Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular...Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.展开更多
Objective: We describe patients with MCS, the evolution of the Quick Environmental Exposure and Sensitivity Inventory (QEESI) score with a special focus on people whose fillings were removed. Methods: We have conducte...Objective: We describe patients with MCS, the evolution of the Quick Environmental Exposure and Sensitivity Inventory (QEESI) score with a special focus on people whose fillings were removed. Methods: We have conducted a retrospective longitudinal cohort study in patients diagnosed with MCS and attended in the outpatient Internal Medicine department of the University Hospital of San Juan de Alicante, from January 1, 2008 to January 1, 2021. Sociodemographic, clinical, QEESI and treatment-related variables were collected. We performed descriptive and inferential analyses. Mixed linear models were used to analyze the QEESI. Calculations were carried out with an α error of 5%. Results: Thirty-three patients were included (72.7% women, mean age 56.2). MCS was mainly triggered by mercury (N = 20) and food intolerance (N = 22). The mean interval from symptoms onset was 120 months (SD 81.6). 114 QEESIs were analyzed: 82 (N = 17 without amalgams) and 32 (N = 16 with amalgams). In patients without amalgams, severity scores increased across all subscales except the masking index (vs. with amalgams). Mean scores for the group without amalgams (vs. with amalgams) were: chemical intolerance, 62.8 points (vs. 63.4 and 46.7);other intolerances, 52.7 points (vs. 62.8 and 50.3);symptom severity, 63.2 (vs. 76.7 and 63.3);masking index, 3.9 (vs. 3.2 and 2.8);and life impacts, 63.1 (vs. 58.4 and 49.8). Conclusion: The profile of patient with MCS is a middle-aged woman who is a frequent user of healthcare services, presents a long diagnostic delay and has borne a great personal, work and socioeconomic impact. The QEESI is useful for the clinical follow-up of patients, including the optimal treatment response in the case of amalgams. Clinical Significance: People affected by Multiple Chemical Sensitivity deserve the attention, understanding and help of health professionals and family members, to face an invisible illness for those who do not suffer from it. Support is needed and doctors must raise awareness, and make an effort to understand and address this pathology. We suggest that protocolized amalgam extraction in accredited and prepared centers can reduce symptoms and improve quality of life, generating clinical, personal, family, occupational, social and occupational benefits.展开更多
This paper, an addendum to “Dialectical Thermodynamics’ solution to the conceptual imbroglio that is the reversible path”, this journal, 10, 775-799, was written in response to the requests of several readers to pr...This paper, an addendum to “Dialectical Thermodynamics’ solution to the conceptual imbroglio that is the reversible path”, this journal, 10, 775-799, was written in response to the requests of several readers to provide further evidence of the said “imbroglio”. The evidence here presented relates to the incompatibility existing between the total-entropy and the Gibbs energy prescriptions for the reversible path. The previously published proof of the negentropic nature of the transformation of heat into work is here included to validate out conclusions about the Gibbs energy perspective.展开更多
[Objectives]To elucidate the impact of different drying temperatures on the biochemical profile of tobacco(Nicotiana tabacum L.)leaves,the chemical constituents and ultrastructure of Yunyan 87 leaves subjected to diff...[Objectives]To elucidate the impact of different drying temperatures on the biochemical profile of tobacco(Nicotiana tabacum L.)leaves,the chemical constituents and ultrastructure of Yunyan 87 leaves subjected to different curing temperature settings.[Methods]Near-infrared spectroscopy techniques were utilized to analyze tobacco leaf samples,comparing the changes in chemical constituents at different curing temperatures.[Results]The CK treatment resulted in lower concentrations of nicotine,total nitrogen,chlorine,potassium,and starch,while simultaneously enhancing the levels of total sugar,reducing sugar,and protein.In comparison to the T treatment,the CK treatment appropriately altered the cell structure,reducing the content of cell wall substances.[Conclusions]These findings suggest that low-temperature curing at 44℃during the color-fixing stage is beneficial for improving the quality of tobacco leaves.展开更多
The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of me...The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of mercury has raised concerns about its potential environmental hazards,which have prompted the search for more efficient and environmentally friendly alternatives.Crown ethers can bind lithium ions highly selectively and separate lithium isotopes effectively.A chemical exchange-based lithium isotopes separation method using crown ether decorated materials could be a viable and cost-effective alternative to the lithium amalgam method.In this review,we provide a systematic summary of the recent advances in lithium isotopes separation using crown ethers decorated materials.展开更多
In this study,the chemical freeze-out of hadrons,including light-and strange-flavor particles and light nuclei,produced in Au+Au collisions at the Relativistic Heavy Ion Collider(RHIC),was investigated.Using the Therm...In this study,the chemical freeze-out of hadrons,including light-and strange-flavor particles and light nuclei,produced in Au+Au collisions at the Relativistic Heavy Ion Collider(RHIC),was investigated.Using the Thermal-FIST thermodynamic statistical model,we analyzed various particle sets:those inclusive of light nuclei,those exclusive to light nuclei,and those solely comprising light nuclei.We determined the chemical freeze-out parameters at√^(S)NN=7.7–200 Ge V and four different centralities.A significant finding was the decrease in the chemical freeze-out temperature T_(ch)with light-nuclei inclusion,with an even more pronounced reduction when considering light-nuclei yields exclusively.This suggests that light-nuclei formation occurs at a later stage in the system’s evolution at RHIC energies.We present parameterized formulas that describe the energy dependence of T_(ch)and the baryon chemical potentialμ_(B) for three distinct particle sets in central Au+Au collisions at RHIC energies.Our results reveal at least three distinct T_(ch)at RHIC energies correspond to different freeze-out hypersurfaces:a light-flavor freeze-out temperature of T_L=150.2±6 Me V,a strange-flavor freeze-out temperature T_s=165.1±2.7 Me V,and a light-nuclei freeze-out temperature T_(ln)=141.7±1.4 Me V.Notably,at the Large Hadron Collider(LHC)Pb+Pb 2.76Te V,the expected lower freeze-out temperature for light nuclei was not observed;instead,the T_(ch)for light nuclei was found to be approximately 10 Me V higher than that for light-flavor hadrons.展开更多
