The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was ...The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was discussed data based on curve recognition from points cloud is proposed. The results obtained by the new algorithm are 85 % (or even higher) consistent with that of the screen displaying method, furthermore, the new method can process SLR data automatically, which makes it possible to be used in the development of the COMPASS navigation system.展开更多
Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Latti...Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering.展开更多
The cross-section profile is a key signal for evaluating hot-rolled strip quality,and ignoring its defects can easily lead to a final failure.The characteristics of complex curve,significant irregular fluctuation and ...The cross-section profile is a key signal for evaluating hot-rolled strip quality,and ignoring its defects can easily lead to a final failure.The characteristics of complex curve,significant irregular fluctuation and imperfect sample data make it a challenge of recognizing cross-section defects,and current industrial judgment methods rely excessively on human decision making.A novel stacked denoising autoencoders(SDAE)model optimized with support vector machine(SVM)theory was proposed for the recognition of cross-section defects.Firstly,interpolation filtering and principal component analysis were employed to linearly reduce the data dimensionality of the profile curve.Secondly,the deep learning algorithm SDAE was used layer by layer for greedy unsupervised feature learning,and its final layer of back-propagation neural network was replaced by SVM for supervised learning of the final features,and the final model SDAE_SVM was obtained by further optimizing the entire network parameters via error back-propagation.Finally,the curve mirroring and combination stitching methods were used as data augmentation for the training set,which dealt with the problem of sample imbalance in the original data set,and the accuracy of cross-section defect prediction was further improved.The approach was applied in a 1780-mm hot rolling line of a steel mill to achieve the automatic diagnosis and classification of defects in cross-section profile of hot-rolled strip,which helps to reduce flatness quality concerns in downstream processes.展开更多
文摘The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was discussed data based on curve recognition from points cloud is proposed. The results obtained by the new algorithm are 85 % (or even higher) consistent with that of the screen displaying method, furthermore, the new method can process SLR data automatically, which makes it possible to be used in the development of the COMPASS navigation system.
基金WJD,JYZ,CLC,ZX,and ZGY were supported by the National Natural Science Foundation of China(Grant Number 51705143)the Education Department of Hunan Province(Grant Number 22B0464)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant Number QL20230249).
文摘Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering.
基金supported by the National Natural Science Foundation of China(No.52004029)the Joint Doctoral Program of China Scholarship Council(CSC)(202006460073)Liuzhou Science and Technology Plan Project,China(2021AAD0102).
文摘The cross-section profile is a key signal for evaluating hot-rolled strip quality,and ignoring its defects can easily lead to a final failure.The characteristics of complex curve,significant irregular fluctuation and imperfect sample data make it a challenge of recognizing cross-section defects,and current industrial judgment methods rely excessively on human decision making.A novel stacked denoising autoencoders(SDAE)model optimized with support vector machine(SVM)theory was proposed for the recognition of cross-section defects.Firstly,interpolation filtering and principal component analysis were employed to linearly reduce the data dimensionality of the profile curve.Secondly,the deep learning algorithm SDAE was used layer by layer for greedy unsupervised feature learning,and its final layer of back-propagation neural network was replaced by SVM for supervised learning of the final features,and the final model SDAE_SVM was obtained by further optimizing the entire network parameters via error back-propagation.Finally,the curve mirroring and combination stitching methods were used as data augmentation for the training set,which dealt with the problem of sample imbalance in the original data set,and the accuracy of cross-section defect prediction was further improved.The approach was applied in a 1780-mm hot rolling line of a steel mill to achieve the automatic diagnosis and classification of defects in cross-section profile of hot-rolled strip,which helps to reduce flatness quality concerns in downstream processes.