期刊文献+
共找到721篇文章
< 1 2 37 >
每页显示 20 50 100
A New Anonymity Model for Privacy-Preserving Data Publishing 被引量:6
1
作者 HUANG Xuezhen LIU Jiqiang HAN Zhen YANG Jun 《China Communications》 SCIE CSCD 2014年第9期47-59,共13页
Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity atta... Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity attack and the similarity attack. This paper proposes a novel model, (w,γ, k)-anonymity, to avoid generality attacks on both cases of numeric and categorical attributes. We show that the optimal (w, γ, k)-anonymity problem is NP-hard and conduct the Top-down Local recoding (TDL) algorithm to implement the model. Our experiments validate the improvement of our model with real data. 展开更多
关键词 data security privacy protection ANONYMITY data publishing
在线阅读 下载PDF
A Differential Privacy Based (k-Ψ)-Anonymity Method for Trajectory Data Publishing 被引量:1
2
作者 Hongyu Chen Shuyu Li Zhaosheng Zhang 《Computers, Materials & Continua》 SCIE EI 2020年第12期2665-2685,共21页
In recent years,mobile Internet technology and location based services have wide application.Application providers and users have accumulated huge amount of trajectory data.While publishing and analyzing user trajecto... In recent years,mobile Internet technology and location based services have wide application.Application providers and users have accumulated huge amount of trajectory data.While publishing and analyzing user trajectory data have brought great convenience for people,the disclosure risks of user privacy caused by the trajectory data publishing are also becoming more and more prominent.Traditional k-anonymous trajectory data publishing technologies cannot effectively protect user privacy against attackers with strong background knowledge.For privacy preserving trajectory data publishing,we propose a differential privacy based(k-Ψ)-anonymity method to defend against re-identification and probabilistic inference attack.The proposed method is divided into two phases:in the first phase,a dummy-based(k-Ψ)-anonymous trajectory data publishing algorithm is given,which improves(k-δ)-anonymity by considering changes of thresholdδon different road segments and constructing an adaptive threshold setΨthat takes into account road network information.In the second phase,Laplace noise regarding distance of anonymous locations under differential privacy is used for trajectory perturbation of the anonymous trajectory dataset outputted by the first phase.Experiments on real road network dataset are performed and the results show that the proposed method improves the trajectory indistinguishability and achieves good data utility in condition of preserving user privacy. 展开更多
关键词 Trajectory data publishing privacy preservation road network (k-Ψ)-anonymity differential privacy
在线阅读 下载PDF
A New Privacy-Preserving Data Publishing Algorithm Utilizing Connectivity-Based Outlier Factor and Mondrian Techniques
3
作者 Burak Cem Kara Can Eyüpoglu 《Computers, Materials & Continua》 SCIE EI 2023年第8期1515-1535,共21页
Developing a privacy-preserving data publishing algorithm that stops individuals from disclosing their identities while not ignoring data utility remains an important goal to achieve.Because finding the trade-off betw... Developing a privacy-preserving data publishing algorithm that stops individuals from disclosing their identities while not ignoring data utility remains an important goal to achieve.Because finding the trade-off between data privacy and data utility is an NP-hard problem and also a current research area.When existing approaches are investigated,one of the most significant difficulties discovered is the presence of outlier data in the datasets.Outlier data has a negative impact on data utility.Furthermore,k-anonymity algorithms,which are commonly used in the literature,do not provide adequate protection against outlier data.In this study,a new data anonymization algorithm is devised