To improve the yield and quality of rice grown on saline-alkali soil,a meta-analysis combined with micro-district experimental studies was conducted in China to examine the impact of humic acidbased organic fertilizer...To improve the yield and quality of rice grown on saline-alkali soil,a meta-analysis combined with micro-district experimental studies was conducted in China to examine the impact of humic acidbased organic fertilizer and chemical fertilizer on rice yield and quality.This study employed a two-factor fully randomized experimental design,incorporating four levels of humic acid(F0,0.0 g/pot;F1,4.8 g/pot;F2,12.0 g/pot;and F3,19.2 g/pot)and three levels of chemical fertilizer(A1,full conventional dosage;A2,85% of conventional dosage;and A3,70% of conventional dosage).The meta-analysis revealed that the application of organic fertilizer(at a rate of 1500‒3000 kg/hm^(2))combined with chemical fertilizer had a significantly positive effect on the theoretical yield,tiller number,partial factor productivity,and SPAD value of rice.Temperature,organic fertilizer application,and chemical fertilizer levels were identified as critical factors affecting rice yield.The micro-experiments demonstrated that the application of humic acid organic fertilizer with treatment F3 significantly elevated the SPAD value at the full heading and grain filling stages.Increased panicle number and seed-setting rate were the main contributors to the rise in yield,with the F3 treatment yielding the highest overall.The effective leaf area,high-efficiency leaf area,and dry matter accumulation in rice treated with F3 were all higher compared with the F0 treatment.Our findings indicated that the addition of humic acid organic fertilizer can markedly improve the partial factor productivity and agronomic efficiency of rice.In conclusion,the application of F3 organic fertilizer combined with A3 chemical fertilizer(F3A3)significantly increased the yield of saline-alkali rice,which was 6.62% higher than that of the F0A1 treatment,thereby validating the meta-analysis outcomes.We propose that the combined use of humic acid organic fertilizer and chemical fertilizer can promote the growth of rice in saline-alkali soils.Consequently,these management practices provide a means to foster the green and healthy development of rice in saline-alkali regions across China.展开更多
Lysimachia capillipes(L.capillipes)Hemsl,belong to primulaceae pearl vegetables genus,is a treasure in traditional Chinese medicine.It has the effects of invigorating qi and tonifying deficiency,dispelling wind and ac...Lysimachia capillipes(L.capillipes)Hemsl,belong to primulaceae pearl vegetables genus,is a treasure in traditional Chinese medicine.It has the effects of invigorating qi and tonifying deficiency,dispelling wind and activating blood,awakening the brain,relieving cough and regulating menstruation.With the development of modern medicine,the active components and therapeutic mechanisms of L.capillipes Hemsl have been gradually revealed.The present report systematically reviews the chemical composition and biological activities of L.capillipes Hemsl,to provide scientific basis and reference for detailed research on L.capillipes Hemsl.展开更多
[Objectives]To analyze the main chemical components in Cocculus laurifolius DC.by ultra-high performance liquid chromatography-quaternary rod/electrostatic field orbital hydrazine high resolution mass spectrometry.[Me...[Objectives]To analyze the main chemical components in Cocculus laurifolius DC.by ultra-high performance liquid chromatography-quaternary rod/electrostatic field orbital hydrazine high resolution mass spectrometry.[Methods]Using Welch AQ-C 18 chromatographic column(150 mm×2.1 mm,1.8μm),gradient elution was performed with 0.1%formic acid aqueous solution(A)-methanol(B)as the mobile phase,and electrospray ESI ionization source and simultaneous mass spectrometry scanning mode of positive and negative ions were used.[Results]26 kinds of chemical component were identified or inferred,including 3 organic acids,5 flavonoids,4 alkaloids,1 coumarin and 13 others.[Conclusions]The UPLC-Q-Exactive HRMS technique is simple,which lays a foundation for the drug-efficacy material basis and medicinal quality evaluation of C.laurifolius DC.展开更多
Juniperus oxycedrus(J.oxycedrus)is a traditional culinary spice and medicinal herb with a longstanding history of ethnopharmacological applications across diverse cultures.While prior research has explored the biologi...Juniperus oxycedrus(J.oxycedrus)is a traditional culinary spice and medicinal herb with a longstanding history of ethnopharmacological applications across diverse cultures.While prior research has explored the biological activities and phytochemical constituents of extracts derived from its leaves and seed cones,the present study systematically investigates their mineral and phenolic profiles alongside their multifunctional bioactive potential.Inductively coupled plasma-atomic emission spectroscopy(ICP-AES)analysis revealed a substantial abundance of essential macro-and microelements.Reversed-phase high-performance liquid chromatography(RP-HPLC)further identified high concentrations of phenolic acids(e.g.,p-coumaric acid)and flavonoids(e.g.,rutin and quercetin).The extracts exhibited potent radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl(DPPH),robust antioxidant capacity against hydrogen peroxide,and significant inhibition of xanthine oxidase(XO)activity.Notably,both extracts demonstrated marked antibacterial efficacy.In silico molecular docking studies suggested that the antimicrobial activity may stem from the phenolic constituents,which exhibited favorable binding affinities to the active site of bacterial target proteins.These findings underscore J.oxycedrus as a promising reservoir of bioactive natural compounds,warranting further exploration for therapeutic and nutraceutical applications.展开更多
