This paper describes the research achievement in manufacturing the cation asphalt emulsifier for micro-surfacing using an eco-friendly material which is rich in resources and low in production cost. This material is a...This paper describes the research achievement in manufacturing the cation asphalt emulsifier for micro-surfacing using an eco-friendly material which is rich in resources and low in production cost. This material is alkali lignin which used to be treated as wastes during the processing of wood and the cation asphalt emulsifier for micro-surfacing made from this is sulfomethylated lignin quaternary ammonium salt cation emulsifier. This emulsifier is synthesized through sulfomethylation and quaternary-ammonization of alkali lignin so as to allow the emulsifier molecule to contain two hydrophilic groups inside it. Newly developed cation emulsifier is widely used for micro-surfacing for its high emulsifying power and slowly-disintegrable and fast-setting ability.展开更多
Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the dam...Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.展开更多
BACKGROUND:The dynamic monitoring of immune status is crucial to the precise and individualized treatment of sepsis.In this study,we aim to introduce a model to describe and monitor the immune status of sepsis and to ...BACKGROUND:The dynamic monitoring of immune status is crucial to the precise and individualized treatment of sepsis.In this study,we aim to introduce a model to describe and monitor the immune status of sepsis and to explore its prognostic value.METHODS:A prospective observational study was carried out in Zhongshan Hospital,Hehai University,enrolling septic patients admitted between July 2016 and December 2018.Blood samples were collected at days 1 and 3.Serum cytokine levels(e.g.,tumor necrosis factor-α[TNF-α],interleukin-10[IL-10])and CD14+monocyte human leukocyte antigen-D-related(HLA-DR)expression were measured to serve as immune markers.Classifi cation of each immune status,namely systemic inflammatory response syndrome(SIRS),compensatory anti-inflammatory response syndrome(CARS),and mixed antagonistic response syndrome(MARS),was defined based on levels of immune markers.Changes of immune status were classifi ed into four groups which were stabilization(SB),deterioration(DT),remission(RM),and non-remission(NR).RESULTS:A total of 174 septic patients were enrolled including 50 non-survivors.Multivariate analysis discovered that IL-10 and HLA-DR expression levels at day 3 were independent prognostic factors.Patients with MARS had the highest mortality rate.Immune status of 46.1%patients changed from day 1 to day 3.Among four groups of immune status changes,DT had the highest mortality rate,followed by NR,RM,and SB with mortality rates of 64.7%,42.9%,and 11.2%,respectively.CONCLUSIONS:Severe immune disorder defi ned as MARS or deterioration of immune status defi ned as DT lead to the worst outcomes.The preliminary model of the classifi cation and dynamic monitoring of immune status based on immune markers has prognostic values and is worthy of further investigation.展开更多
Cationic polymer fluid loss additive (CPFL) was prepared by using the reaction of 2,3-epoxypropy- ltrimethyl ammonium chloride (EPTMAC) (as cationic reagent) with the amide group in the molecular structure of th...Cationic polymer fluid loss additive (CPFL) was prepared by using the reaction of 2,3-epoxypropy- ltrimethyl ammonium chloride (EPTMAC) (as cationic reagent) with the amide group in the molecular structure of the sodium salt of partially hydrolyzed polyacrylonitrile fibers (HPAN-Na). The chemical reaction was determined by studying the infrared absorption peaks of the materials and the products. The results proved that the cationic groups of EPTMAC were successfully grafted onto the HPAN molecular chain. The composition of the molecular chain of the product CPFL was determined by investigation and calculation of the elemental analysis results of the grafted HPAN and the final reaction product CPFL. The drilling fluid performance was evaluated, and the result showed that when the cation content was more than 0.27 mmol/g, the drilling fluid would have good resistance to fluid loss and to pollution from calcium chloride.展开更多
Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents...Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents based on keywords.An efficient classification algorithm for retrieving documents based on keyword words is required.The traditional algorithm performs less because it never considers words’polysemy and the relationship between bag-of-words in keywords.To solve the above problem,Semantic Featured Convolution Neural Networks(SF-CNN)is proposed to obtain the key relationships among the searching keywords and build a structure for matching the words for retrieving correct text documents.The proposed SF-CNN is based on deep semantic-based bag-of-word representation for document retrieval.Traditional deep learning methods such as Convolutional Neural Network and Recurrent Neural Network never use semantic representation for bag-of-words.The experiment is performed with different document datasets for evaluating the performance of the proposed SF-CNN method.SF-CNN classifies the documents with an accuracy of 94%than the traditional algorithms.展开更多