and tested for boosting data utility by incorporating an outlier data detection mechanism into the Mondrian algorithm.The connectivity-based outlier factor(COF)algorithm is used to detect outliers.Mondrian is selected because of its capacity to anonymize multidimensional data while meeting the needs of real-world data.COF,on the other hand,is used to discover outliers in high-dimensional datasets with complicated structures.The proposed algorithm generates more equivalence classes than the Mondrian algorithm and provides greater data utility than previous algorithms based on k-anonymization.In addition,it outperforms other algorithms in the discernibility metric(DM),normalized average equivalence class size(Cavg),global certainty penalty(GCP),query error rate,classification accuracy(CA),and F-measure metrics.Moreover,the increase in the values of theGCPand error ratemetrics demonstrates that the proposed algorithm facilitates obtaining higher data utility by grouping closer data points when compared to other algorithms. 展开更多
关键词 data anonymization privacy-preserving data publishing K-ANONYMITY GENERALIZATION MONDRIAN
在线阅读 下载PDF
Attacks and Countermeasures in Social Network Data Publishing
4
作者 YANG Mengmeng ZHU Tianqing +1 位作者 ZHOU Wanlei XIANG Yang 《ZTE Communications》 2016年第B06期2-9,共8页
With the increasing prevalence of social networks, more and more social network data are published for many applications, such as social network analysis and data mining. However, this brings privacy problems. For exa... With the increasing prevalence of social networks, more and more social network data are published for many applications, such as social network analysis and data mining. However, this brings privacy problems. For example, adversaries can get sensitive information of some individuals easily with little background knowledge. How to publish social network data for analysis purpose while preserving the privacy of individuals has raised many concerns. Many algorithms have been proposed to address this issue. In this paper, we discuss this privacy problem from two aspects: attack models and countermeasures. We analyse privacy conceres, model the background knowledge that adversary may utilize and review the recently developed attack models. We then survey the state-of-the-art privacy preserving methods in two categories: anonymization methods and differential privacy methods. We also provide research directions in this area. 展开更多
关键词 social network data publishing attack model privacy preserving
在线阅读 下载PDF
Preserving Data Privacy in Speech Data Publishing
5
作者 SUN Jiaxin JIANG Jin ZHAO Ping 《Journal of Donghua University(English Edition)》 EI CAS 2020年第4期293-297,共5页
Speech data publishing breaches users'data privacy,thereby causing more privacy disclosure.Existing work sanitizes content,voice,and voiceprint of speech data without considering the consistence among these three ... Speech data publishing breaches users'data privacy,thereby causing more privacy disclosure.Existing work sanitizes content,voice,and voiceprint of speech data without considering the consistence among these three features,and thus is susceptible to inference attacks.To address the problem,we design a privacy-preserving protocol for speech data publishing(P3S2)that takes the corrections among the three factors into consideration.To concrete,we first propose a three-dimensional sanitization that uses feature learning to capture characteristics in each dimension,and then sanitize speech data using the learned features.As a result,the correlations among the three dimensions of the sanitized speech data are guaranteed.Furthermore,the(ε,δ)-differential privacy is used to theoretically prove both the data privacy preservation and the data utility guarantee of P3S2,filling the gap of algorithm design and performance evaluation.Finally,simulations on two real world datasets have demonstrated both the data privacy preservation and the data utility guarantee. 展开更多
