期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of CH_(4)/CO_(2) multi-component gas on components and properties of tight oil during CO_(2) utilization and storage: Physical experiment and composition numerical simulation
1
作者 Zhi-Hao Jia Ren-Yi Cao +5 位作者 Bin-Yu Wang Lin-Song Cheng Jin-Chong Zhou Bao-Biao Pu Fu-Guo Yin Ming Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3478-3487,共10页
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe... An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff. 展开更多
关键词 Multi-component gas Properties and components core displacement experiment Nano-confinement numerical simulation CO_(2)utilization and storage
在线阅读 下载PDF
SLIP VELOCITY MODEL OF POROUS WALLS ABSORBED BY HYDROPHOBIC NANOPARTICLES SIO_2 被引量:13
2
作者 GU Chun-yuan DI Qin-feng FANG Hai-ping 《Journal of Hydrodynamics》 SCIE EI CSCD 2007年第3期365-371,共7页
According to new slip effects on nanopatterned interfaces, the mechanism of enhancing water injection into hydrophobic nanomaterial SiO2 was proposed. When Hydrophobic Nanoparticles(HNPs)are adsorbed on surfaces of ... According to new slip effects on nanopatterned interfaces, the mechanism of enhancing water injection into hydrophobic nanomaterial SiO2 was proposed. When Hydrophobic Nanoparticles(HNPs)are adsorbed on surfaces of porous walls, hydrophobic nanoparticles layers are formed instead of hydrated layer, and slip effects appear on the pore wall when a driving pressure is applied to the rock cores sample. It makes fluid to move more quickly and the flow capacity increases greatly. Experiments on changing wettability of porous walls were conducted, and the phenomenon that porous walls surfaces were adsorbed by nanoparticles was validated with the Environment Scan Electron Microscopy(ESEM). The results of displacement experiments show that flowing resistance is greatly reduced, and water-phase effective permeability is increased by 47 % averagely after being treated by nanofluid. These results indicate that the slip effect may occur on nanoparticle film of porous walls. Based on this new mechanism of enhancing water injection about hydrophobic nanomaterial SiO2, a slip velocity model in uniform porous media was introduced, and some formulas for the ratio of slip length to radius, slip length ,stream slip velocity and flux increment were deduced. and calculated results indicate that the ratio of slip length to radius is about 3.54%-6.97%, and the slip length is about 0.024 μ m -0.063 μ m. The proposed model can give a good interpretation for the mechanisms of enhancing water injection with the HNPs. 展开更多
关键词 hydrophobic nanomaterial SiO2 mechanism of enhancing water injection velocity slip model core displacement experiments ADSORPTION WETTABILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部