The amniote pallium,a vital component of the forebrain,exhibits considerable evolutionary divergence across species and mediates diverse functions,including sensory processing,memory formation,and learning.However,the...The amniote pallium,a vital component of the forebrain,exhibits considerable evolutionary divergence across species and mediates diverse functions,including sensory processing,memory formation,and learning.However,the relationships among pallial subregions in different species remain poorly characterized,particularly regarding the identification of homologous neurons and their transcriptional signatures.In this study,we utilized singlenucleus RNA sequencing to examine over 130?000 nuclei from the macaque(Macaca fascicularis)neocortex,complemented by datasets from humans(Homo sapiens),mice(Mus musculus),zebra finches(Taeniopygia guttata),turtles(Chrysemys picta bellii),and lizards(Pogona vitticeps),enablingcomprehensivecross-species comparison.Results revealed transcriptomic conservation and species-specific distinctions within the amniote pallium.Notable similarities were observed among cell subtypes,particularly within PVALB+inhibitory neurons,which exhibited species-preferred subtypes.Furthermore,correlations between pallial subregions and several transcription factor candidates were identified,including RARB,DLX2,STAT6,NR3C1,and THRB,with potential regulatory roles in gene expression in mammalian pallial neurons compared to their avian and reptilian counterparts.These results highlight the conserved nature of inhibitory neurons,remarkable regional divergence of excitatory neurons,and species-specific gene expression and regulation in amniote pallial neurons.Collectively,these findings provide valuable insights into the evolutionary dynamics of the amniote pallium.展开更多
The oscillating hydrofoil represents a promising technology for harvesting energy from tidal currents.While previous research has primarily focused on oscillating hydrofoils utilizing a fully activated control strateg...The oscillating hydrofoil represents a promising technology for harvesting energy from tidal currents.While previous research has primarily focused on oscillating hydrofoils utilizing a fully activated control strategy,the industry predominantly employs a semi-activated control strategy in existing tidal current energy converters.It is essential to identify the differences in predicted energy-harvesting performance between these two controlling strategies through experimental modeling or numerical studies.Furthermore,the suitability of the fully activated control strategy in predicting the energy-harvesting capabilities of oscillating hydrofoils is evaluated.The 2D numerical models of hydrofoil based on fully activated and semi-activated control strategies have been developed and validated.The amplitudes of heaving and pitching movements for the fully activated hydrofoil are determined to match those of the semi-activated hydrofoil.The results show that the main difference between the two control strategies lies in the phase shift occurring between the pitching and heaving motions.This phase shift affects the lift force and its coordination with the heaving velocity,which in turn affects the power output.Notably,the maximum relative efficiency difference obtained between the fully activated and semi-activated control strategies can reach 191%.展开更多
Objective:With Persicaria capitata as test materials,we compared and analyzed the chloroplast(cp)genome characteristics as well as their phylogenetic relationships and evolutionary history with related species of Pers...Objective:With Persicaria capitata as test materials,we compared and analyzed the chloroplast(cp)genome characteristics as well as their phylogenetic relationships and evolutionary history with related species of Persicaria nepalensis,Persicaria japonica,Persicaria chinensis,Persicaria filiformis,Persicaria perfoliata,Persicaria pubescens,Persicaria hnydropiper.Methods:The Illumina HiSeq high-throughput sequencing platform was used for the first time for P.capitata cp genome sequencing.NOVOPlasty and CpGAVAS2 were used for assembly and annotation,and Codon W,DnaSP,and MISA were used to conduct a series of comparative genomic analyses between the plant and seven species of the same genus.A phylogenetic tree was constructed using the maximum likelihood(ML)and neighbor-joining(NJ)methods,and divergence time was estimated using BEAST.Results:The total length of P.capitata cp genome was 158,821 bp,with a guanine and cytosine(GC)content of 38.0%,exhibiting a typical circular tetrad structure.The genome contains 127 annotated genes,including 82 protein-coding and 45 tRNA-encoding genes.The cp genome harbors simple sequence repeat(SSR)loci primarily composed of A/T.The conserved species structure of this genus is reinforced by the expansion and contraction of the inverted repeat(IR)region.The non-coding regions of the cp genomes exhibited significant differences among the genera.Six different mutation hotspots(psbK-psbI,atpI-rps2,petN-psbD,atpB-rbcL,cemA-petA,ndhI-ndhA-ycf1)were screened from the non-coding regions of genes with high nucleotide variability(pI).These hotspots were expected to define the phylogenetic species of Persicaria.Furthermore,phylogenetic analysis of Polygonaceae plants showed that P.capitata was more closely related to P.chinensis than P.nepalensis.Analysis of divergence time indicated that Polygonaceae originated in the Late Cretaceous(~180 Ma)and began to differentiate during the Middle Miocene.Persicaria differentiated~66.44 million years ago,during the Miocene.Conclusions:Our findings will serve as a scientific basis for further research on species identification and evolution,population genetics,and phylogenetic analysis of P.capitata.Further,we provide valuable information for understanding the origin and evolution of Persicaria in Polygonaceae and estimating the differentiation time of Persicaria and its population.展开更多