关键词 speech data publishing data privacy data utility differential privacy
在线阅读 下载PDF
A Dynamic Social Network Data Publishing Algorithm Based on Differential Privacy 被引量:2
6
作者 Zhenpeng Liu Yawei Dong +1 位作者 Xuan Zhao Bin Zhang 《Journal of Information Security》 2017年第4期328-338,共11页
Social network contains the interaction between social members, which constitutes the structure and attribute of social network. The interactive relationship of social network contains a lot of personal privacy inform... Social network contains the interaction between social members, which constitutes the structure and attribute of social network. The interactive relationship of social network contains a lot of personal privacy information. The direct release of social network data will cause the disclosure of privacy information. Aiming at the dynamic characteristics of social network data release, a new dynamic social network data publishing method based on differential privacy was proposed. This method was consistent with differential privacy. It is named DDPA (Dynamic Differential Privacy Algorithm). DDPA algorithm is an improvement of privacy protection algorithm in static social network data publishing. DDPA adds noise which follows Laplace to network edge weights. DDPA identifies the edge weight information that changes as the number of iterations increases, adding the privacy protection budget. Through experiments on real data sets, the results show that the DDPA algorithm satisfies the user’s privacy requirement in social network. DDPA reduces the execution time brought by iterations and reduces the information loss rate of graph structure. 展开更多
关键词 DYNAMIC SOCIAL NETWORK data publishING DIFFERENTIAL PRIVACY
在线阅读 下载PDF
Attacks on Anonymization-Based Privacy-Preserving: A Survey for Data Mining and Data Publishing 被引量:1
7
作者 Abou-el-ela Abdou Hussien Nermin Hamza Hesham A. Hefny 《Journal of Information Security》 2013年第2期101-112,共12页
Data mining is the extraction of vast interesting patterns or knowledge from huge amount of data. The initial idea of privacy-preserving data mining PPDM was to extend traditional data mining techniques to work with t... Data mining is the extraction of vast interesting patterns or knowledge from huge amount of data. The initial idea of privacy-preserving data mining PPDM was to extend traditional data mining techniques to work with the data modified to mask sensitive information. The key issues were how to modify the data and how to recover the data mining result from the modified data. Privacy-preserving data mining considers the problem of running data mining algorithms on confidential data that is not supposed to be revealed even to the party running the algorithm. In contrast, privacy-preserving data publishing (PPDP) may not necessarily be tied to a specific data mining task, and the data mining task may be unknown at the time of data publishing. PPDP studies how to transform raw data into a version that is immunized against privacy attacks but that still supports effective data mining tasks. Privacy-preserving for both data mining (PPDM) and data publishing (PPDP) has become increasingly popular because it allows sharing of privacy sensitive data for analysis purposes. One well studied approach is the k-anonymity model [1] which in turn led to other models such as confidence bounding, l-diversity, t-closeness, (α,k)-anonymity, etc. In particular, all known mechanisms try to minimize information loss and such an attempt provides a loophole for attacks. The aim of this paper is to present a survey for most of the common attacks techniques for anonymization-based PPDM & PPDP and explain their effects on Data Privacy. 展开更多
关键词 Privacy K-ANONYMITY data MINING PRIVACY-PRESERVING data publishING PRIVACY-PRESERVING data MINING
在线阅读 下载PDF