Gualou-Xiebai-Banxia Decoction(GXBD)is a traditional Chinese herbal formula including four traditional Chinese medicines:Gualou(Trichosanthis Fructus,TF),Xiebai(Allii Macrostemonis Bulbus,AMB),Banxia(Pinelliae Rhizoma...Gualou-Xiebai-Banxia Decoction(GXBD)is a traditional Chinese herbal formula including four traditional Chinese medicines:Gualou(Trichosanthis Fructus,TF),Xiebai(Allii Macrostemonis Bulbus,AMB),Banxia(Pinelliae Rhizoma,PR)and yellow wine.It is a classical therapy for chest stuffiness and pain syndrome and is widely used in the clinical treatment of coronary heart disease.It also shows significant therapeutic effects on pulmonary heart disease,hyperlipidemia,and arrhythmia.This study conducted a literature review and collected information on GXBD from databases such as PubMed,Web of Science,China National Knowledge Infrastructure,and ScienceDirect.The result indicated that the main active ingredients of GXBD are steroids,flavonoids,terpenoids,alkaloids,amino acids,and organic acids.Trigonelline,macrostemonoside and cucurbitacin B can provide reference for its quality control.GXBD may exert therapeutic effects on coronary heart disease through AMPK,PI3K-AKT,oxLDL,VEGF,and NF-κB signal pathways.This review provides a comprehensive analysis and summary of the chemical composition and in vivo metabolism of three traditional Chinese medicines(TF,AMB,and PR),along with an evaluation of the chemical composition,quality control,pharmacological effects,and clinical application of GXBD.Based on these,areas requiring further research on GXBD have been proposed to provide a reference for its further development and new drug research.展开更多
The Fenton-like reaction between Cu^(2+)and H_(2)O_(2)was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten.The microstructure evolution and material removal rate o...The Fenton-like reaction between Cu^(2+)and H_(2)O_(2)was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten.The microstructure evolution and material removal rate of tungsten during polishing process were investigated via scanning electron microscopy,X-ray photoelectron spectroscopy,ultraviolet−visible spectrophotometry,and electrochemical experiments.The passivation behavior and material removal mechanism were discussed.Results show that the use of mixed H_(2)O_(2)+Cu(NO_(3))_(2)oxidant can achieve higher polishing efficiency and surface quality compared with the single oxidant Cu(NO_(3))_(2)or H_(2)O_(2).The increase in material removal rate is attributed to the rapid oxidation of W into WO_(3)via the chemical reaction between the substrate and hydroxyl radicals produced by the Fenton-like reaction.In addition,material removal rate and static etch rate exhibit significantly different dependencies on the concentration of Cu(NO_(3))_(2),while the superior oxidant for achieving the balance between polishing efficiency and surface quality is 0.5 wt.%H_(2)O_(2)+1.0 wt.%Cu(NO_(3))_(2).展开更多
Naru Sanwei Pill,also known as Naru-3,a Mongolian medicine originating from Zhigao Pharmacopoeia,is a classic prescription used in the treatment of rheumatism.It is composed of Terminalia chebula,processed Aconitum ku...Naru Sanwei Pill,also known as Naru-3,a Mongolian medicine originating from Zhigao Pharmacopoeia,is a classic prescription used in the treatment of rheumatism.It is composed of Terminalia chebula,processed Aconitum kusnezoffii Reichb.,and Piper longum,and is known for its effects in eliminating“mucus,”relieving pain,and reducing swelling,with significant efficacy in treating joint effusion and lumbar pain.In recent years,researchers have summarized its chemical components and pharmacological effects,and employed network pharmacology methods based on the core theory of Traditional Chinese Medicine quality markers(Q-Markers)to analyze and predict its markers.The results identified potential Q-Markers for Naru-3,providing a scientific basis for quality control and further research.展开更多
Jing Fang granules(JFG)are a modern Chinese medicinal formulation derived from Jing Fang Defeating Toxin San(JFDS).JFG primarily contains bioactive compounds such as flavonoids/flavonoid glycosides,coumarins and other...Jing Fang granules(JFG)are a modern Chinese medicinal formulation derived from Jing Fang Defeating Toxin San(JFDS).JFG primarily contains bioactive compounds such as flavonoids/flavonoid glycosides,coumarins and other components,which have various activities:anti-inflammatory,immune system regulation,antiviral,anti-aging,detoxification,and protection of the liver,lungs,and kidneys.JFG has broad potential therapeutic applications.The mechanisms of JFG’s actions are primarily associated with signaling pathways such as TLR4/NF-κB,PI3K/AKT,and MAPK.This article reviews the research progress on JFG,including chemical composition,pharmacologic effects,mechanism of action,safety,clinical application,etc.,serving as a foundation for future research and clinical applications.展开更多
Carbonic acid produced by the dissolution of atmospheric and soil CO_(2)in water is usually the most dominant catalyst for chemical weathering,but a sulfuric aciddriven phenomenon,different from usual,was found in the...Carbonic acid produced by the dissolution of atmospheric and soil CO_(2)in water is usually the most dominant catalyst for chemical weathering,but a sulfuric aciddriven phenomenon,different from usual,was found in the orogenic belt watersheds dominated by silicate bedrock.This study,rooted in comprehensive field investigations in the Manas River Basin(MRB)north of the Tianshan Mountains,delves into the mechanisms and impacts of sulfuric and carbonic acid as catalysts driving diff erent types of chemical weathering in the Central Asian Orogenic Belt.Quantitative analyses elucidate that carbonate weathering constitutes 52.4%of the total chemical weathering,while silicate and evaporite account for 18.6%and 25.3%,respectively,with anthropogenic activities and atmospheric precipitation having little eff ect.The estimated total chemical weathering rate in MRB is approximately 0.075×10^(6)mol/km^(2)/year.Quantitative findings further suggest that,preceding carbonate precipitation(<10^(4)year),chemical weathering can absorb CO_(2).Subsequently,and following carbonate precipitation(10^(4)-10^(7)year),it will release CO_(2).The release significantly surpasses the global average CO_(2)consumption,contributing to a noteworthy climate impact.This study underscores the distinctive weathering mechanisms,wherein sulfuric acid emerges as the predominant catalyst.The quantity of sulfuric acid as a catalyst is approximately three times that of carbonic acid.Sulfuric acid-driven carbonate rock weathering(SCW)is identified as the sole chemical weathering type with a net CO_(2)release eff ect.SCW CO_(2)release flux(5176 mol/km^(2)/year)is roughly 2.5 times the CO_(2)absorption by Ca-Mg silicate weathering,highlighting the pivotal role of chemical weathering in sourcing atmospheric CO_(2)over the timescales of carbonate precipitation and sulfate reduction.Lastly,this study posits that catalyst and transport limitations are the most plausible critical factors in MRB.The interplay between sulfuric acid and dissolved CO_(2)competitively shapes the types and rates of chemical weathering reactions.展开更多
Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capac...Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capacity fading.Herein,the dual-strategy of Cr,B complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature.Density functional theory(DFT)calculations prove that stable B-O and Cr-O bonds through the local gradient doping can significantly reduce the high-energy O 2p states of interfacial lattice O,which is also effective for the near-surface lattice O,thus greatly stabilizing the LLO surface,Besides,differential electrochemical mass spectrometry(DEMS)indicates that the Cr_(x)B complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions,including allowing speedy Li^(+)migration,The voltage and capacity fading of the modified cathode(LLO-C_(r)B)are adequately suppressed,which are benefited from the uniformly dense cathode electrolyte interface(CEI)composed of balanced organic/inorganic composition.Therefore,the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g^(-1)(with a retention rate of 95.1%).This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials.展开更多
This paper examines the transport analysis,including both heat transfer and mass transfer,in hybrid nanofluid flow containing gyrotactic microorganisms towards a curved oscillatory surface.The influence of magnetic fi...This paper examines the transport analysis,including both heat transfer and mass transfer,in hybrid nanofluid flow containing gyrotactic microorganisms towards a curved oscillatory surface.The influence of magnetic fields is also inspected in terms of their physical characteristics.To depict the phenomena of transport,modified versions of both Fick's and Fourier's laws are used.Additionally,the characteristics of both heterogeneous and homogeneous chemical reactions are also incorporated.Utilizing a curvilinear coordinate system,the flow problem is formulated as partial differential equations(PDEs)for momentum,concentration,microorganism field,and energy.An analytical solution to the obtained flow equations is achieved utilizing the homotopy analysis method(HAM).The effects of significant flow parameters on the pressure and microorganism fields,velocity,oscillation velocity,concentration,and temperature distributions are shown via graphs.Furthermore,the variations in skin friction,mass transfer rate,heat transfer rate,and local motile number due to different involved parameters are presented in tables and are analyzed in detail.Graphical results indicate that the curves of velocity and temperature fields are enhanced as the values of the solid volume fraction variables increase.It is also verified that the concentration rate field decreases as the values of the homogeneous reaction strength parameter and the radius of curvature parameter increase,and it increases with the Schmidt number and the heterogeneous reaction strength parameter.Tabular outcomes show a favorable response of the motile number to advanced values of the Peclet number,the Schmidt number,the microorganism difference parameter,and the bio-convective Lewis number.展开更多
The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,bi...The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,birch,etc.),Camellia wastes contain diverse bioactive substances in addition to the abundant lignocellulosic components,and thus,the biorefinery utilization of C.oleifera processing byproducts involves complicated processing technologies.This reviewfirst summarizes various technologies for extracting and converting the main components in C.oleifera oil processing byproducts into value-added chemicals and biobased materials,as well as their potential applications.Microwave,ultrasound,and Soxhlet extractions are compared for the extraction of functional bioactive components(tannin,flavonoid,saponin,etc.),while solvothermal conversion and pyrolysis are discussed for the conversion of lignocellulosic components into value-added chemicals.The application areas of these chemicals according to their properties are introduced in detail,including utilizing antioxidant and anti-in-flammatory properties of the bioactive substances for the specific application,as well as drop-in chemicals for the substitution of unrenewable fossil fuel-derived products.In addition to chemical production,biochar fabricated from COS and its applications in thefields of adsorption,supercapacitor,soil remediation and wood composites are comprehensively reviewed and discussed.Finally,based on the compositions and structural characteristics of C.oleifera byproducts,the development of full-component valorization strategies and the expansion of the appli-cationfields are proposed.展开更多
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double...This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.展开更多
Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid ...Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid electrolyte interface(SEI),which induce low energy,short cycling life,and poor rate properties.To address these drawbacks of SiO,we achieve in-situ construction of robust and fast-ion conducting F,N-rich SEI layer on prelithiated micro-sized SiO(P-μSiO)via the simple and continuous treatment ofμSiO in mild lithium 4,4′-dimethylbiphenyl solution and nonflammable hexafluorocyclotriphosphazene solution.Chemical prelithiation eliminates irreversible capacity through pre-forming inactive lithium silicates.Meanwhile,the symbiotic F,N-rich SEI with good mechanical stability and fast Li^(+)permeability is conductive to relieve volume expansion ofμSiO and boost the Li+diffusion kinetics.Consequently,the P-μSiO realizes an impressive electrochemical performance with an elevated ICE of 99.57%and a capacity retention of 90.67%after 350 cycles.Additionally,the full cell with P-μSiO anode and commercial LiFePO_(4) cathode displays an ICE of 92.03%and a high reversible capacity of 144.97 mA h g^(-1).This work offers a general construction strategy of robust and ionically conductive SEI for advanced LIBs.展开更多
基金supported by the National Natural Science Foundation of China,No.82101340(to FJ).
文摘Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.
