The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length...The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length of the single lap joint is 15 mm, 20 mm, 23 mm, 37 mm, and 60 mm, respectively. The experimental results indicate that the final failure modes of the joints can be divided into two groups, (a) the bond-line stops debonding until crack encounters Z-pins; and then the adherends break at the location of Z-pins, when overlap length is more than 20 mm; (b) the bond-line detaches entirely and Z-pins are drawn from adherends, when overlap length is equal to 15 mm. A simple efficient computational approach is presented for analyzing the benefit of through-thickness pins for restricting failure in the single lap joints. Here, the mechanics problem is simplified by representing the effect of the pins by tractions acting on the fracture surfaces of the cracked bond-line. The tractions are prescribed as functions of the crack displacement, which are available in simple forms that summarize the complex deformations to a reasonable accuracy. The resulting model can be used to track the evolution of complete failure mechanisms, for example, bond-line initial delamination and ultimate failure associated with Z-pin pullout, ultimate failure of the adherends. The paper simulates connecting performance of the single lap joints with different Z-pins' diameter, spacing and overlap length; the numerical results agree with the experimental results; the numerical results indicate enlarging diameter and decreasing spacing of Z-pins are in favor of improving the connecting performance of the joints. By numerical analysis method, the critical overlap length that lies between two final failure modes is between 18 mm and 19 mm, when Z-pins' diameter and spacing are 0.4 mm, 5 mm, respectively.展开更多
Radial profiles of the ion temperature,Ti,have been measured by a double-sided retarding field analyzer(RFA) in the scrape-off layer(SOL) of the J-TEXT tokamak(R = 105 cm,r = 25-29 cm,Bt = 1.8-2.0 T,Ip = 120-180 ...Radial profiles of the ion temperature,Ti,have been measured by a double-sided retarding field analyzer(RFA) in the scrape-off layer(SOL) of the J-TEXT tokamak(R = 105 cm,r = 25-29 cm,Bt = 1.8-2.0 T,Ip = 120-180 kA,ne =(2-2.5) × 10^19 m^-3).Strongly declining Ti profiles in the SOL have been found.The different e-folding lengths,At,of the Ti profiles in two experimental configurations with different magnetic connection lengths,Lc,reveal that a longer Lc results in weaker parallel energy transport and longer At.In similarity with the particle transport across the SOL,At is approximately proportional to the square root of Lc.Additionally,the poloidal asymmetry has been identified with enhanced ion energy transport across the SOL on the low-field side.展开更多
A two-stage micro-impinging stream reactor(TS-MISR) that combined a first pre-mixing stage with a second micro-impinging stream reacting stage for continuous multi-component reacting systems has been built from commer...A two-stage micro-impinging stream reactor(TS-MISR) that combined a first pre-mixing stage with a second micro-impinging stream reacting stage for continuous multi-component reacting systems has been built from commercial T-junctions and steel micro-capillaries. Both of operating parameters and reactor configurations,such as jet Reynolds number(Rej), volumetric flow ratio(R), the first-stage junction angle(φ), the connecting capillary length(Lc) and connecting capillary diameter(dc), had significant effects on the micromixing efficiency of the reactor. Such effects were investigated for both of the two stage structures, respectively, by experimental and CFD methods and were optimized for the best micromixing performance. Intensified micromixing among at least three reacting components can be achieved in a continuous mode by using TS-MISR; therefore, it is expected that the TS-MISR will produce products of higher quality with more uniform and stable element distribution.展开更多
In response to the current imbalance phenomenon and its harmfulness, a current sharing circuit model is built up, which reveals the underlying causes for the current imbalance through a quantitative analysis. Then, a ...In response to the current imbalance phenomenon and its harmfulness, a current sharing circuit model is built up, which reveals the underlying causes for the current imbalance through a quantitative analysis. Then, a feasible approach of improvement, namely enlargement of the length of connection busbars, is proposed. After the amendment, it can be seen that the current sharing coefficient is ahnost unity under rated or fault current conditions.展开更多
The ability of the axon to form de novo collateral branches along its length is fundamental to the establishment of complex patterns of connectivity during development and is also a major response of many axonal popul...The ability of the axon to form de novo collateral branches along its length is fundamental to the establishment of complex patterns of connectivity during development and is also a major response of many axonal populations following injury.The emergence of branches is under both positive and negative control by extracellular signals.展开更多
基金supported by the National Natural Science Foundation of China (No. 90405015)the Research Fund forthe Doctoral Program of Higher Education (No. 20030699040).