Design of Experimental Data Publishing Software for Neutral Beam Injector on EAST
8
作者 张睿 胡纯栋 +3 位作者 盛鹏 赵远哲 张晓丹 吴德云 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第2期173-176,共4页
Neutral Beam Injection (NBI) is one of the most effective means for plasma heating. Experimental Data Publishing Software (EDPS) is developed to publish experimental data to get the NBI system under remote monitor... Neutral Beam Injection (NBI) is one of the most effective means for plasma heating. Experimental Data Publishing Software (EDPS) is developed to publish experimental data to get the NBI system under remote monitoring. In this paper, the architecture and implementation of EDPS including the design of the communication module and web page display module are presented. EDPS is developed based on the Browser/Server (B/S) model, and works under the Linux operating system. Using the data source and communication mechanism of the NBI Control System (NBICS), EDPS publishes experimental data on the Internet. 展开更多
关键词 NBI B/S experimental data configuration publishING APPLET JFREECHART SERVLET
在线阅读 下载PDF
Medical data publishing based on average distribution and clustering
9
作者 Tong Yi Minyong Shi Haibin Zhu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第3期381-394,共14页
Most of the data publishing methods have not considered sensitivity protection,and hence the adversary can disclose privacy by sensitivity attack.Faced with this problem,this paper presents a medical data publishing m... Most of the data publishing methods have not considered sensitivity protection,and hence the adversary can disclose privacy by sensitivity attack.Faced with this problem,this paper presents a medical data publishing method based on sensitivity determination.To protect the sensitivity,the sensitivity of disease information is determined by semantics.To seek the trade-off between information utility and privacy security,the new method focusses on the protection of sensitive values with high sensitivity and assigns the highly sensitive disease information to groups as evenly as possible.The experiments are conducted on two real-world datasets,of which the records include various attributes of patients.To measure sensitivity protection,the authors define a metric,which can evaluate the degree of sensitivity disclosure.Besides,additional information loss and discernability metrics are used to measure the availability of released tables.The experimental results indicate that the new method can provide better privacy than the traditional one while the information utility is guaranteed.Besides value protection,the proposed method can provide sensitivity protection and available releasing for medical data. 展开更多
关键词 data publishing information utility security semantics sensitive values sensitivity
在线阅读 下载PDF
A privacy-preserving method for publishing data with multiple sensitive attributes
10
作者 Tong Yi Minyong Shi +1 位作者 Wenqian Shang Haibin Zhu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期222-238,共17页
The overgeneralisation may happen because most studies on data publishing for multiple sensitive attributes(SAs)have not considered the personalised privacy requirement.Furthermore,sensitive information disclosure may... The overgeneralisation may happen because most studies on data publishing for multiple sensitive attributes(SAs)have not considered the personalised privacy requirement.Furthermore,sensitive information disclosure may also be caused by these personalised requirements.To address the matter,this article develops a personalised data publishing method for multiple SAs.According to the requirements of individuals,the new method partitions SAs values into two categories:private values and public values,and breaks the association between them for privacy guarantees.For the private values,this paper takes the process of anonymisation,while the public values are released without this process.An algorithm is designed to achieve the privacy mode,where the selectivity is determined by the sensitive value frequency and undesirable objects.The experimental results show that the proposed method can provide more information utility when compared with previous methods.The theoretic analyses and experiments also indicate that the privacy can be guaranteed even though the public values are known to an adversary.The overgeneralisation and privacy breach caused by the personalised requirement can be avoided by the new method. 展开更多