Brassica napus L. (B. napus), recognized as a significant cash and oil crop, faces challenges in popularization and application in northern China due to its limited cold resistance. Clarifying the mechanism of cold st...Brassica napus L. (B. napus), recognized as a significant cash and oil crop, faces challenges in popularization and application in northern China due to its limited cold resistance. Clarifying the mechanism of cold stress on gene regulation and signal transduction in B. napus is crucial. To address these issues, we conducted transcriptome sequencing and gene expression analysis, along with gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway profiling under natural (25℃) and cold (4℃) conditions in cold tolerant 16VHNTS309 and weak cold-resistant Tianyou 2238 B. napus seedlings. Enhanced genomic annotation was achieved through additional sequencing. A total of 6127 and 8531 differentially expressed genes (DEG) were identified in 16VHNTS309 and Tianyou 2238, respectively. The expression patterns of 23 DEGs were validated by quantitative real-time PCR (qRT-PCR), confirming the RNA-Seq results. Under cold stress, 58 pathways in 16VHNTS309 demonstrated significant changes (q-Value < 0.05), compared to 9 pathways in Tianyou 2238 (q-Value < 0.05), highlighting B. napus’ sophisticated regulatory network which aids in managing growth and development challenges. After 48 h of cold stress treatment, genes associated with reactive oxygen species (ROS) clearance, such as those involved in antioxidant VB6, sulfur metabolism, peroxisomes, and phagosomes, were notably up-regulated in 16VHNTS309, indicating its robust ROS clearance capability. Significant gene expressions within Ca^(2+), MAPK, and transcription factor pathways related to ROS suggest that varieties with strong cold resistance possess a complex signal regulation mechanism. Comprehensive analyses of stomatal cells, physiological parameters of ROS, ABA, and H2S, along with transcriptomic data, revealed that optimal ROS levels interact with ABA and H2S to regulate stomatal closure in B. napus 16VHNTS309 under the influence of antioxidant enzymes.展开更多
Objective: We aim to analyze the surgical nursery of abdominal wall hernias in adults between two poorly fitted medical environments, the Regional Hospital Center of Tsévié (RHC-T) and the Prefectural Hospit...Objective: We aim to analyze the surgical nursery of abdominal wall hernias in adults between two poorly fitted medical environments, the Regional Hospital Center of Tsévié (RHC-T) and the Prefectural Hospital Center of Kpalimé (PHC-K) in Togo. Methodology: It was a retrospective, descriptive and comparative study carried out over five years (2018-2022) focusing on abdominal wall hernias in adults. Information was gathered from the patients’clinical notes and registers on the frequency of hernias, the anatomo-clinical forms of hernias, the type of anesthesia, the hernia repair technique and the postoperative evolution. Results: Of the 1022 and 1026 operations performed, 312 and 412 were hernial repairs, representing 30.5% and 41.2% of operations at RHC-T and PHC-K respectively (p = 0.001). The inguinal hernia was the most often found in 83.7% (n = 261) at RHC-T versus 76.6% (n = 324) at PHC-K. Herniorrhaphy was the most frequently used repair method, in 93.6% (n = 292) of patients at RHC-T and in 91.3% (n = 376) at PHC-K (p = 0.11). Postoperative complications were noted in 5.1% of cases (n = 16) at RHC-T versus 3.5% of cases (n = 15) at PHC-K (p = 0.307). These complications included scrotal hematomas, surgical areas infections, and orchitis. We recorded 1.3% (n = 4) and 0.8% (n = 3) deaths at RHC-T and PHC-K respectively (p = 0.496). Conclusion: There is homogeneity in the treatment of hernia in these two hospitals in Togo.展开更多
BACKGROUND Anxiety is a common comorbidity in patients with Crohn’s disease(CD).Data on the imaging characteristics of brain microstructure and cerebral perfusion in CD with anxiety are limited.AIM To compare the ima...BACKGROUND Anxiety is a common comorbidity in patients with Crohn’s disease(CD).Data on the imaging characteristics of brain microstructure and cerebral perfusion in CD with anxiety are limited.AIM To compare the imaging characteristics of brain microstructure and cerebral perfusion among CD patients with or without anxiety and healthy individuals.METHODS This prospective comparative study enrolled consecutive patients with active CD and healthy individuals who visited the study hospital between January 2022 and January 2023.Anxiety was measured using the Hospital Anxiety and Depression Scale-Anxiety.The imaging characteristics of brain microstructure and cerebral perfusion were measured by diffusion kurtosis imaging and intravoxel incoherent motion.RESULTSA total of 57 participants were enrolled. Among the patients with active CD, 16 had anxiety. Compared withhealthy individuals, patients with active CD demonstrated significantly lower radial kurtosis values in the rightcerebellar region 6, lower axial kurtosis (AK) values in the right insula, left superior temporal gyrus, and rightthalamus, and higher slow and fast apparent diffusion coefficients (ADCslow and ADCfast) in the bilateral frontal lobe,bilateral temporal lobe, and bilateral insular lobe (all P < 0.05). Compared with patients with CD without anxiety,patients with CD and anxiety exhibited significantly higher ADCslow values in the left insular lobe and lower AKvalues in the right insula and right anterior cuneus (all P < 0.05).CONCLUSIONThere are variations in brain microstructure and perfusion among CD patients with/without anxiety and healthyindividuals, suggesting potential use in assessing anxiety-related changes in active CD.展开更多
Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a...Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future.展开更多
Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant resear...Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges.展开更多
Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques(Macaca mulatta, MMU)and crab-eating macaques(M. fascicularis, MFA) serve as...Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques(Macaca mulatta, MMU)and crab-eating macaques(M. fascicularis, MFA) serve as crucial nonhuman primate biomedical models with different phenotypes. To date, however, large-scale comparative transcriptome research between these two species has not yet been fully explored. Here, we conducted systematic comparisons utilizing newly sequenced RNA-seq data from84 samples(41 MFA samples and 43 MMU samples)encompassing 14 common tissues. Our findings revealed a small fraction of genes(3.7%) with differential expression between the two species, as well as 36.5% of genes with tissue-specific expression in both macaques. Comparison of gene expression between macaques and humans indicated that 22.6% of orthologous genes displayed differential expression in at least two tissues. Moreover,19.41% of genes that overlapped with macaque-specific structural variants showed differential expression between humans and macaques. Of these, the FAM220A gene exhibited elevated expression in humans compared to macaques due to lineage-specific duplication. In summary,this study presents a large-scale transcriptomic comparison between MMU and MFA and between macaques and humans. The discovery of gene expression variations not only enhances the biomedical utility of macaque models but also contributes to the wider field of primate genomics.展开更多
Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochast...Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.展开更多
BACKGROUND Among the most frequent hip fractures are trochanteric fractures,which usually occur from low-energy trauma like minor falls,especially in older people with osteoporotic bones.AIM To evaluate the treatment ...BACKGROUND Among the most frequent hip fractures are trochanteric fractures,which usually occur from low-energy trauma like minor falls,especially in older people with osteoporotic bones.AIM To evaluate the treatment efficacy of dynamic condylar screws(DCS)and proximal femoral nails(PFN)for unstable intertrochanteric fractures.METHODS To find pertinent randomized controlled trials and retrospective observational studies comparing PFN with DCS for the management of unstable femoral intertrochanteric fractures,a thorough search was carried out.For research studies published between January 1996 and April 2024,PubMed,EMBASE,Scopus,Web of Science,Cochrane Library,and Google Scholar were all searched.The complete texts of the papers were retrieved,vetted,and independently examined by two investigators.Disputes were settled by consensus,and any disagreements that persisted were arbitrated by a third author.RESULTS This study included six articles,comprising a total of 173 patients.Compared to the DCS,the PFN had a shorter operation time[mean difference(MD):-41.7 min,95%confidence interval(95%CI):-63.04 to-20.35,P=0.0001],higher success rates with closed reduction techniques[risk ratio(RR):34.05,95%CI:11.12-104.31,P<0.00001],and required less intraoperative blood transfusion(MD:-1.4 units,95%CI:-1.80 to-1.00,P<0.00001).Additionally,the PFN showed shorter fracture union time(MD:-6.92 wk,95%CI:-10.27 to-3.57,P<0.0001)and a lower incidence of reoperation(RR:0.37,95%CI:0.17-0.82,P=0.01).However,there was no discernible variation regarding hospital stay,implant-related complications,and infections.CONCLUSION Compared to DCS,PFN offers shorter operative times,reduces the blood transfusions requirements,achieves higher closed reduction success,enables faster fracture healing,and lowers reoperation incidence.展开更多
Background:The continuing emergence of influenza virus has highlighted the value of public databases and related bioinformatic analysis tools in investigating transcriptomic change caused by different influenza virus ...Background:The continuing emergence of influenza virus has highlighted the value of public databases and related bioinformatic analysis tools in investigating transcriptomic change caused by different influenza virus infections in human and animal models.Methods:We collected a large amount of transcriptome research data related to influenza virus-i nfected human and animal models in public databases(GEO and ArrayExpress),and extracted and integrated array and metadata.The gene expression matrix was generated through strictly quality control,balance,standardization,batch correction,and gene annotation.We then analyzed gene expression in different species,virus,cells/tissues or after antibody/vaccine treatment and imported sample metadata and gene expression datasets into the database.Results:Overall,maintaining careful processing and quality control,we collected 8064 samples from 103 independent datasets,and constructed a comparative transcriptomics database of influenza virus named the Flu-CED database(Influenza comparative expression database,https://flu.com-med.org.cn/).Using integrated and processed transcriptomic data,we established a user-friendly website for realizing the integration,online retrieval,visualization,and exploration of gene expression of influenza virus infection in different species and the biological functions involved in differential genes.Flu-CED can quickly query single and multi-gene expression profiles,combining different experimental conditions for comparative transcriptome analysis,identifying differentially expressed genes(DEGs)between comparison groups,and conveniently finding DEGs.Conclusion:Flu-CED provides data resources and tools for analyzing gene expression in human and animal models infected with influenza virus that can deepen our understanding of the mechanisms underlying disease occurrence and development,and enable prediction of key genes or therapeutic targets that can be used for medical research.展开更多