In this contribution,we report the cooperative structure-directing effect of choline hydroxide and aluminosilicate*BEA zeolite in the synthesis of aluminogermanosilicate IWR zeolites for the first time.*BEA zeolites,a...In this contribution,we report the cooperative structure-directing effect of choline hydroxide and aluminosilicate*BEA zeolite in the synthesis of aluminogermanosilicate IWR zeolites for the first time.*BEA zeolites,at variance with any other aluminosilicate zeolites,can serve as heterogeneous seeds for the growth of IWR zeolites and play a cooperative structure-directing role.The crystallization process was investigated using multiple techniques to characterize a series of solid products obtained with various crystallization times.The experiments clearly showed the dissolution of the*BEA zeolite and of an intermediate CDO-type structure.A plausible mechanism for the novel cooperative synthesis has been proposed.The crystallization of the IWR zeolite involves several steps,among which the crucial one is believed to be the reassembly of the building units produced from the decomposition of*BEA zeolite seeds,induced by choline molecules.Having similar structure and common building units(four-,five-,and six-membered rings)with the IWR zeolite,the*BEA zeolite is capable of promoting the reassembly of the building units and can thus play a cooperative structure-directing role.By highlighting the cooperative structure-directing effect of organic molecules and heterogeneous seeds,this study opens up new perspectives for the synthesis of target zeolites that are difficult to prepare by traditional methods.This new synthetic route is also expected to shed light on the discovery of novel zeolites.展开更多
This paper extends the criterion of the misclassification ratio of discriminant model and presents a new selection method of discriminant model.For selecting the discriminant model,this method establishes the rule of ...This paper extends the criterion of the misclassification ratio of discriminant model and presents a new selection method of discriminant model.For selecting the discriminant model,this method establishes the rule of misclassification degree ratio through misclassification ratio of the discriminant model and misclassification degree of the samples.To test the effect of this method,this work uses seven UCI data sets.Numerical experiments on these examples indicate that this method has certain rationality and has a better effect to select a discriminant model.展开更多
Two oxetane-derived monomers, 3-(2-cyano-ethoxy)methyl- and 3-(methoxy-(triethylenoxy))methyl-3'- methyloxetane (COX and MTOX), were prepared from 3-hydroxymethyl-3'-methyloxetane. Their homo- and copolymeri...Two oxetane-derived monomers, 3-(2-cyano-ethoxy)methyl- and 3-(methoxy-(triethylenoxy))methyl-3'- methyloxetane (COX and MTOX), were prepared from 3-hydroxymethyl-3'-methyloxetane. Their homo- and copolymerization in solution were carried out by the cationic ring-opening polymerization with BF3 · Et2O and 1,4-butanediol as co-initiator. The molecular weight and molecular weight distribution were determined using GPC so as to reveal the competition and interchange between active chain end (ACE) and activated monomer (AM) mechanism in the process. The reactivity ratios of the two monomers were calculated according to Kelen-Tudos using ^1H-NMR analysis. The influence of functional side chains in the monomers on the copolymerization behaviors was discussed in virtue of the reactivity ratio data. When doped with lithium salt LiTFSI, the ion conductivity of the homopolymer of MTOX reached 10^-3.58 S/cm at 30℃ and 10^-2.73 S/cm at 80℃, respectively, showing its potential to be used as polymer electrolyte for lithium ion battery.展开更多