关键词 data privacy data publishing
在线阅读 下载PDF
Efficient secure data publishing algorithms for supporting information sharing 被引量:2
11
作者 YANG XiaoChun 《Science in China(Series F)》 2009年第4期627-644,共18页
Many data sharing applications require that publishing data should protect sensitive information pertaining to individuals, such as diseases of patients, the credit rating of a customer, and the salary of an employee.... Many data sharing applications require that publishing data should protect sensitive information pertaining to individuals, such as diseases of patients, the credit rating of a customer, and the salary of an employee. Meanwhile, certain information is required to be published. In this paper, we consider data-publishing applications where the publisher specifies both sensitive information and shared information. An adversary can infer the real value of a sensitive entry with a high confidence by using publishing data. The goal is to protect sensitive information in the presence of data inference using derived association rules on publishing data. We formulate the inference attack framework, and develop complexity results. We show that computing a safe partial table is an NP-hard problem. We classify the general problem into subcases based on the requirements of publishing information, and propose algorithms for finding a safe partial table to publish. We have conducted an empirical study to evaluate these algorithms on real data. The test results show that the proposed algorithms can produce approximate maximal published data and improve the performance of existing algorithms. 展开更多
关键词 Information sharing data publishing data privacy association rule inference attack
原文传递
China Publishes Suicide Data
12
《China Population Today》 2002年第Z1期25-26,共2页
关键词 China publishes Suicide data
在线阅读 下载PDF
基于马尔可夫聚类的隐私高维数据发布方法
13
作者 刘卓群 龙士工 +1 位作者 张珺铭 刘光源 《计算机工程与设计》 北大核心 2025年第1期117-123,共7页
针对现有差分隐私的方法在处理高维数据发布时面临计算成本高、数据精度低和中心服务器不可信任的问题,提出一种基于马尔可夫聚类的隐私高维数据发布方法MCL-LDP。基于在用户本地实现对用户数据的隐私保护,中心服务器接收到用户本地化... 针对现有差分隐私的方法在处理高维数据发布时面临计算成本高、数据精度低和中心服务器不可信任的问题,提出一种基于马尔可夫聚类的隐私高维数据发布方法MCL-LDP。基于在用户本地实现对用户数据的隐私保护,中心服务器接收到用户本地化差分隐私保护的数据后,构建无向依赖图矩阵表示高维数据的复杂的属性关联性,基于马尔可夫聚类将高维数据属性集分割成多个低维属性簇,利用EM算法计算低维属性簇和重叠属性簇的边缘分布、估计原始数据的联合分布,通过采样合成新的数据集进行发布。实验结果表明,所提出方法在发布高维数据集上有较好的精度、较少的迭代次数和较高的计算效率。 展开更多
关键词 高维数据 本地化差分隐私 马尔可夫聚类 数据发布 联合分布估计 属性关联性 数据合成
在线阅读 下载PDF
基于re3data的英国科学数据发布平台研究 被引量:14
14
作者 张莎莎 黄国彬 耿骞 《数字图书馆论坛》 CSSCI 2017年第6期16-24,共9页
本文以re3data为数据获取源,选取英国247个科学数据发布平台为研究对象,从责任主体、平台功能、数据资源、数据传输四个角度出发,对英国科学数据发布平台特点进行研究,总结英国科学数据发布平台特点及建设经验,为科研人员访问和利用现... 本文以re3data为数据获取源,选取英国247个科学数据发布平台为研究对象,从责任主体、平台功能、数据资源、数据传输四个角度出发,对英国科学数据发布平台特点进行研究,总结英国科学数据发布平台特点及建设经验,为科研人员访问和利用现有科学数据发布平台、科学数据发布平台建设者建设和完善平台提供一定指导。 展开更多
关键词 科学数据 发布平台 英国 re3data
在线阅读 下载PDF
数据发布中基于背景知识模型的二值映射隐私风险度量研究
15
作者 赖特 詹雯 +2 位作者 刘思杙 杨子辰 夏晓峰 《电力系统装备》 2025年第1期178-181,共4页
数据发布是数据挖掘数据集的重要来源之一,数据发布者应在最大程度上匿名化发布,以降低隐私泄漏的风险,而数据挖掘者则应关注发布数据在挖掘中的可用性,即解决隐私风险与数据可用性之间的平衡问题.隐私风险评估和数据可用性评估是解决... 数据发布是数据挖掘数据集的重要来源之一,数据发布者应在最大程度上匿名化发布,以降低隐私泄漏的风险,而数据挖掘者则应关注发布数据在挖掘中的可用性,即解决隐私风险与数据可用性之间的平衡问题.隐私风险评估和数据可用性评估是解决平衡问题的两个关键步骤.文章提出了一个框架来对隐私保护数据发布中的背景知识建模,基于该模型提出了一种隐私度量方法,该方法满足文章中提出的4个理想属性.在实践中,应用马尔可夫链蒙特卡洛方法从背景知识分布中进行采样,并评估给定数据库的隐私风险.最后,通过在真实数据库上的试验验证了所提出模型和隐私度量方法的有效性. 展开更多
关键词 数据发布 隐私风险 风险度量 背景知识
在线阅读 下载PDF
Slicing-Based Enhanced Method for Privacy-Preserving in Publishing Big Data
16