The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many...The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many of such bulk characterizations as loosely-packed density(ρbl), minimum fluidization velocity(Umf), sphericity(φ), discharge rate through orifice(q), angle of repose(β), and segregation index(S),were found to be poorly reproducible, making the reported results seldom comparable. Since these bulk characterizations started from the packed state of particles, such poor reproducibility was ascribed to the polymorphism of packed particles in this work. We observed that in the fluidized bed, the settled/packed state of particles varied monotonously with the settling rate(a) from complete fluidization to zero. This phenomenon confirmed the polymorphic characteristic of packed particles and further enabled us to systematically disclose/clarify its influences on the aforementioned bulk characterizations. Such influences could be comprehensively and intuitively reflected by the impacts induced by a. With the decrease of a, ρbl, φ and q first increased, then decreased, and finally leveled off while Umfand β showed an opposite trend. On the other hand, S first increased and then remained invariant. As per these findings and definitions of these bulk characterizations, benchmarks were indicated to unify the selection of settled state among future scholars and further make their outcomes become fairly comparable. Additionally, most packed states of the particle ensemble were proved to be metastable with their formation and behavior being identical to those of the amorphous state.展开更多
Geological maps encode vast amounts of data about rock types,ages,chemistry,orogenic architecture and deep-time history or different tectonic units,yet these are often difficult to extract because of the way different...Geological maps encode vast amounts of data about rock types,ages,chemistry,orogenic architecture and deep-time history or different tectonic units,yet these are often difficult to extract because of the way different geologists portray their results at various scales.To understand orogenesis in 4D,it is essential to uniformly integrate map data,together with geophysical data and deep geochemical mapping(Wang et al.,2023).展开更多
Rice and wheat provide nearly 40%of human calorie and protein requirements.They share a common ancestor and belong to the Poaceae(grass)family.Characterizing their genetic homology is crucial for developing new cultiv...Rice and wheat provide nearly 40%of human calorie and protein requirements.They share a common ancestor and belong to the Poaceae(grass)family.Characterizing their genetic homology is crucial for developing new cultivars with enhanced traits.Several wheat genes and gene families have been characterized based on their rice orthologs.Rice–wheat orthology can identify genetic regions that regulate similar traits in both crops.Rice–wheat comparative genomics can identify candidate wheat genes in a genomic region identified by association or QTL mapping,deduce their putative functions and biochemical pathways,and develop molecular markers for marker-assisted breeding.A knowledge of gene homology facilitates the transfer between crops of genes or genomic regions associated with desirable traits by genetic engineering,gene editing,or wide crossing.展开更多
DNA methylation at non-CG dinucleotides(mCH,H=A,C,T)widely occurs and plays an important role in specific cell types,including pluripotent,neural,and germ cells.However,the functions and regulatory mechanisms of mCH,p...DNA methylation at non-CG dinucleotides(mCH,H=A,C,T)widely occurs and plays an important role in specific cell types,including pluripotent,neural,and germ cells.However,the functions and regulatory mechanisms of mCH,particularly in species other than humans and mice,remain inadequately explored.In this study,we analyzed the distribution of mCH across different bovine tissues,identifying significantly elevated mCH levels in bovine embryonic stem cells(bESCs),as well as brain,spleen,and ileum tissues compared to other tissues.Marked differences in mCH patterns between somatic cells and bESCs were observed,reflecting distinct base preferences and the differential expression of DNA methyltransferases.We also identified exon methylation in both CG and nonCG contexts,resembling gene-associated methylation patterns observed in plants.To characterize tissue-specific variations in mCH,we developed a novel method for differential mCH analysis.Results indicated that mCH is not randomly distributed but tends to be enriched in tissuespecific functional regions.Furthermore,regression models demonstrated a positional correlation between CG methylation and mCH.This study enhances our understanding of mCH distribution and function in bovine somatic and stem cells,providing new insights into its potential roles across species and tissues.These findings advance knowledge of epigenetic mechanisms,shedding light on the potential involvement of mCH in development and disease processes.展开更多
基金supported by the National Key Research and Development Program (2022YEF0203200)National Science and Technology Innovation 2030 Major Program (STI2030-2021ZD0200100)National Key Research and Development Program (2018YFA0801400,2021YFA0805100)。
文摘The amniote pallium,a vital component of the forebrain,exhibits considerable evolutionary divergence across species and mediates diverse functions,including sensory processing,memory formation,and learning.However,the relationships among pallial subregions in different species remain poorly characterized,particularly regarding the identification of homologous neurons and their transcriptional signatures.In this study,we utilized singlenucleus RNA sequencing to examine over 130?000 nuclei from the macaque(Macaca fascicularis)neocortex,complemented by datasets from humans(Homo sapiens),mice(Mus musculus),zebra finches(Taeniopygia guttata),turtles(Chrysemys picta bellii),and lizards(Pogona vitticeps),enablingcomprehensivecross-species comparison.Results revealed transcriptomic conservation and species-specific distinctions within the amniote pallium.Notable similarities were observed among cell subtypes,particularly within PVALB+inhibitory neurons,which exhibited species-preferred subtypes.Furthermore,correlations between pallial subregions and several transcription factor candidates were identified,including RARB,DLX2,STAT6,NR3C1,and THRB,with potential regulatory roles in gene expression in mammalian pallial neurons compared to their avian and reptilian counterparts.These results highlight the conserved nature of inhibitory neurons,remarkable regional divergence of excitatory neurons,and species-specific gene expression and regulation in amniote pallial neurons.Collectively,these findings provide valuable insights into the evolutionary dynamics of the amniote pallium.
