layers are developed in different burial depth. The present reservoir properties both in interdistributary channel and pre-fan delta are poor caused by extensively cementation. Small amounts of oil layers, oil-water layers and oil-bearing layers are developed in relatively shallow strata while dry layers totally in deep.
基金Supported by the National Natural Science Foundation of China(Grant Nos.42172153,41802172)Sinopec Key Laboratory Project(Grant No.KL21042)Shengli Oilfield Company Project(Grant No.YKS2101)。
文摘The origin of dolomite in Shahejie Formation shale of Jiyang Depression in eastern China were studied by means of petrologic identification, compositional analysis by X-ray diffraction, stable carbon and oxygen isotopic composition, and trace element and rare earth element analyses. The results show that the development of dolomite is limited in the lacustrine organic rich shale of Shahejie Formation in the study area. Three kinds of dolomite minerals can be identified: primary dolomite(D1), penecontemporaneous dolomite(D2), and ankerite(Ak). D1 has the structure of primary spherical dolomite, high magnesium and high calcium, with order degree of 0.3-0.5, and is characterized by the intracrystalline corrosion and coexistence of secondary enlargement along the outer edge. D2 has the characteristics of secondary enlargement, order degree of 0.5-0.7, high magnesium, high calcium and containing a little iron and manganese elements. Ak is characterized by high order degree of 0.7-0.9, rhombic crystal, high magnesium, high calcium and high iron. The micritic calcite belongs to primary origin on the basis of the carbon and oxygen isotopic compositions and the fractionation characteristics of rare earth elements. According to the oxygen isotopic fractionation equation between paragenetic dolomite and calcite, it is calculated that the formation temperature of dolomite in the shale is between 36.76-45.83 ℃, belonging to lacustrine low-temperature dolomite. Based on the maturation and growth mechanism of primary and penecontemporaneous dolomite crystals, a dolomite diagenetic sequence and the dolomitization process are proposed, which is corresponding to the diagenetic environment of Shahejie Formation shale in the study area.
基金Supported by the China National Science and Technology Major Project (2016ZX05006-006)
文摘The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controlling factors and formation mechanisms of medium to deep high-quality reservoir were revealed by multiple regression analysis. The results show that the sedimentary microfacies, rigid grains content, and dissolution process are the key factors controlling the formation of high-quality clastic reservoir in middle to deep depth in the Nanpu sag. The formation mechanisms of middle to deep sandstones of the Es in different structural belts differ widely in formation mechanism. The Es1(uppermost member of Es) sandstone reservoirs in the Nanpu No.3 structural belt is low porosity, moderate to high permeability reservoir in the mesodiagenesis A2 stage on the whole, and the formation of high-quality reservoirs is mainly attributed to strong compaction resistance ability primarily, and dissolution process secondarily. The Es3(third member of Es) sandstones in Gaoshangpu structural belt is classified as tight sandstones in the mesodiagenesis A1 stage, in which the development of favorable reservoirs is primarily controlled by dissolution. This study provides references for reservoir evaluation of deep clastic reservoirs and exploration deployment in the Bohai Bay rift basin. As there are high-quality reservoirs, it is believed that the deep clastic reservoirs in the eastern of China, such as Bohai Bay Basin still have significant exploration potential.
基金Major Projects of National Science and Technology "Large Oil and Gas Fields and CBM Development" (Grant No.2016ZX05027-02–007)the National Natural Science Fund(Grant No.42072119)Open Foundation of Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education(China University of Geosciences)(Grant No.TPR-2021–08)。
文摘It was showed that understanding of the diagenetic modifications and its associated products in the deeply to ultra-deeply buried tight sandstone reservoirs(DUDTSR)is great important for reservoir characterization and hydrocarbon prediction.However,the fine characterization of diagenetic evolution via geologic modelling in tight sandstones remains a great challenge as for complexity of lithology,temperature,pressure and formation fluid throughout the entire life cycle of tight sandstone reservoirs.To help get a comprehensive idea of the distribution of diagenetic processes on the formation of DUDTSR in the long geological period,type-I and type-II fine sections of diagenetic stage for clastic reservoirs were creatively proposed and its essence was illustrated using the Paleogene Huagang(EH)Formation in the southern Xihu Sag.Through combination of both quantitative and qualitative methods which began with current formation temperature,vitrinite analysis,illite and I/S mixed layers based on analytical testing of the EH Formation,(1)Paleotemperature(T),vitrinite reflectivity and smectite in mixed layer during burial processes were restored based on numerical analysis,(2)The accurate division of diagenetic evolution was identified from coarse to fine process using new model,(3)And finally the geological significance of fine division of the conventional diagenetic stage was illustrated for low-porosity and tight sandstone reservoirs.
基金supported by the National Natural Science Foundation of China(Nos.42072130,41872152).
