A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magne...A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.展开更多
This paper presents a synthesis of current-mode PI, PD and PID controllers employing current controlled current differential buffer amplifiers (CCCDBAs). The features of these controllers are that: the output paramete...This paper presents a synthesis of current-mode PI, PD and PID controllers employing current controlled current differential buffer amplifiers (CCCDBAs). The features of these controllers are that: the output parameters can be electronically/independently controlled by adjusting corresponding bias currents in the proportional, integral, and deviation controllers;circuit description of the PID controller is simply formulated, it consists of four CCCDBAs cooperating with two grounded capacitors, and PI and PD controllers are composed of three CCCCDBAs and a grounded capacitor. Without any external resistor, the proposed circuits are very suitable to develop into integrated circuit architecture. The given results from the PSpice simulation agree well with the theoretical anticipation. The approximate power consumption in a closed loop control system consisting of the PI, PD and PID controller with low-pass filter passive plant are 4.03 mW, 4.85 mW and 5.71 mW, respectively, at ±1.5 V power supply voltages.展开更多
A new type of high power LED drivers is proposed by adopting an improved two-stages non-isolated configuration. In order to improve power factor and achieve accurate average current control under universal input volta...A new type of high power LED drivers is proposed by adopting an improved two-stages non-isolated configuration. In order to improve power factor and achieve accurate average current control under universal input voltages ranging from 100 Vrms to 240 Vrms, the power factor correction and average current mode control methods operating in continuous current conduction mode are designed and implemented. With the LUMILEDS emitter type LEDs, a laboratory prototype is built and measured. And from the measured results, it could be concluded that the proposed driver has many better performances such as high power factor, low current harmonic, accurate average current control and switch protection.展开更多
A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a...A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.展开更多
A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effe...A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.展开更多
The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ...The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.展开更多
This research paper contains a new electronically tunable current-mode biquadratic universal filter using a new active building block;current controlled differential difference current conveyor transconductance amplif...This research paper contains a new electronically tunable current-mode biquadratic universal filter using a new active building block;current controlled differential difference current conveyor transconductance amplifier (CCDDCCTA). The proposed filter provides the following important and desirable features: (i) One can use only one CCDDCCTA and two capacitors;(ii) One can get low pass (LP), band pass (BP), high pass (HP), notch (NF) and all pass (AP) current responses from the same configuration without any alteration;(iii) Passive components are grounded, which ease the integrated circuit implementation;(iv) Responses are electronically tunable;and (v) Sensitivity is low. Moreover, the non-ideality analysis shows that the parasitic passive components can be compensated for the proposed circuit. The functionality of the design is verified through SPICE simulations using 0.25 μm CMOS TSMC technology process parameters. Simulation result agrees well with the theoretical analysis.展开更多
Renewable energy sources require switching regulators as an interface to a load with high efficiency, small size, proper output regulation, and fast transient response. Moreover, due to the nonlinear behavior and swit...Renewable energy sources require switching regulators as an interface to a load with high efficiency, small size, proper output regulation, and fast transient response. Moreover, due to the nonlinear behavior and switching nature of DC-DC power electronic converters, there is a need for high-performance control strategies. This work summarized the dynamic behavior for the three basic switch-mode DC-DC power converters operating in continuous conduction mode, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> buck, boost, and buck-boost. A controller was designed using loop-shaping based on current-mode control that consists of two feedback loops. A high-gain compensator with wide bandwidth was used in the inner current loop for fast transient response. A proportional-integral controller was used in the outer voltage loop for regulation purposes. A proce</span><span style="font-family:Verdana;">dure was proposed for the parameters of the controller that ensures closed-loop</span><span style="font-family:Verdana;"> stability and output voltage regulation. The design-oriented analysis was applied to the three basic switch-mode DC-DC power converters. Experimental results were obtained for a switching regulator with a boost converter of 150 W, which exhibits non-minimum phase behavior. The performance of the controller was tested for voltage regulation by applying large load changes.展开更多
In the field of analog VLSI design, current conveyors have reasonably established their identity as an important circuit design element. In the literature published during the past few years, numerous application have...In the field of analog VLSI design, current conveyors have reasonably established their identity as an important circuit design element. In the literature published during the past few years, numerous application have been reported which are based on a variety of current conveyors. In this paper, an oscillator circuit has been proposed. This oscillator is designed using a single positive type second generation current controlled current conveyor (CCCII+). A CCCII has parasitic input resistance on it’s current input node. This resistance could be exploited to reduce circuit complexities. Thus in this accord, a novel oscillator circuit is proposed which utilizes the parasitic resistance of the CCCII+ along with a few more passive components.展开更多
在配电网中使用智能软开关(Soft Open Point, SOP)可有效改善电能质量、提升新能源消纳水平。目前基于SOP配电系统中的模块化多电平换流器(MMC)广泛采用基于旋转坐标系的电压、电流解耦控制,但该控制方法难以满足三相不对称、线路故障...在配电网中使用智能软开关(Soft Open Point, SOP)可有效改善电能质量、提升新能源消纳水平。目前基于SOP配电系统中的模块化多电平换流器(MMC)广泛采用基于旋转坐标系的电压、电流解耦控制,但该控制方法难以满足三相不对称、线路故障与暂态工况下柔性互联系统对MMC换流器性能的要求,因此针对SOP的运行特点,提出一种基于SOP配电系统的MMC多模态直接控制策略。该策略统一了电流环基准的生成方式,简化了控制策略;通过切换电流环基准来加快多工况下MMC换流器运行模式的切换速度;重新定义了桥臂电压参考的生成方式,优化了MMC换流器的动态性能;通过仿真验证了所提控制策略的可靠性和有效性。展开更多
基金supported by ITER Program of China(973 Program)(No.2011GB109002)National Natural Science Foundation of China(No.11275056)Hefei University of Technology Doctor Research Foundation of China(No.2011HGBZ1292)
文摘A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.