基金supported by the Shandong Natural Science Foundation Youth Project(No.ZR2023QE075)the Open Project Program of Shandong Marine Aerospace Equipment Technological Innovation Center(No.MAETIC202210)the Shandong Natural Science Foundation Project(No.ZR2022ME145)。
文摘The oscillating hydrofoil represents a promising technology for harvesting energy from tidal currents.While previous research has primarily focused on oscillating hydrofoils utilizing a fully activated control strategy,the industry predominantly employs a semi-activated control strategy in existing tidal current energy converters.It is essential to identify the differences in predicted energy-harvesting performance between these two controlling strategies through experimental modeling or numerical studies.Furthermore,the suitability of the fully activated control strategy in predicting the energy-harvesting capabilities of oscillating hydrofoils is evaluated.The 2D numerical models of hydrofoil based on fully activated and semi-activated control strategies have been developed and validated.The amplitudes of heaving and pitching movements for the fully activated hydrofoil are determined to match those of the semi-activated hydrofoil.The results show that the main difference between the two control strategies lies in the phase shift occurring between the pitching and heaving motions.This phase shift affects the lift force and its coordination with the heaving velocity,which in turn affects the power output.Notably,the maximum relative efficiency difference obtained between the fully activated and semi-activated control strategies can reach 191%.
基金supported by the National Natural Science Foundation of China(82060913).
文摘Objective:With Persicaria capitata as test materials,we compared and analyzed the chloroplast(cp)genome characteristics as well as their phylogenetic relationships and evolutionary history with related species of Persicaria nepalensis,Persicaria japonica,Persicaria chinensis,Persicaria filiformis,Persicaria perfoliata,Persicaria pubescens,Persicaria hnydropiper.Methods:The Illumina HiSeq high-throughput sequencing platform was used for the first time for P.capitata cp genome sequencing.NOVOPlasty and CpGAVAS2 were used for assembly and annotation,and Codon W,DnaSP,and MISA were used to conduct a series of comparative genomic analyses between the plant and seven species of the same genus.A phylogenetic tree was constructed using the maximum likelihood(ML)and neighbor-joining(NJ)methods,and divergence time was estimated using BEAST.Results:The total length of P.capitata cp genome was 158,821 bp,with a guanine and cytosine(GC)content of 38.0%,exhibiting a typical circular tetrad structure.The genome contains 127 annotated genes,including 82 protein-coding and 45 tRNA-encoding genes.The cp genome harbors simple sequence repeat(SSR)loci primarily composed of A/T.The conserved species structure of this genus is reinforced by the expansion and contraction of the inverted repeat(IR)region.The non-coding regions of the cp genomes exhibited significant differences among the genera.Six different mutation hotspots(psbK-psbI,atpI-rps2,petN-psbD,atpB-rbcL,cemA-petA,ndhI-ndhA-ycf1)were screened from the non-coding regions of genes with high nucleotide variability(pI).These hotspots were expected to define the phylogenetic species of Persicaria.Furthermore,phylogenetic analysis of Polygonaceae plants showed that P.capitata was more closely related to P.chinensis than P.nepalensis.Analysis of divergence time indicated that Polygonaceae originated in the Late Cretaceous(~180 Ma)and began to differentiate during the Middle Miocene.Persicaria differentiated~66.44 million years ago,during the Miocene.Conclusions:Our findings will serve as a scientific basis for further research on species identification and evolution,population genetics,and phylogenetic analysis of P.capitata.Further,we provide valuable information for understanding the origin and evolution of Persicaria in Polygonaceae and estimating the differentiation time of Persicaria and its population.
基金supported by the National Nature Science Foundation Regional Fund Project(32360455)QingyangCity Joint Research Fund Project—Major Project(QY-STK-2024A-046)+1 种基金Doctoral Foundation of Longdong University(XYBYZK2107)University Teachers Innovation Fund Project of Gansu Province(2025A-198).