文摘Based on the petrology,isotope geochemistry and fluid inclusions analysis,we established the evolutionary mode of the diagenetic fluid of dawsonite-bearing sandstone in the Jiyang Depression.Dawsonite-bearing sandstone is characterized by double injection of CO_(2)and oil-gas in the Jiyang Depression that have experienced a relatively complex diagenetic fluid evolution process.The diagenetic sequence of secondary minerals involves secondary enlargement of quartz,kaolinite,first-stage calcite,dawsonite,second-stage calcite,ferrocalcite,dolomite and ankerite.Hydrocarbon charging in the dawsonite-bearing sandstone occurred at around 2.6–0 Myr.The CO_(2)charging event occurred during Dongying tectonism,forming the Pingfangwang CO_(2)gas reservoir,which provided an abundant carbon source for dawsonite precipitation.Carbon and oxygen isotopic compositions of dawsonite demonstrate that CO_(2)forming the dawsonite was of an inorganic origin derived from the mantle,and that water mediating the proc-ess during dawsonite precipitation was sequestered brine with a fluid temperature of 82℃.The evolutionary sequence of the diagenetic fluid in the dawsonite-bearing sandstone was:alkaline syngenetic fluids,weak alkaline fluids during organic acid forma-tion,acidic fluids in the early stage of CO_(2)injection,alkaline fluids in the late stage of CO_(2)injection,and weak alkaline fluids during oil and gas charging.The mode indicates an increase in-HCO_(3)because of the CO_(2)injection,and the loss of Ca^(2+)and Mg^(2+)due to the precipitation of carbonate minerals.Therefore,the evolutionary mode of diagenetic fluids is in good agreement with high HCO_(3)^(-),low Ca^(2+)and low Mg^(2+)composition of the present formation water in the dawsonite-bearing sandstone.
基金supported by the National Natural Science Foundation of China(Nos.42072142,41702121,U19B2007)the Major National Science and Technology Programs in the“Thirteenth Five-Year”Plan Period(No.2016ZX05024-006-002)the PetroChina Innovation Foundation(No.2018D-5007-0104)。
文摘Reconstruction of the diagenetic evolution of reservoirs is one of the most significant tasks in oil and gas exploration and development.Assessing the accurate timing of diagenetic events is critical to better understand the process of reservoir evolution,but the isotope dating of diagenetic events is technically challenging.This paper uses three case studies in the sedimentary basins in China to demonstrate the promising application of recently developed LA-(MC)-ICPMS in-situ U-Pb geochronology.Our results show that the new U-Pb dating method provides a reliable and efficient chronological approach to determine the absolute ages of diagenetic events.For example,the U-Pb age data of the Cambrian carbonate reservoir in the Tarim Basin reveals three diagenetic events at 526±14,515±21,and 481±4.6 Ma,respectively.It is worth noting that microscopic observations are particularly important for improving the success rate of U-Pb dating.In addition,the recent progress and future prospects in the in-situ U-Pb dating method are also discussed in this study,suggesting that this method is currently hindered by the lack of international carbonate standards for data correction.
基金supported by the projects of the China Geological Survey(DD20230043,DD20240048)the project of the National Natural Science Foundation of China(42102123)。
文摘Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.
基金Supported by the National Natural Science Foundation(42222208,41821002)China National Science and Technology Major Project(2016ZX05006-007)Mount Taishan Scholar Young Expert Project(201909061).
文摘Based on core observation, thin section examination, fluid inclusions analysis, carbon and oxygen isotopic composition analysis, and other approaches, the structural and burial evolution histories were investigated, and the diagenetic evolution process and genetic/development models were systematically discussed of the Upper Paleozoic Permian clastic rock reservoirs in the Bohai Bay Basin, East China. The Bohai Bay Basin underwent three stages of burial and two stages of uplifting in the Upper Paleozoic. Consequently, three stages of acid dissolution generated by the thermal evolution of kerogen, and two stages of meteoric freshwater leaching occurred. Dissolution in deeply buried, nearly closed diagenetic system was associated with the precipitation of authigenic clay and quartz, leading to a limited increase in storage space. Different structural uplifting–subsidence processes of tectonic zones resulted in varying diagenetic–reservoir-forming processes of the Permian clastic reservoirs. Three genetic models of reservoirs are recognized. The Model I reservoirs with pores formed in shallow strata and buried in shallow to medium strata underwent two stages of exposure to long-term open environment and two stages of meteoric freshwater leaching to enhance pores near the surface, and were shallowly buried in the late stage, exhibiting the dominance of secondary pores and the best physical properties. The Model Ⅱ reservoirs with pores formed in shallow strata and preserved due to modification after deep burial experienced an early exposure-open to late burial-closed environment, where pore types were modified due to dissolution, exhibiting the dominance of numerous secondary solution pores in feldspar and the physical properties inferior to Model I. The Model Ⅲ reservoirs with pores formed after being regulated after multiple periods of burial and dissolution experienced a dissolution of acidic fluids of organic origin under a near-closed to closed environment, exhibiting the dominance of intercrystalline micropores in kaolinite and the poorest physical properties. The target reservoirs lied in the waterflood area in the geological period of meteoric freshwater leaching, and are now the Model Ⅱ deep reservoirs in the slope zone–depression zone. They are determined as favorable options for subsequent exploration.