文摘Objective: We describe patients with MCS, the evolution of the Quick Environmental Exposure and Sensitivity Inventory (QEESI) score with a special focus on people whose fillings were removed. Methods: We have conducted a retrospective longitudinal cohort study in patients diagnosed with MCS and attended in the outpatient Internal Medicine department of the University Hospital of San Juan de Alicante, from January 1, 2008 to January 1, 2021. Sociodemographic, clinical, QEESI and treatment-related variables were collected. We performed descriptive and inferential analyses. Mixed linear models were used to analyze the QEESI. Calculations were carried out with an α error of 5%. Results: Thirty-three patients were included (72.7% women, mean age 56.2). MCS was mainly triggered by mercury (N = 20) and food intolerance (N = 22). The mean interval from symptoms onset was 120 months (SD 81.6). 114 QEESIs were analyzed: 82 (N = 17 without amalgams) and 32 (N = 16 with amalgams). In patients without amalgams, severity scores increased across all subscales except the masking index (vs. with amalgams). Mean scores for the group without amalgams (vs. with amalgams) were: chemical intolerance, 62.8 points (vs. 63.4 and 46.7);other intolerances, 52.7 points (vs. 62.8 and 50.3);symptom severity, 63.2 (vs. 76.7 and 63.3);masking index, 3.9 (vs. 3.2 and 2.8);and life impacts, 63.1 (vs. 58.4 and 49.8). Conclusion: The profile of patient with MCS is a middle-aged woman who is a frequent user of healthcare services, presents a long diagnostic delay and has borne a great personal, work and socioeconomic impact. The QEESI is useful for the clinical follow-up of patients, including the optimal treatment response in the case of amalgams. Clinical Significance: People affected by Multiple Chemical Sensitivity deserve the attention, understanding and help of health professionals and family members, to face an invisible illness for those who do not suffer from it. Support is needed and doctors must raise awareness, and make an effort to understand and address this pathology. We suggest that protocolized amalgam extraction in accredited and prepared centers can reduce symptoms and improve quality of life, generating clinical, personal, family, occupational, social and occupational benefits.
文摘This paper, an addendum to “Dialectical Thermodynamics’ solution to the conceptual imbroglio that is the reversible path”, this journal, 10, 775-799, was written in response to the requests of several readers to provide further evidence of the said “imbroglio”. The evidence here presented relates to the incompatibility existing between the total-entropy and the Gibbs energy prescriptions for the reversible path. The previously published proof of the negentropic nature of the transformation of heat into work is here included to validate out conclusions about the Gibbs energy perspective.
基金Supported by the Science and Technology Project of Guizhou Provincial Company,CNTC(2023XM22)Science and Technology Program of Science and Technology Department of Guizhou Province(QKHPTRC-GCC[2023]067,QKHJC-ZK[2022]YB288)+2 种基金Science and Technology Project of Bijie City of Guizhou Provincial Tobacco Company(2021520500240228)Science and Technology Project of Zunyi City of Guizhou Provincial Tobacco Company(2023XM06)Science and Technology Project of Guizhou Academy of Tobacco Science(GZYKY2022-02).
文摘[Objectives]To elucidate the impact of different drying temperatures on the biochemical profile of tobacco(Nicotiana tabacum L.)leaves,the chemical constituents and ultrastructure of Yunyan 87 leaves subjected to different curing temperature settings.[Methods]Near-infrared spectroscopy techniques were utilized to analyze tobacco leaf samples,comparing the changes in chemical constituents at different curing temperatures.[Results]The CK treatment resulted in lower concentrations of nicotine,total nitrogen,chlorine,potassium,and starch,while simultaneously enhancing the levels of total sugar,reducing sugar,and protein.In comparison to the T treatment,the CK treatment appropriately altered the cell structure,reducing the content of cell wall substances.[Conclusions]These findings suggest that low-temperature curing at 44℃during the color-fixing stage is beneficial for improving the quality of tobacco leaves.
基金support from the National Natural Science Foundation of China (Grant No.U21B2094 and Grant No.U2067212)。
文摘The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of mercury has raised concerns about its potential environmental hazards,which have prompted the search for more efficient and environmentally friendly alternatives.Crown ethers can bind lithium ions highly selectively and separate lithium isotopes effectively.A chemical exchange-based lithium isotopes separation method using crown ether decorated materials could be a viable and cost-effective alternative to the lithium amalgam method.In this review,we provide a systematic summary of the recent advances in lithium isotopes separation using crown ethers decorated materials.
基金supported by the Scientific Research Foundation of Hubei University of Education for Talent Introduction(Nos.ESRC20230002 and ESRC20230007)the Research Project of Hubei Provincial Department of Education(Nos.D20233003 and B2023191)。
文摘In this study,the chemical freeze-out of hadrons,including light-and strange-flavor particles and light nuclei,produced in Au+Au collisions at the Relativistic Heavy Ion Collider(RHIC),was investigated.Using the Thermal-FIST thermodynamic statistical model,we analyzed various particle sets:those inclusive of light nuclei,those exclusive to light nuclei,and those solely comprising light nuclei.We determined the chemical freeze-out parameters at√^(S)NN=7.7–200 Ge V and four different centralities.A significant finding was the decrease in the chemical freeze-out temperature T_(ch)with light-nuclei inclusion,with an even more pronounced reduction when considering light-nuclei yields exclusively.This suggests that light-nuclei formation occurs at a later stage in the system’s evolution at RHIC energies.We present parameterized formulas that describe the energy dependence of T_(ch)and the baryon chemical potentialμ_(B) for three distinct particle sets in central Au+Au collisions at RHIC energies.Our results reveal at least three distinct T_(ch)at RHIC energies correspond to different freeze-out hypersurfaces:a light-flavor freeze-out temperature of T_L=150.2±6 Me V,a strange-flavor freeze-out temperature T_s=165.1±2.7 Me V,and a light-nuclei freeze-out temperature T_(ln)=141.7±1.4 Me V.Notably,at the Large Hadron Collider(LHC)Pb+Pb 2.76Te V,the expected lower freeze-out temperature for light nuclei was not observed;instead,the T_(ch)for light nuclei was found to be approximately 10 Me V higher than that for light-flavor hadrons.
基金supported by the Project of Sanya Yazhou Bay Science and Technology City,China(Grant No.SCKJ-JYRC-2022-94)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA28020203)+1 种基金Postgraduate Innovation Research Project of Hainan Province,China(Grant No.Qhyb2022-67)PhD Scientific Research and Innovation Foundation of Sanya Yazhou Bay Science and Technology City,China(Grant No.HSPHDSRF-2023-12-008).