文摘Brassica napus L. (B. napus), recognized as a significant cash and oil crop, faces challenges in popularization and application in northern China due to its limited cold resistance. Clarifying the mechanism of cold stress on gene regulation and signal transduction in B. napus is crucial. To address these issues, we conducted transcriptome sequencing and gene expression analysis, along with gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway profiling under natural (25℃) and cold (4℃) conditions in cold tolerant 16VHNTS309 and weak cold-resistant Tianyou 2238 B. napus seedlings. Enhanced genomic annotation was achieved through additional sequencing. A total of 6127 and 8531 differentially expressed genes (DEG) were identified in 16VHNTS309 and Tianyou 2238, respectively. The expression patterns of 23 DEGs were validated by quantitative real-time PCR (qRT-PCR), confirming the RNA-Seq results. Under cold stress, 58 pathways in 16VHNTS309 demonstrated significant changes (q-Value < 0.05), compared to 9 pathways in Tianyou 2238 (q-Value < 0.05), highlighting B. napus’ sophisticated regulatory network which aids in managing growth and development challenges. After 48 h of cold stress treatment, genes associated with reactive oxygen species (ROS) clearance, such as those involved in antioxidant VB6, sulfur metabolism, peroxisomes, and phagosomes, were notably up-regulated in 16VHNTS309, indicating its robust ROS clearance capability. Significant gene expressions within Ca^(2+), MAPK, and transcription factor pathways related to ROS suggest that varieties with strong cold resistance possess a complex signal regulation mechanism. Comprehensive analyses of stomatal cells, physiological parameters of ROS, ABA, and H2S, along with transcriptomic data, revealed that optimal ROS levels interact with ABA and H2S to regulate stomatal closure in B. napus 16VHNTS309 under the influence of antioxidant enzymes.
文摘Objective: We aim to analyze the surgical nursery of abdominal wall hernias in adults between two poorly fitted medical environments, the Regional Hospital Center of Tsévié (RHC-T) and the Prefectural Hospital Center of Kpalimé (PHC-K) in Togo. Methodology: It was a retrospective, descriptive and comparative study carried out over five years (2018-2022) focusing on abdominal wall hernias in adults. Information was gathered from the patients’clinical notes and registers on the frequency of hernias, the anatomo-clinical forms of hernias, the type of anesthesia, the hernia repair technique and the postoperative evolution. Results: Of the 1022 and 1026 operations performed, 312 and 412 were hernial repairs, representing 30.5% and 41.2% of operations at RHC-T and PHC-K respectively (p = 0.001). The inguinal hernia was the most often found in 83.7% (n = 261) at RHC-T versus 76.6% (n = 324) at PHC-K. Herniorrhaphy was the most frequently used repair method, in 93.6% (n = 292) of patients at RHC-T and in 91.3% (n = 376) at PHC-K (p = 0.11). Postoperative complications were noted in 5.1% of cases (n = 16) at RHC-T versus 3.5% of cases (n = 15) at PHC-K (p = 0.307). These complications included scrotal hematomas, surgical areas infections, and orchitis. We recorded 1.3% (n = 4) and 0.8% (n = 3) deaths at RHC-T and PHC-K respectively (p = 0.496). Conclusion: There is homogeneity in the treatment of hernia in these two hospitals in Togo.
基金Ethics Committee of Affiliated Changzhou Second People’s Hospital of Nanjing Medical University(approval number KY039-01).
文摘BACKGROUND Anxiety is a common comorbidity in patients with Crohn’s disease(CD).Data on the imaging characteristics of brain microstructure and cerebral perfusion in CD with anxiety are limited.AIM To compare the imaging characteristics of brain microstructure and cerebral perfusion among CD patients with or without anxiety and healthy individuals.METHODS This prospective comparative study enrolled consecutive patients with active CD and healthy individuals who visited the study hospital between January 2022 and January 2023.Anxiety was measured using the Hospital Anxiety and Depression Scale-Anxiety.The imaging characteristics of brain microstructure and cerebral perfusion were measured by diffusion kurtosis imaging and intravoxel incoherent motion.RESULTSA total of 57 participants were enrolled. Among the patients with active CD, 16 had anxiety. Compared withhealthy individuals, patients with active CD demonstrated significantly lower radial kurtosis values in the rightcerebellar region 6, lower axial kurtosis (AK) values in the right insula, left superior temporal gyrus, and rightthalamus, and higher slow and fast apparent diffusion coefficients (ADCslow and ADCfast) in the bilateral frontal lobe,bilateral temporal lobe, and bilateral insular lobe (all P < 0.05). Compared with patients with CD without anxiety,patients with CD and anxiety exhibited significantly higher ADCslow values in the left insular lobe and lower AKvalues in the right insula and right anterior cuneus (all P < 0.05).CONCLUSIONThere are variations in brain microstructure and perfusion among CD patients with/without anxiety and healthyindividuals, suggesting potential use in assessing anxiety-related changes in active CD.