作者 Mohammed BinJubier Mohd Arfian Ismail +1 位作者 Abdulghani Ali Ahmed Ali Safaa Sadiq 《Computers, Materials & Continua》 SCIE EI 2022年第8期3665-3686,共22页
Publishing big data and making it accessible to researchers is important for knowledge building as it helps in applying highly efficient methods to plan,conduct,and assess scientific research.However,publishing and pr... Publishing big data and making it accessible to researchers is important for knowledge building as it helps in applying highly efficient methods to plan,conduct,and assess scientific research.However,publishing and processing big data poses a privacy concern related to protecting individuals’sensitive information while maintaining the usability of the published data.Several anonymization methods,such as slicing and merging,have been designed as solutions to the privacy concerns for publishing big data.However,the major drawback of merging and slicing is the random permutation procedure,which does not always guarantee complete protection against attribute or membership disclosure.Moreover,merging procedures may generatemany fake tuples,leading to a loss of data utility and subsequent erroneous knowledge extraction.This study therefore proposes a slicingbased enhanced method for privacy-preserving big data publishing while maintaining the data utility.In particular,the proposed method distributes the data into horizontal and vertical partitions.The lower and upper protection levels are then used to identify the unique and identical attributes’values.The unique and identical attributes are swapped to ensure the published big data is protected from disclosure risks.The outcome of the experiments demonstrates that the proposed method could maintain data utility and provide stronger privacy preservation. 展开更多
关键词 Big data big data privacy preservation anonymization data publishing
在线阅读 下载PDF
基于MSSQL数据库实现数据容灾备份的最佳实践
17
作者 赵康 王顺波 +2 位作者 吕昂 张礼兵 熊心雨 《科学技术创新》 2025年第6期93-96,共4页
数据资产的备份是确保业务连续性和数据安全的关键措施,采用高效的备份策略可以显著降低因数据丢失或损坏带来的风险。Microsoft SQL Server通过其先进的订阅发布功能,提供了一种高效的数据复制解决方案。这项技术能够实现数据的即时或... 数据资产的备份是确保业务连续性和数据安全的关键措施,采用高效的备份策略可以显著降低因数据丢失或损坏带来的风险。Microsoft SQL Server通过其先进的订阅发布功能,提供了一种高效的数据复制解决方案。这项技术能够实现数据的即时或定时同步,确保在主数据库遭遇故障时,能够迅速地切换到备份数据库,从而最小化业务中断的时间,确保业务流程的顺畅和数据的安全性。 展开更多
关键词 数据资产 MSSQL数据库 订阅发布 数据同步 数据备份
在线阅读 下载PDF
AI大模型时代出版内容数据保护的理据与进路
18
作者 叶悦 《出版与印刷》 2025年第1期27-36,共10页
探讨AI大模型数据训练语境下出版内容数据保护问题,提出出版内容数据保护的多元路径,推进出版产业数智化转型。文章采取文献研究方法,分析AI大模型时代出版内容数据保护的多维价值,指出出版内容数据保护存在的多重困境,包括出版内容数... 探讨AI大模型数据训练语境下出版内容数据保护问题,提出出版内容数据保护的多元路径,推进出版产业数智化转型。文章采取文献研究方法,分析AI大模型时代出版内容数据保护的多维价值,指出出版内容数据保护存在的多重困境,包括出版内容数据产权规范不明确、授权交易机制缺失、侵权判定困难、主体利益分配失衡。为推进出版产业数智化转型,提出完善建议:探索出版内容数据产权保护与行为规制路径,构建开放型的出版内容数据授权交易模式,设立可信可控的出版内容数据合规审查机制,优化出版内容数据参与者的利益分配。 展开更多
关键词 数智化转型 大模型数据训练 出版内容数据 数据保护 数据交易
在线阅读 下载PDF
Web3.0时代的数据出版:共创与协作的新生态构建 被引量:2
19
作者 周荣庭 《编辑之友》 CSSCI 北大核心 2024年第7期38-44,共7页
Web3.0时代具有更加注重数据的智能化、去中心化、隐私保护以及用户掌握数据权利的特点。出版生态中,数据成为提升出版竞争力的关键生产要素和战略性资源,改变了传统知识生产、发现与传播的方式,推动出版业态向数据驱动的范式转变。基于... Web3.0时代具有更加注重数据的智能化、去中心化、隐私保护以及用户掌握数据权利的特点。出版生态中,数据成为提升出版竞争力的关键生产要素和战略性资源,改变了传统知识生产、发现与传播的方式,推动出版业态向数据驱动的范式转变。基于此,文章通过与数字出版进行比较,厘清数据出版的范畴边界、属性特征以及参与主体,采用服务生态系统理论,围绕主体互动关系、数据资源整合、数据服务关联以及技术应用创新等关键要素,构建适应价值链不同环节和不同需求场景的数据出版服务生态系统,提出共创与协作的发展策略,以期为数据出版生态系统的可持续发展提供借鉴。 展开更多
关键词 数据出版 数据驱动 智慧驱动 服务生态系统 出版生态
在线阅读 下载PDF
数据论文引用计量规律初探——基于中国数据期刊的案例研究 被引量:1
20
作者 张丽丽 惠嘉怡 刘瑞霖 《中国科学数据(中英文网络版)》 CSCD 2024年第1期366-388,共23页
数据出版是一种创新数据共享形式。为更好地了解数据出版,本文通过文献综述和案例调研,构建了数据论文计量框架,遴选国内数据期刊《中国科学数据(中英文网络版)》和《全球变化数据学报(中英文)》,揭示两刊数据出版与数据共享情况。统计... 数据出版是一种创新数据共享形式。为更好地了解数据出版,本文通过文献综述和案例调研,构建了数据论文计量框架,遴选国内数据期刊《中国科学数据(中英文网络版)》和《全球变化数据学报(中英文)》,揭示两刊数据出版与数据共享情况。统计涵盖两刊论文指标(学科领域、团队规模、资金来源)、数据指标(数据来源、规格与规模、数据曝光)、引证指标(被引、施引、时间)等30余个特征项。结果显示,宏观趋势方面,数据出版成为数据共享的重要途径,并在规范数据质量、汇聚特色主题数据、推进团队合作、争取资金支持等方面具有优势。中观运营层面,国家数据中心为数据出版提供平台保障。微观资源层面,出版数据集兼具学科差异性和跨域共性治理需求。其中,数据曝光、访问引用转化率等指标,为数据可复用性测度提供线索。此外,独立数据出版在我国尚处发展上升期,建议加强数据文化建设、扩展运营模式、提升资源治理能力与平台建设水平,完善技术迭代与激励评价机制等。 展开更多
关键词 开放数据 数据论文 数据出版 数据重用 数据引用 引用计量
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部