文摘To improve the yield and quality of rice grown on saline-alkali soil,a meta-analysis combined with micro-district experimental studies was conducted in China to examine the impact of humic acidbased organic fertilizer and chemical fertilizer on rice yield and quality.This study employed a two-factor fully randomized experimental design,incorporating four levels of humic acid(F0,0.0 g/pot;F1,4.8 g/pot;F2,12.0 g/pot;and F3,19.2 g/pot)and three levels of chemical fertilizer(A1,full conventional dosage;A2,85% of conventional dosage;and A3,70% of conventional dosage).The meta-analysis revealed that the application of organic fertilizer(at a rate of 1500‒3000 kg/hm^(2))combined with chemical fertilizer had a significantly positive effect on the theoretical yield,tiller number,partial factor productivity,and SPAD value of rice.Temperature,organic fertilizer application,and chemical fertilizer levels were identified as critical factors affecting rice yield.The micro-experiments demonstrated that the application of humic acid organic fertilizer with treatment F3 significantly elevated the SPAD value at the full heading and grain filling stages.Increased panicle number and seed-setting rate were the main contributors to the rise in yield,with the F3 treatment yielding the highest overall.The effective leaf area,high-efficiency leaf area,and dry matter accumulation in rice treated with F3 were all higher compared with the F0 treatment.Our findings indicated that the addition of humic acid organic fertilizer can markedly improve the partial factor productivity and agronomic efficiency of rice.In conclusion,the application of F3 organic fertilizer combined with A3 chemical fertilizer(F3A3)significantly increased the yield of saline-alkali rice,which was 6.62% higher than that of the F0A1 treatment,thereby validating the meta-analysis outcomes.We propose that the combined use of humic acid organic fertilizer and chemical fertilizer can promote the growth of rice in saline-alkali soils.Consequently,these management practices provide a means to foster the green and healthy development of rice in saline-alkali regions across China.
基金supported by National Nature Science Foundation of China(81973284)Scientific Research Foundation of the Education Department of Liaoning Province(LJKZ0944).
文摘Lysimachia capillipes(L.capillipes)Hemsl,belong to primulaceae pearl vegetables genus,is a treasure in traditional Chinese medicine.It has the effects of invigorating qi and tonifying deficiency,dispelling wind and activating blood,awakening the brain,relieving cough and regulating menstruation.With the development of modern medicine,the active components and therapeutic mechanisms of L.capillipes Hemsl have been gradually revealed.The present report systematically reviews the chemical composition and biological activities of L.capillipes Hemsl,to provide scientific basis and reference for detailed research on L.capillipes Hemsl.
基金Supported by Scientific Research Project of China Medical Association of Minorities(2022M2038-310401)Guangxi First-class Discipline Project for Traditional Chinese Medicine(GuiJiaoKeYan 202201)+3 种基金Scientific Research and Training Project for College Students of Guangxi University of Chinese Medicine(2023DXS14)Funding Project for High-level Innovation Team and Outstanding Scholars in Guangxi Universities(GuiJiaoRen 201407)NATCM s Project of High-level Construction of Key TCM Disciplines/Medicine for Ethnic Minorities(Zhuang Medicine)(ZYYZDXK-2023164)Guangxi Higher Education Key Laboratory for the Research of Toxic Diseases in Zhuang Medicine(GuiJiaoKeYan 202210).
文摘[Objectives]To analyze the main chemical components in Cocculus laurifolius DC.by ultra-high performance liquid chromatography-quaternary rod/electrostatic field orbital hydrazine high resolution mass spectrometry.[Methods]Using Welch AQ-C 18 chromatographic column(150 mm×2.1 mm,1.8μm),gradient elution was performed with 0.1%formic acid aqueous solution(A)-methanol(B)as the mobile phase,and electrospray ESI ionization source and simultaneous mass spectrometry scanning mode of positive and negative ions were used.[Results]26 kinds of chemical component were identified or inferred,including 3 organic acids,5 flavonoids,4 alkaloids,1 coumarin and 13 others.[Conclusions]The UPLC-Q-Exactive HRMS technique is simple,which lays a foundation for the drug-efficacy material basis and medicinal quality evaluation of C.laurifolius DC.
文摘Juniperus oxycedrus(J.oxycedrus)is a traditional culinary spice and medicinal herb with a longstanding history of ethnopharmacological applications across diverse cultures.While prior research has explored the biological activities and phytochemical constituents of extracts derived from its leaves and seed cones,the present study systematically investigates their mineral and phenolic profiles alongside their multifunctional bioactive potential.Inductively coupled plasma-atomic emission spectroscopy(ICP-AES)analysis revealed a substantial abundance of essential macro-and microelements.Reversed-phase high-performance liquid chromatography(RP-HPLC)further identified high concentrations of phenolic acids(e.g.,p-coumaric acid)and flavonoids(e.g.,rutin and quercetin).The extracts exhibited potent radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl(DPPH),robust antioxidant capacity against hydrogen peroxide,and significant inhibition of xanthine oxidase(XO)activity.Notably,both extracts demonstrated marked antibacterial efficacy.In silico molecular docking studies suggested that the antimicrobial activity may stem from the phenolic constituents,which exhibited favorable binding affinities to the active site of bacterial target proteins.These findings underscore J.oxycedrus as a promising reservoir of bioactive natural compounds,warranting further exploration for therapeutic and nutraceutical applications.
基金National Natural ScienceFoundation of China (grant number: 81973696).
文摘Gualou-Xiebai-Banxia Decoction(GXBD)is a traditional Chinese herbal formula including four traditional Chinese medicines:Gualou(Trichosanthis Fructus,TF),Xiebai(Allii Macrostemonis Bulbus,AMB),Banxia(Pinelliae Rhizoma,PR)and yellow wine.It is a classical therapy for chest stuffiness and pain syndrome and is widely used in the clinical treatment of coronary heart disease.It also shows significant therapeutic effects on pulmonary heart disease,hyperlipidemia,and arrhythmia.This study conducted a literature review and collected information on GXBD from databases such as PubMed,Web of Science,China National Knowledge Infrastructure,and ScienceDirect.The result indicated that the main active ingredients of GXBD are steroids,flavonoids,terpenoids,alkaloids,amino acids,and organic acids.Trigonelline,macrostemonoside and cucurbitacin B can provide reference for its quality control.GXBD may exert therapeutic effects on coronary heart disease through AMPK,PI3K-AKT,oxLDL,VEGF,and NF-κB signal pathways.This review provides a comprehensive analysis and summary of the chemical composition and in vivo metabolism of three traditional Chinese medicines(TF,AMB,and PR),along with an evaluation of the chemical composition,quality control,pharmacological effects,and clinical application of GXBD.Based on these,areas requiring further research on GXBD have been proposed to provide a reference for its further development and new drug research.