文摘Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future.
基金supported by the Natural Science Foundation of Liaoning Province(Grant No.2023-MSBA-070)the National Natural Science Foundation of China(Grant No.62302086).
文摘Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges.
基金supported by the National Natural Science Foundation of China (82021001 and 31825018 to Q.S., 32370658 to Y.M.,82001372 to X.Y.)National Key Research and Development Program of China (2022YFF0710901)+2 种基金National Science and Technology Innovation2030 Major Program (2021ZD0200900) to Q.S.Shanghai Pujiang Program (22PJ1407300)Shanghai Jiao Tong University 2030 Initiative (WH510363001-7) to Y.M。
文摘Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques(Macaca mulatta, MMU)and crab-eating macaques(M. fascicularis, MFA) serve as crucial nonhuman primate biomedical models with different phenotypes. To date, however, large-scale comparative transcriptome research between these two species has not yet been fully explored. Here, we conducted systematic comparisons utilizing newly sequenced RNA-seq data from84 samples(41 MFA samples and 43 MMU samples)encompassing 14 common tissues. Our findings revealed a small fraction of genes(3.7%) with differential expression between the two species, as well as 36.5% of genes with tissue-specific expression in both macaques. Comparison of gene expression between macaques and humans indicated that 22.6% of orthologous genes displayed differential expression in at least two tissues. Moreover,19.41% of genes that overlapped with macaque-specific structural variants showed differential expression between humans and macaques. Of these, the FAM220A gene exhibited elevated expression in humans compared to macaques due to lineage-specific duplication. In summary,this study presents a large-scale transcriptomic comparison between MMU and MFA and between macaques and humans. The discovery of gene expression variations not only enhances the biomedical utility of macaque models but also contributes to the wider field of primate genomics.
基金supported by the National Natural Science Foundation of China(Grant Nos.82173620 to Yang Zhao and 82041024 to Feng Chen)partially supported by the Bill&Melinda Gates Foundation(Grant No.INV-006371 to Feng Chen)Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.
文摘BACKGROUND Among the most frequent hip fractures are trochanteric fractures,which usually occur from low-energy trauma like minor falls,especially in older people with osteoporotic bones.AIM To evaluate the treatment efficacy of dynamic condylar screws(DCS)and proximal femoral nails(PFN)for unstable intertrochanteric fractures.METHODS To find pertinent randomized controlled trials and retrospective observational studies comparing PFN with DCS for the management of unstable femoral intertrochanteric fractures,a thorough search was carried out.For research studies published between January 1996 and April 2024,PubMed,EMBASE,Scopus,Web of Science,Cochrane Library,and Google Scholar were all searched.The complete texts of the papers were retrieved,vetted,and independently examined by two investigators.Disputes were settled by consensus,and any disagreements that persisted were arbitrated by a third author.RESULTS This study included six articles,comprising a total of 173 patients.Compared to the DCS,the PFN had a shorter operation time[mean difference(MD):-41.7 min,95%confidence interval(95%CI):-63.04 to-20.35,P=0.0001],higher success rates with closed reduction techniques[risk ratio(RR):34.05,95%CI:11.12-104.31,P<0.00001],and required less intraoperative blood transfusion(MD:-1.4 units,95%CI:-1.80 to-1.00,P<0.00001).Additionally,the PFN showed shorter fracture union time(MD:-6.92 wk,95%CI:-10.27 to-3.57,P<0.0001)and a lower incidence of reoperation(RR:0.37,95%CI:0.17-0.82,P=0.01).However,there was no discernible variation regarding hospital stay,implant-related complications,and infections.CONCLUSION Compared to DCS,PFN offers shorter operative times,reduces the blood transfusions requirements,achieves higher closed reduction success,enables faster fracture healing,and lowers reoperation incidence.
基金Chinese Academy of Medical Sciences Initiative for Innovative MedicineGrant/Award Number:2021-I2M-1-035+3 种基金Beijing Municipal Natural Science FoundationGrant/Award Number:M21027National Key Research and Development Program of ChinaGrant/Award Number:2021YFF0702800。
文摘Background:The continuing emergence of influenza virus has highlighted the value of public databases and related bioinformatic analysis tools in investigating transcriptomic change caused by different influenza virus infections in human and animal models.Methods:We collected a large amount of transcriptome research data related to influenza virus-i nfected human and animal models in public databases(GEO and ArrayExpress),and extracted and integrated array and metadata.The gene expression matrix was generated through strictly quality control,balance,standardization,batch correction,and gene annotation.We then analyzed gene expression in different species,virus,cells/tissues or after antibody/vaccine treatment and imported sample metadata and gene expression datasets into the database.Results:Overall,maintaining careful processing and quality control,we collected 8064 samples from 103 independent datasets,and constructed a comparative transcriptomics database of influenza virus named the Flu-CED database(Influenza comparative expression database,https://flu.com-med.org.cn/).Using integrated and processed transcriptomic data,we established a user-friendly website for realizing the integration,online retrieval,visualization,and exploration of gene expression of influenza virus infection in different species and the biological functions involved in differential genes.Flu-CED can quickly query single and multi-gene expression profiles,combining different experimental conditions for comparative transcriptome analysis,identifying differentially expressed genes(DEGs)between comparison groups,and conveniently finding DEGs.Conclusion:Flu-CED provides data resources and tools for analyzing gene expression in human and animal models infected with influenza virus that can deepen our understanding of the mechanisms underlying disease occurrence and development,and enable prediction of key genes or therapeutic targets that can be used for medical research.