基金Supported by the Research on Exploration and Development Technology and New Exploration Field of High Temperature and Pressure Gas Reservoir in Western South China Sea(CNOOC-KJ135ZDXM38ZJ02ZJ)National Natural Science Foundation of China(41972129)National Science and Technology Key Project(2016ZX05024-005,2016ZX05026-003-005)。
文摘The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.
基金The authors acknowledge sponsorship from China Petroleum Science and Technology Innovation Fund(2017d-5007-0101)China Geological Survey project(DD20191007)Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0207).
文摘The Lower Cretaceous Yingcheng Formation in the southern Songliao Basin is the typical tight oil sandstone in China.In order to better predict the petrophysical properties of the tight sandstone reservoirs in the Lower Cretaceous Yingcheng Formation,Songliao Basin,Northeast China,the diagenesis and porosity evolution was investigated using a suite of petrographic and geochemical techniques including thin section analysis,scanning electron microscopy,mercury intrusion and fluid inclusion analysis,on a set of selected tight sandstone samples.Combined with the histories of burial evolution,organic matter thermal evolution and hydrocarbon charge,the matching relationship between reservoir porosity evolution and hydrocarbon accumulation history is analyzed.The result showed that the tight sandstone reservoirs characterized of being controlled by deposition,predominated by compaction,improved by dissolution and enhanced by cementation.The hydrocarbon accumulation period was investigated using a suite of hydrocarbon generation and expulsion history,microfluorescence determination and temperature measurement technology.According to the homogenization temperature of the inclusions and the history of burial evolution,Yingcheng Formation has mainly two phases hydrocarbon accumulation.The first phase of oil and gas is charged before the reservoir is tightened,the oil and gas generated by Shahezi source rocks enter the sand body of Yingcheng Formation,influenced by the carrying capability of sand conducting layer,oil and gas is mainly conducted by the better properties and higher connectivity sand body and enriched in the east,which belongs to the type of densification after hydrocarbon accumulation.The second phase of oil and gas charge after densification,which belongs to the type of densification before the hydrocarbon accumulation.
基金supported by the National Natural Science Foundation of China(Nos.42172148,41830431,and 41902127).
文摘The Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin were studied to understand the genesis and diagenetic evolution of carbonate minerals and their effects on reservoir quality. The results of geochemical and petrological analyses show that calcite grains have a negative Ce anomaly indicating they formed in the oxidizing environment of seawater. The high carbonate mineral contents in the margin of basin indicate that calcite grains and cores of dolomite grains appear largely to be of detrital origin. The rhombic rims of dolomite grains and dolomite concretions with the δ^(13)C of –15.46‰ and the enrichment of middle rare earth elements were formed during the sulfate-driven anaerobic oxidation of methane. The calcite in radiolarian were related to the microbial sulfate reduction for the abundant anhedral pyrites and δ^(13)C value of –11.34‰. Calcite veins precipitated in the deep burial stage with homogenization temperature of the inclusions ranging from 146.70 ℃ to 182.90 ℃. The pores in shale are mainly organic matter pores with pore size mainly in the range of 1–20 nm in diameter. Carbonate minerals influence the development of pores through offering storage space for organic matter. When calcite contents ranging from 10% to 20%, calcite grains and cement as rigid framework can preserve primary pores. Subsequently, the thermal cracking of liquid petroleum in primary pores will form organic matter pores. The radiolarian were mostly partially filled with calcite, which combining with microcrystalline quartz preserved a high storage capacity.
文摘Dune riocks are aeolian sands cemented ty calcium carbonate under subaerial conditions. They have been found in many of the coastal belts of Fujian, Guangdong and Hainan Provinces in South China. The grain composition of the dune rocks is mainly quartz sands and shell fragments. The quartz sands are medium and fine sized, relatively well sorted and positively skewed. Their surface texture formed in aeolian environments is characterized ty dishshaped depressions, meniscus depressions and V-shaped depressions with rounded edges. The most common bedding type of the rocks is larg (thickness>1.5m), steeply dipping (32--40°) with cross strata tolaner and convex upward). Mg and Sr contents are very low in the rock chemical composition which is classified into low Mg and low Sr category. The typical species of microfossils in the dune rocks are mainly freshwater ones and lack of typical saltwaer or semi-saltwater ones with incomplete assemblage of marine species. The cement minerals in the rocks are mainly low-Mg calcite and the common cement fabrics are meniscus cement and gravitational cement in response to impermanent water in vadose zones. Therefore, the dune rocks may be apparently distinguished from the beach rocks.