An efficient way to design a down-converter assembly for the Ka-band millimeter system is presented, in which dielectric resonators (DR's) are adopted in the Schottky barrier diode image recovery mixer and the loca...An efficient way to design a down-converter assembly for the Ka-band millimeter system is presented, in which dielectric resonators (DR's) are adopted in the Schottky barrier diode image recovery mixer and the local oscillator (LO). DR structures guarantee high frequency stability with an acceptable volume. The configurations of low noise amplifier, mixer and oscillator in the assembly are described and fabricated to estimate the chain performance. According to the verification results, the assembly exhibits the noise figure of less than 5 dB over 1 GHz frequency range, and the single-sideband phase noise (200 kHz offset from carrier frequency) of - 70 dBc/Hz. Utilizing the DR structure, the frequency stability of the local oscillator is less than 60 × 10^-6/℃.展开更多
This paper presents the design and simulation of several fixed-tuned sub-harmonic mixers cover frequencies from 110 GH to 130 GHz, 215 GH to 235 GHz, 310 GH to 350 GHz, and 400 GH to 440 GHz. Among them, 120 GHz, 225 ...This paper presents the design and simulation of several fixed-tuned sub-harmonic mixers cover frequencies from 110 GH to 130 GHz, 215 GH to 235 GHz, 310 GH to 350 GHz, and 400 GH to 440 GHz. Among them, 120 GHz, 225 GHz, 330 GHz subharmonic mixers are designed with flip-chipped planar schottky diode mounted onto a suspended quartz-based substrate, the 225 GHz and 425 GHz subharmonic mixers are GaAs membrane integrated, and the 115 GHz subharmonic mixer has been fabricated and tested already.展开更多
This paper mainly discusses the analysis and design of a finline single-ended mixer and detector. In the circuit, for the purpose of eliminating high-order resonant modes and improving transition loss, metallic via ho...This paper mainly discusses the analysis and design of a finline single-ended mixer and detector. In the circuit, for the purpose of eliminating high-order resonant modes and improving transition loss, metallic via holes are implemented along the mounting edge of the substrate embedded in the split-block of the WG-finline-microstrip transition. Meanwhile, a Ka band slow-wave and bandstop filter, which represents a reactive termination, is designed for the utilization of idle frequencies and operation frequencies energy. Full-wave analysis is carded out to optimize the input matching network of the mixer and the detector circuit using lumped elements to model the nonlinear diode. The exported S-matrix of the optimized circuit is used for conversion loss and voltage sensitivity analysis. The lowest measured conversion loss is 3.52 dB at 32.2 GHz; the conversion loss is flat and less than 5.68 dB in the frequency band of 29-34 GHz. The highest measured zero-bias voltage sensitivity is 1450 mV/mW at 38.6 GHz, and the sensitivity is better than 1000 mV/mW in the frequency band of 38-40 GHz.展开更多
Two different frequency bandwidth subharmonic mixers(SHM) using planar Schottky mixing diodes are discussed and fabricated.Full-wave analysis is carried out to find the optimum diode embedding impedances with a lump...Two different frequency bandwidth subharmonic mixers(SHM) using planar Schottky mixing diodes are discussed and fabricated.Full-wave analysis is carried out to find the optimum diode embedding impedances with a lumped port for modeling the nonlinear junction.The SHM circuit is divided into several different parts and each part is optimized using the calculated diode impedances.The divided parts are then combined and optimized together.The exported S-parameter files of the global circuit are used for conversion loss(CL) discussion.For the 150 GHz SHM,the lowest measured CL is 10.7 dB at 153 GHz,and typical CL is 12.5 dB in the frequency range of 135-165 GHz.The lowest measured CL of the 180 GHz SHM is 5.8 dB at 240 GHz,and typical CL is 13.5 dB and 11.5 dB in the frequency range of 165-200 GHz and 210-240 GHz,respectively.展开更多
A broadband miniature doubly balanced diode mixer chip fabricated by Win's 0.15/zm pHEMT technology is presented. In order to save chip area, a four-fold modified Marchand balun is used. A coupled line U section impr...A broadband miniature doubly balanced diode mixer chip fabricated by Win's 0.15/zm pHEMT technology is presented. In order to save chip area, a four-fold modified Marchand balun is used. A coupled line U section improves the port to port isolation and provides the IF-output port. The mixer achieves a low conversion loss of 5.5 to 10.7 dB and high isolation of more than 26 dB over a 26-40 GHz RF/LO bandwidth and a DC-14 GHz IF bandwidth. The mixer's chip size is around 0.96 mm2.展开更多