基金supported by Shandong Provincial Natural Science Foundation(Project ZR2023MB038)Youth Innovation Team Program of Shandong Higher Education Institution(2022KJ156).
文摘The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many of such bulk characterizations as loosely-packed density(ρbl), minimum fluidization velocity(Umf), sphericity(φ), discharge rate through orifice(q), angle of repose(β), and segregation index(S),were found to be poorly reproducible, making the reported results seldom comparable. Since these bulk characterizations started from the packed state of particles, such poor reproducibility was ascribed to the polymorphism of packed particles in this work. We observed that in the fluidized bed, the settled/packed state of particles varied monotonously with the settling rate(a) from complete fluidization to zero. This phenomenon confirmed the polymorphic characteristic of packed particles and further enabled us to systematically disclose/clarify its influences on the aforementioned bulk characterizations. Such influences could be comprehensively and intuitively reflected by the impacts induced by a. With the decrease of a, ρbl, φ and q first increased, then decreased, and finally leveled off while Umfand β showed an opposite trend. On the other hand, S first increased and then remained invariant. As per these findings and definitions of these bulk characterizations, benchmarks were indicated to unify the selection of settled state among future scholars and further make their outcomes become fairly comparable. Additionally, most packed states of the particle ensemble were proved to be metastable with their formation and behavior being identical to those of the amorphous state.
基金supported by the National Natural Science Foundation of China(Grant Nos.41888101,41890834,91755213)the Most Special Fund(MSFGPMR02-3)from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhana contribution to the IUGS International Lithosphere Program(2023-TF1)“Formation,Character,History and Behavior of Earth’s Oldest Lithospheres”。
文摘Geological maps encode vast amounts of data about rock types,ages,chemistry,orogenic architecture and deep-time history or different tectonic units,yet these are often difficult to extract because of the way different geologists portray their results at various scales.To understand orogenesis in 4D,it is essential to uniformly integrate map data,together with geophysical data and deep geochemical mapping(Wang et al.,2023).
文摘Rice and wheat provide nearly 40%of human calorie and protein requirements.They share a common ancestor and belong to the Poaceae(grass)family.Characterizing their genetic homology is crucial for developing new cultivars with enhanced traits.Several wheat genes and gene families have been characterized based on their rice orthologs.Rice–wheat orthology can identify genetic regions that regulate similar traits in both crops.Rice–wheat comparative genomics can identify candidate wheat genes in a genomic region identified by association or QTL mapping,deduce their putative functions and biochemical pathways,and develop molecular markers for marker-assisted breeding.A knowledge of gene homology facilitates the transfer between crops of genes or genomic regions associated with desirable traits by genetic engineering,gene editing,or wide crossing.
基金supported by the STI 2030-Major Projects(2023ZD0407504)of ChinaDevelopment Plan for Young Scientific and Technological Talents in Colleges and Universities of Inner Mongolia Autonomous Region of China(NMGIRT2204)+1 种基金National Natural Science Foundation of China(32160172)Science and Technology Major Project of the Inner Mongolia Autonomous Region of China to the State Key Laboratory of Reproductive Regulation(2021ZD0048&2023KYPT0010)。
文摘DNA methylation at non-CG dinucleotides(mCH,H=A,C,T)widely occurs and plays an important role in specific cell types,including pluripotent,neural,and germ cells.However,the functions and regulatory mechanisms of mCH,particularly in species other than humans and mice,remain inadequately explored.In this study,we analyzed the distribution of mCH across different bovine tissues,identifying significantly elevated mCH levels in bovine embryonic stem cells(bESCs),as well as brain,spleen,and ileum tissues compared to other tissues.Marked differences in mCH patterns between somatic cells and bESCs were observed,reflecting distinct base preferences and the differential expression of DNA methyltransferases.We also identified exon methylation in both CG and nonCG contexts,resembling gene-associated methylation patterns observed in plants.To characterize tissue-specific variations in mCH,we developed a novel method for differential mCH analysis.Results indicated that mCH is not randomly distributed but tends to be enriched in tissuespecific functional regions.Furthermore,regression models demonstrated a positional correlation between CG methylation and mCH.This study enhances our understanding of mCH distribution and function in bovine somatic and stem cells,providing new insights into its potential roles across species and tissues.These findings advance knowledge of epigenetic mechanisms,shedding light on the potential involvement of mCH in development and disease processes.