文摘The Fenton-like reaction between Cu^(2+)and H_(2)O_(2)was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten.The microstructure evolution and material removal rate of tungsten during polishing process were investigated via scanning electron microscopy,X-ray photoelectron spectroscopy,ultraviolet−visible spectrophotometry,and electrochemical experiments.The passivation behavior and material removal mechanism were discussed.Results show that the use of mixed H_(2)O_(2)+Cu(NO_(3))_(2)oxidant can achieve higher polishing efficiency and surface quality compared with the single oxidant Cu(NO_(3))_(2)or H_(2)O_(2).The increase in material removal rate is attributed to the rapid oxidation of W into WO_(3)via the chemical reaction between the substrate and hydroxyl radicals produced by the Fenton-like reaction.In addition,material removal rate and static etch rate exhibit significantly different dependencies on the concentration of Cu(NO_(3))_(2),while the superior oxidant for achieving the balance between polishing efficiency and surface quality is 0.5 wt.%H_(2)O_(2)+1.0 wt.%Cu(NO_(3))_(2).
文摘Naru Sanwei Pill,also known as Naru-3,a Mongolian medicine originating from Zhigao Pharmacopoeia,is a classic prescription used in the treatment of rheumatism.It is composed of Terminalia chebula,processed Aconitum kusnezoffii Reichb.,and Piper longum,and is known for its effects in eliminating“mucus,”relieving pain,and reducing swelling,with significant efficacy in treating joint effusion and lumbar pain.In recent years,researchers have summarized its chemical components and pharmacological effects,and employed network pharmacology methods based on the core theory of Traditional Chinese Medicine quality markers(Q-Markers)to analyze and predict its markers.The results identified potential Q-Markers for Naru-3,providing a scientific basis for quality control and further research.
基金supported by the Key R&D Program of Shandong Province,China(No.2024TZXD067,2022SFGC0105)Natural Science Foundation of Shandong Province(No.ZR2023QB021)+2 种基金Young Taishan Scholarship to Xuekui Xia(No.tsqn202103100)Jinan Talent Project for Universities(No.2021GXRC062,202228088)Key innovation Project and Science,Education and Industry Integration Innovation Pilot Project of Qilu University of Technology(Shandong Academy of Sciences)(No.2022JBZ01-06,2024ZDZX03,2023RCKY214).
文摘Jing Fang granules(JFG)are a modern Chinese medicinal formulation derived from Jing Fang Defeating Toxin San(JFDS).JFG primarily contains bioactive compounds such as flavonoids/flavonoid glycosides,coumarins and other components,which have various activities:anti-inflammatory,immune system regulation,antiviral,anti-aging,detoxification,and protection of the liver,lungs,and kidneys.JFG has broad potential therapeutic applications.The mechanisms of JFG’s actions are primarily associated with signaling pathways such as TLR4/NF-κB,PI3K/AKT,and MAPK.This article reviews the research progress on JFG,including chemical composition,pharmacologic effects,mechanism of action,safety,clinical application,etc.,serving as a foundation for future research and clinical applications.
基金support from the Third Xinjiang Scientific Expedition Program(2021XJKK0803)the National Natural Science Foundation of China(No.41930640)the Project of the Second Comprehensive Scientific Investigation on the Qinghai-Tibetan Plateau(2019QZKK1003)。
文摘Carbonic acid produced by the dissolution of atmospheric and soil CO_(2)in water is usually the most dominant catalyst for chemical weathering,but a sulfuric aciddriven phenomenon,different from usual,was found in the orogenic belt watersheds dominated by silicate bedrock.This study,rooted in comprehensive field investigations in the Manas River Basin(MRB)north of the Tianshan Mountains,delves into the mechanisms and impacts of sulfuric and carbonic acid as catalysts driving diff erent types of chemical weathering in the Central Asian Orogenic Belt.Quantitative analyses elucidate that carbonate weathering constitutes 52.4%of the total chemical weathering,while silicate and evaporite account for 18.6%and 25.3%,respectively,with anthropogenic activities and atmospheric precipitation having little eff ect.The estimated total chemical weathering rate in MRB is approximately 0.075×10^(6)mol/km^(2)/year.Quantitative findings further suggest that,preceding carbonate precipitation(<10^(4)year),chemical weathering can absorb CO_(2).Subsequently,and following carbonate precipitation(10^(4)-10^(7)year),it will release CO_(2).The release significantly surpasses the global average CO_(2)consumption,contributing to a noteworthy climate impact.This study underscores the distinctive weathering mechanisms,wherein sulfuric acid emerges as the predominant catalyst.The quantity of sulfuric acid as a catalyst is approximately three times that of carbonic acid.Sulfuric acid-driven carbonate rock weathering(SCW)is identified as the sole chemical weathering type with a net CO_(2)release eff ect.SCW CO_(2)release flux(5176 mol/km^(2)/year)is roughly 2.5 times the CO_(2)absorption by Ca-Mg silicate weathering,highlighting the pivotal role of chemical weathering in sourcing atmospheric CO_(2)over the timescales of carbonate precipitation and sulfate reduction.Lastly,this study posits that catalyst and transport limitations are the most plausible critical factors in MRB.The interplay between sulfuric acid and dissolved CO_(2)competitively shapes the types and rates of chemical weathering reactions.