A circuit topology for high-order subharmonic(SH) mixers is described.By phase cancellation of idle frequency components,the SH mixer circuit can eliminate the complicated design procedure of idle frequency circuits...A circuit topology for high-order subharmonic(SH) mixers is described.By phase cancellation of idle frequency components,the SH mixer circuit can eliminate the complicated design procedure of idle frequency circuits.Similarly,the SH mixer circuit can achieve a high port isolation by phase cancellation of the leakage LO, RF and idle frequency signals.Based on the high-order SH mixer architecture,a new Ka-band fourth SH mixer is analyzed and designed,it shows the lowest measured conversion loss of 8.3 dB at 38.4 GHz and the loss is lower than 10.3 dB in 34-39 GHz.Measured LO-IF,RF-LO,RF-IF port isolation are better than 30.7 dB,22.9dB and 46.5 dB,respectively.展开更多
Studies on soil wind erosion began with single factors affecting soil wind erosion; with increasing quantities of data being accumulated,the wind erosion equation(WEQ),the revised wind erosion equation(RWEQ),the wind ...Studies on soil wind erosion began with single factors affecting soil wind erosion; with increasing quantities of data being accumulated,the wind erosion equation(WEQ),the revised wind erosion equation(RWEQ),the wind erosion prediction system(WEPS),and other soil wind erosion models have been successively established,and great advances have been achieved.Here we briefly review the soil wind erosion research course and analyze the advantages and disadvantages of the current soil wind erosion models.From the perspective of the dynamics of wind erosion,we classified the factors affecting soil wind erosion into three categories,namely,wind erosivity factors(WEF),soil antierodibility factors(SAF),and roughness interference factors(RIF).We proposed the concept of a standard plot of soil wind erosion to solve the problem of uncertainty of the soil wind erosion modulus on a spatial scale,and provided methods to set similarity conditions in wind tunnel simulation experiments and to convert the spatial scale of the wind erosion modulus from the standard plot to a large scale field.We also proposed a conceptual model on the basis of the dynamics of soil wind erosion with the theoretical basis that wind produces a shear force on the soil surface.This shear force is partitioned by barely erodible soil surfaces and roughness elements on the ground,and the amount of soil loss by wind should be calculated by comparing the shear force of the wind on barely erodible soil surfaces with the anti-erosion force of the surface soil.One advantage of this conceptual model is that the calculated soil wind erosion modulus is not subject to changes of spatial scale.Finally,we recommended continual improvement of the existing models while also establishing new models.展开更多
文摘An efficient way to design a down-converter assembly for the Ka-band millimeter system is presented, in which dielectric resonators (DR's) are adopted in the Schottky barrier diode image recovery mixer and the local oscillator (LO). DR structures guarantee high frequency stability with an acceptable volume. The configurations of low noise amplifier, mixer and oscillator in the assembly are described and fabricated to estimate the chain performance. According to the verification results, the assembly exhibits the noise figure of less than 5 dB over 1 GHz frequency range, and the single-sideband phase noise (200 kHz offset from carrier frequency) of - 70 dBc/Hz. Utilizing the DR structure, the frequency stability of the local oscillator is less than 60 × 10^-6/℃.
基金supported by the National Natural Science Foundation of China under Grant No.61301051
文摘This paper presents the design and simulation of several fixed-tuned sub-harmonic mixers cover frequencies from 110 GH to 130 GHz, 215 GH to 235 GHz, 310 GH to 350 GHz, and 400 GH to 440 GHz. Among them, 120 GHz, 225 GHz, 330 GHz subharmonic mixers are designed with flip-chipped planar schottky diode mounted onto a suspended quartz-based substrate, the 225 GHz and 425 GHz subharmonic mixers are GaAs membrane integrated, and the 115 GHz subharmonic mixer has been fabricated and tested already.