文摘The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length of the single lap joint is 15 mm, 20 mm, 23 mm, 37 mm, and 60 mm, respectively. The experimental results indicate that the final failure modes of the joints can be divided into two groups, (a) the bond-line stops debonding until crack encounters Z-pins; and then the adherends break at the location of Z-pins, when overlap length is more than 20 mm; (b) the bond-line detaches entirely and Z-pins are drawn from adherends, when overlap length is equal to 15 mm. A simple efficient computational approach is presented for analyzing the benefit of through-thickness pins for restricting failure in the single lap joints. Here, the mechanics problem is simplified by representing the effect of the pins by tractions acting on the fracture surfaces of the cracked bond-line. The tractions are prescribed as functions of the crack displacement, which are available in simple forms that summarize the complex deformations to a reasonable accuracy. The resulting model can be used to track the evolution of complete failure mechanisms, for example, bond-line initial delamination and ultimate failure associated with Z-pin pullout, ultimate failure of the adherends. The paper simulates connecting performance of the single lap joints with different Z-pins' diameter, spacing and overlap length; the numerical results agree with the experimental results; the numerical results indicate enlarging diameter and decreasing spacing of Z-pins are in favor of improving the connecting performance of the joints. By numerical analysis method, the critical overlap length that lies between two final failure modes is between 18 mm and 19 mm, when Z-pins' diameter and spacing are 0.4 mm, 5 mm, respectively.
基金supported by National Natural Science Foundation of China(No.11305070)the Ministry of Science and Technology(No.2013GB106001)the Open Foundation of the Key Laboratory of Geospace Environment,the CSA/SAFEA International Partnership Program for Creative Research Teams
文摘Radial profiles of the ion temperature,Ti,have been measured by a double-sided retarding field analyzer(RFA) in the scrape-off layer(SOL) of the J-TEXT tokamak(R = 105 cm,r = 25-29 cm,Bt = 1.8-2.0 T,Ip = 120-180 kA,ne =(2-2.5) × 10^19 m^-3).Strongly declining Ti profiles in the SOL have been found.The different e-folding lengths,At,of the Ti profiles in two experimental configurations with different magnetic connection lengths,Lc,reveal that a longer Lc results in weaker parallel energy transport and longer At.In similarity with the particle transport across the SOL,At is approximately proportional to the square root of Lc.Additionally,the poloidal asymmetry has been identified with enhanced ion energy transport across the SOL on the low-field side.
基金Supported by the National Natural Science Foundation of China(Nos.21376015,21576012 and 91334206)
文摘A two-stage micro-impinging stream reactor(TS-MISR) that combined a first pre-mixing stage with a second micro-impinging stream reacting stage for continuous multi-component reacting systems has been built from commercial T-junctions and steel micro-capillaries. Both of operating parameters and reactor configurations,such as jet Reynolds number(Rej), volumetric flow ratio(R), the first-stage junction angle(φ), the connecting capillary length(Lc) and connecting capillary diameter(dc), had significant effects on the micromixing efficiency of the reactor. Such effects were investigated for both of the two stage structures, respectively, by experimental and CFD methods and were optimized for the best micromixing performance. Intensified micromixing among at least three reacting components can be achieved in a continuous mode by using TS-MISR; therefore, it is expected that the TS-MISR will produce products of higher quality with more uniform and stable element distribution.
文摘In response to the current imbalance phenomenon and its harmfulness, a current sharing circuit model is built up, which reveals the underlying causes for the current imbalance through a quantitative analysis. Then, a feasible approach of improvement, namely enlargement of the length of connection busbars, is proposed. After the amendment, it can be seen that the current sharing coefficient is ahnost unity under rated or fault current conditions.
文摘The ability of the axon to form de novo collateral branches along its length is fundamental to the establishment of complex patterns of connectivity during development and is also a major response of many axonal populations following injury.The emergence of branches is under both positive and negative control by extracellular signals.