基金financially supported by the National Natural Science Foundation of China(No.12304077)the Natural Science Foundation of Science and Technology Department of Sichuan Province(No.23NSFSC6224)+3 种基金Sichuan Science and Technology Program(No.2024NSFSC0989)the Key Laboratory of Computational Physics of Sichuan Province(No.YBUJSWL-YB-2022-03)the Material Corrosion and Protection Key Laboratory of Sichuan Province(No.2023CL14 and No.2023CL01)the National Innovation Practice Project(No.202411079005S).
文摘Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capacity fading.Herein,the dual-strategy of Cr,B complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature.Density functional theory(DFT)calculations prove that stable B-O and Cr-O bonds through the local gradient doping can significantly reduce the high-energy O 2p states of interfacial lattice O,which is also effective for the near-surface lattice O,thus greatly stabilizing the LLO surface,Besides,differential electrochemical mass spectrometry(DEMS)indicates that the Cr_(x)B complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions,including allowing speedy Li^(+)migration,The voltage and capacity fading of the modified cathode(LLO-C_(r)B)are adequately suppressed,which are benefited from the uniformly dense cathode electrolyte interface(CEI)composed of balanced organic/inorganic composition.Therefore,the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g^(-1)(with a retention rate of 95.1%).This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials.
文摘This paper examines the transport analysis,including both heat transfer and mass transfer,in hybrid nanofluid flow containing gyrotactic microorganisms towards a curved oscillatory surface.The influence of magnetic fields is also inspected in terms of their physical characteristics.To depict the phenomena of transport,modified versions of both Fick's and Fourier's laws are used.Additionally,the characteristics of both heterogeneous and homogeneous chemical reactions are also incorporated.Utilizing a curvilinear coordinate system,the flow problem is formulated as partial differential equations(PDEs)for momentum,concentration,microorganism field,and energy.An analytical solution to the obtained flow equations is achieved utilizing the homotopy analysis method(HAM).The effects of significant flow parameters on the pressure and microorganism fields,velocity,oscillation velocity,concentration,and temperature distributions are shown via graphs.Furthermore,the variations in skin friction,mass transfer rate,heat transfer rate,and local motile number due to different involved parameters are presented in tables and are analyzed in detail.Graphical results indicate that the curves of velocity and temperature fields are enhanced as the values of the solid volume fraction variables increase.It is also verified that the concentration rate field decreases as the values of the homogeneous reaction strength parameter and the radius of curvature parameter increase,and it increases with the Schmidt number and the heterogeneous reaction strength parameter.Tabular outcomes show a favorable response of the motile number to advanced values of the Peclet number,the Schmidt number,the microorganism difference parameter,and the bio-convective Lewis number.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Grant No.32201509)Hunan Science and Technology Xiaohe Talent Support Project(2022 TJ-XH 013)+6 种基金Science and Technology Innovation Program of Hunan Province(2022RC1156,2021RC2100)State Key Laboratory of Woody Oil Resource Utilization Common Key Technology Innovation for the Green Transformation of Woody Oil(XLKY202205)State Key Laboratory of Woody Oil Resource Utilization Project(2019XK2002)Key Research and Development Program of the State Forestry and Grassland Administration(GLM[2021]95)Hunan Forestry Outstanding Youth Project(XLK202108-1)Changsha Science and Technology Project(kq2202325,kq2107022)Science and Technology Innovation Leading Talent of Hunan Province(2020RC4026).
文摘The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,birch,etc.),Camellia wastes contain diverse bioactive substances in addition to the abundant lignocellulosic components,and thus,the biorefinery utilization of C.oleifera processing byproducts involves complicated processing technologies.This reviewfirst summarizes various technologies for extracting and converting the main components in C.oleifera oil processing byproducts into value-added chemicals and biobased materials,as well as their potential applications.Microwave,ultrasound,and Soxhlet extractions are compared for the extraction of functional bioactive components(tannin,flavonoid,saponin,etc.),while solvothermal conversion and pyrolysis are discussed for the conversion of lignocellulosic components into value-added chemicals.The application areas of these chemicals according to their properties are introduced in detail,including utilizing antioxidant and anti-in-flammatory properties of the bioactive substances for the specific application,as well as drop-in chemicals for the substitution of unrenewable fossil fuel-derived products.In addition to chemical production,biochar fabricated from COS and its applications in thefields of adsorption,supercapacitor,soil remediation and wood composites are comprehensively reviewed and discussed.Finally,based on the compositions and structural characteristics of C.oleifera byproducts,the development of full-component valorization strategies and the expansion of the appli-cationfields are proposed.
基金funded by the China Postdoctoral Science Foundation(Grant No.2022M721614)the opening project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(Grant No.KFJJ23-07M)。
文摘This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.
基金financially supported by the National Natural Science Foundation of China(Nos.51972198 and 62133007)the Natural Science Foundation of Shandong Province(ZR2020JQ19)the Taishan Scholars Program of Shandong Province(Nos.tsqn201812002 and ts20190908)。
文摘Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid electrolyte interface(SEI),which induce low energy,short cycling life,and poor rate properties.To address these drawbacks of SiO,we achieve in-situ construction of robust and fast-ion conducting F,N-rich SEI layer on prelithiated micro-sized SiO(P-μSiO)via the simple and continuous treatment ofμSiO in mild lithium 4,4′-dimethylbiphenyl solution and nonflammable hexafluorocyclotriphosphazene solution.Chemical prelithiation eliminates irreversible capacity through pre-forming inactive lithium silicates.Meanwhile,the symbiotic F,N-rich SEI with good mechanical stability and fast Li^(+)permeability is conductive to relieve volume expansion ofμSiO and boost the Li+diffusion kinetics.Consequently,the P-μSiO realizes an impressive electrochemical performance with an elevated ICE of 99.57%and a capacity retention of 90.67%after 350 cycles.Additionally,the full cell with P-μSiO anode and commercial LiFePO_(4) cathode displays an ICE of 92.03%and a high reversible capacity of 144.97 mA h g^(-1).This work offers a general construction strategy of robust and ionically conductive SEI for advanced LIBs.