基金supported by the National Natural Science Foundation of China(No.60621002)
文摘This paper mainly discusses the analysis and design of a finline single-ended mixer and detector. In the circuit, for the purpose of eliminating high-order resonant modes and improving transition loss, metallic via holes are implemented along the mounting edge of the substrate embedded in the split-block of the WG-finline-microstrip transition. Meanwhile, a Ka band slow-wave and bandstop filter, which represents a reactive termination, is designed for the utilization of idle frequencies and operation frequencies energy. Full-wave analysis is carded out to optimize the input matching network of the mixer and the detector circuit using lumped elements to model the nonlinear diode. The exported S-matrix of the optimized circuit is used for conversion loss and voltage sensitivity analysis. The lowest measured conversion loss is 3.52 dB at 32.2 GHz; the conversion loss is flat and less than 5.68 dB in the frequency band of 29-34 GHz. The highest measured zero-bias voltage sensitivity is 1450 mV/mW at 38.6 GHz, and the sensitivity is better than 1000 mV/mW in the frequency band of 38-40 GHz.
文摘Two different frequency bandwidth subharmonic mixers(SHM) using planar Schottky mixing diodes are discussed and fabricated.Full-wave analysis is carried out to find the optimum diode embedding impedances with a lumped port for modeling the nonlinear junction.The SHM circuit is divided into several different parts and each part is optimized using the calculated diode impedances.The divided parts are then combined and optimized together.The exported S-parameter files of the global circuit are used for conversion loss(CL) discussion.For the 150 GHz SHM,the lowest measured CL is 10.7 dB at 153 GHz,and typical CL is 12.5 dB in the frequency range of 135-165 GHz.The lowest measured CL of the 180 GHz SHM is 5.8 dB at 240 GHz,and typical CL is 13.5 dB and 11.5 dB in the frequency range of 165-200 GHz and 210-240 GHz,respectively.
文摘A broadband miniature doubly balanced diode mixer chip fabricated by Win's 0.15/zm pHEMT technology is presented. In order to save chip area, a four-fold modified Marchand balun is used. A coupled line U section improves the port to port isolation and provides the IF-output port. The mixer achieves a low conversion loss of 5.5 to 10.7 dB and high isolation of more than 26 dB over a 26-40 GHz RF/LO bandwidth and a DC-14 GHz IF bandwidth. The mixer's chip size is around 0.96 mm2.
文摘A circuit topology for high-order subharmonic(SH) mixers is described.By phase cancellation of idle frequency components,the SH mixer circuit can eliminate the complicated design procedure of idle frequency circuits.Similarly,the SH mixer circuit can achieve a high port isolation by phase cancellation of the leakage LO, RF and idle frequency signals.Based on the high-order SH mixer architecture,a new Ka-band fourth SH mixer is analyzed and designed,it shows the lowest measured conversion loss of 8.3 dB at 38.4 GHz and the loss is lower than 10.3 dB in 34-39 GHz.Measured LO-IF,RF-LO,RF-IF port isolation are better than 30.7 dB,22.9dB and 46.5 dB,respectively.
基金supported by the National Natural Science Foundation of China(Grant No.41330746)
文摘Studies on soil wind erosion began with single factors affecting soil wind erosion; with increasing quantities of data being accumulated,the wind erosion equation(WEQ),the revised wind erosion equation(RWEQ),the wind erosion prediction system(WEPS),and other soil wind erosion models have been successively established,and great advances have been achieved.Here we briefly review the soil wind erosion research course and analyze the advantages and disadvantages of the current soil wind erosion models.From the perspective of the dynamics of wind erosion,we classified the factors affecting soil wind erosion into three categories,namely,wind erosivity factors(WEF),soil antierodibility factors(SAF),and roughness interference factors(RIF).We proposed the concept of a standard plot of soil wind erosion to solve the problem of uncertainty of the soil wind erosion modulus on a spatial scale,and provided methods to set similarity conditions in wind tunnel simulation experiments and to convert the spatial scale of the wind erosion modulus from the standard plot to a large scale field.We also proposed a conceptual model on the basis of the dynamics of soil wind erosion with the theoretical basis that wind produces a shear force on the soil surface.This shear force is partitioned by barely erodible soil surfaces and roughness elements on the ground,and the amount of soil loss by wind should be calculated by comparing the shear force of the wind on barely erodible soil surfaces with the anti-erosion force of the surface soil.One advantage of this conceptual model is that the calculated soil wind erosion modulus is not subject to changes of spatial scale.Finally,we recommended continual improvement of the existing models while also establishing new models.