文摘This paper presents a synthesis of current-mode PI, PD and PID controllers employing current controlled current differential buffer amplifiers (CCCDBAs). The features of these controllers are that: the output parameters can be electronically/independently controlled by adjusting corresponding bias currents in the proportional, integral, and deviation controllers;circuit description of the PID controller is simply formulated, it consists of four CCCDBAs cooperating with two grounded capacitors, and PI and PD controllers are composed of three CCCCDBAs and a grounded capacitor. Without any external resistor, the proposed circuits are very suitable to develop into integrated circuit architecture. The given results from the PSpice simulation agree well with the theoretical anticipation. The approximate power consumption in a closed loop control system consisting of the PI, PD and PID controller with low-pass filter passive plant are 4.03 mW, 4.85 mW and 5.71 mW, respectively, at ±1.5 V power supply voltages.
文摘A new type of high power LED drivers is proposed by adopting an improved two-stages non-isolated configuration. In order to improve power factor and achieve accurate average current control under universal input voltages ranging from 100 Vrms to 240 Vrms, the power factor correction and average current mode control methods operating in continuous current conduction mode are designed and implemented. With the LUMILEDS emitter type LEDs, a laboratory prototype is built and measured. And from the measured results, it could be concluded that the proposed driver has many better performances such as high power factor, low current harmonic, accurate average current control and switch protection.
文摘A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.
文摘A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.
文摘The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.
文摘This research paper contains a new electronically tunable current-mode biquadratic universal filter using a new active building block;current controlled differential difference current conveyor transconductance amplifier (CCDDCCTA). The proposed filter provides the following important and desirable features: (i) One can use only one CCDDCCTA and two capacitors;(ii) One can get low pass (LP), band pass (BP), high pass (HP), notch (NF) and all pass (AP) current responses from the same configuration without any alteration;(iii) Passive components are grounded, which ease the integrated circuit implementation;(iv) Responses are electronically tunable;and (v) Sensitivity is low. Moreover, the non-ideality analysis shows that the parasitic passive components can be compensated for the proposed circuit. The functionality of the design is verified through SPICE simulations using 0.25 μm CMOS TSMC technology process parameters. Simulation result agrees well with the theoretical analysis.
文摘Renewable energy sources require switching regulators as an interface to a load with high efficiency, small size, proper output regulation, and fast transient response. Moreover, due to the nonlinear behavior and switching nature of DC-DC power electronic converters, there is a need for high-performance control strategies. This work summarized the dynamic behavior for the three basic switch-mode DC-DC power converters operating in continuous conduction mode, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> buck, boost, and buck-boost. A controller was designed using loop-shaping based on current-mode control that consists of two feedback loops. A high-gain compensator with wide bandwidth was used in the inner current loop for fast transient response. A proportional-integral controller was used in the outer voltage loop for regulation purposes. A proce</span><span style="font-family:Verdana;">dure was proposed for the parameters of the controller that ensures closed-loop</span><span style="font-family:Verdana;"> stability and output voltage regulation. The design-oriented analysis was applied to the three basic switch-mode DC-DC power converters. Experimental results were obtained for a switching regulator with a boost converter of 150 W, which exhibits non-minimum phase behavior. The performance of the controller was tested for voltage regulation by applying large load changes.
文摘In the field of analog VLSI design, current conveyors have reasonably established their identity as an important circuit design element. In the literature published during the past few years, numerous application have been reported which are based on a variety of current conveyors. In this paper, an oscillator circuit has been proposed. This oscillator is designed using a single positive type second generation current controlled current conveyor (CCCII+). A CCCII has parasitic input resistance on it’s current input node. This resistance could be exploited to reduce circuit complexities. Thus in this accord, a novel oscillator circuit is proposed which utilizes the parasitic resistance of the CCCII+ along with a few more passive components.
文摘在配电网中使用智能软开关(Soft Open Point, SOP)可有效改善电能质量、提升新能源消纳水平。目前基于SOP配电系统中的模块化多电平换流器(MMC)广泛采用基于旋转坐标系的电压、电流解耦控制,但该控制方法难以满足三相不对称、线路故障与暂态工况下柔性互联系统对MMC换流器性能的要求,因此针对SOP的运行特点,提出一种基于SOP配电系统的MMC多模态直接控制策略。该策略统一了电流环基准的生成方式,简化了控制策略;通过切换电流环基准来加快多工况下MMC换流器运行模式的切换速度;重新定义了桥臂电压参考的生成方式,优化了MMC换流器的动态性能;通过仿真验证了所提控制策略的可靠性和有效性。