Ferrocenium monocations as photoinitiators for cationic photopolymerization suffer from a limitation of low absorption and low reactivity under high-pressure Hg lamp. Here, a ferrocenium dication salt, biphenyl bis [...Ferrocenium monocations as photoinitiators for cationic photopolymerization suffer from a limitation of low absorption and low reactivity under high-pressure Hg lamp. Here, a ferrocenium dication salt, biphenyl bis [π-cyclopentadienyl)iron] hexafluorophosphate ([bis(Cp-Fe)-biphenyl] (PF6)2 was synthesized by the ligand exchange reaction between ferrocene and biphenyl. The chemical structure was characterized with FTIR and ^1HNMR. The separation of ferrocenium monocation cyclopentadien-iron-biphenyl hexafluorophosphate ([Cp-Fe-biphenyl] PF6) and dication [bis(Cp-Fe)-biphenyl] (PF6)2 was carried out by column chromatography. The photoactivity of initiating photopolyinerization of epoxide ER14221 was studied as a cationic photoinitiator. [Bis(Cp-Fe)-biphenyl] (PF6)2 can efficiently absorb radiation above 300nm and its photoactivity is higher than that of its monocation.展开更多
Object detection and classification are the trending research topics in thefield of computer vision because of their applications like visual surveillance.However,the vision-based objects detection and classification met...Object detection and classification are the trending research topics in thefield of computer vision because of their applications like visual surveillance.However,the vision-based objects detection and classification methods still suffer from detecting smaller objects and dense objects in the complex dynamic envir-onment with high accuracy and precision.The present paper proposes a novel enhanced method to detect and classify objects using Hyperbolic Tangent based You Only Look Once V4 with a Modified Manta-Ray Foraging Optimization-based Convolution Neural Network.Initially,in the pre-processing,the video data was converted into image sequences and Polynomial Adaptive Edge was applied to preserve the Algorithm method for image resizing and noise removal.The noiseless resized image sequences contrast was enhanced using Contrast Limited Adaptive Edge Preserving Algorithm.And,with the contrast-enhanced image sequences,the Hyperbolic Tangent based You Only Look Once V4 was trained for object detection.Additionally,to detect smaller objects with high accuracy,Grasp configuration was observed for every detected object.Finally,the Modified Manta-Ray Foraging Optimization-based Convolution Neural Network method was carried out for the detection and the classification of objects.Comparative experiments were conducted on various benchmark datasets and methods that showed improved accurate detection and classification results.展开更多
Existingfirefighting robots are focused on simple storage orfire sup-pression outside buildings rather than detection or recognition.Utilizing a large number of robots using expensive equipment is challenging.This study ...Existingfirefighting robots are focused on simple storage orfire sup-pression outside buildings rather than detection or recognition.Utilizing a large number of robots using expensive equipment is challenging.This study aims to increase the efficiency of search and rescue operations and the safety offirefigh-ters by detecting and identifying the disaster site by recognizing collapsed areas,obstacles,and rescuers on-site.A fusion algorithm combining a camera and three-dimension light detection and ranging(3D LiDAR)is proposed to detect and loca-lize the interiors of disaster sites.The algorithm detects obstacles by analyzingfloor segmentation and edge patterns using a mask regional convolutional neural network(mask R-CNN)features model based on the visual data collected from a parallelly connected camera and 3D LiDAR.People as objects are detected using you only look once version 4(YOLOv4)in the image data to localize persons requiring rescue.The point cloud data based on 3D LiDAR cluster the objects using the density-based spatial clustering of applications with noise(DBSCAN)clustering algorithm and estimate the distance to the actual object using the center point of the clustering result.The proposed artificial intelligence(AI)algorithm was verified based on individual sensors using a sensor-mounted robot in an actual building to detectfloor surfaces,atypical obstacles,and persons requiring rescue.Accordingly,the fused AI algorithm was comparatively verified.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
Mussels are common anchoring organisms that adhere to the surfaces of various substrates with their byssus.The adhesion of mussel to substrates is contingent upon the presence of mussel foot proteins,of which Mytilus ...Mussels are common anchoring organisms that adhere to the surfaces of various substrates with their byssus.The adhesion of mussel to substrates is contingent upon the presence of mussel foot proteins,of which Mytilus edulis foot protein-1(Mefp-1)has been identified as the most abundant protein.It has been found that lipids are involved in the mussel adhesion process and can facilitate Mefp-1adhesion.In this research,the adhesion behavior of Mefp-1 on various substrate surfaces under the effect of typical seawater cations with or without the presence of lipid were investigated using a quartz crystal microbalance with dissipation(QCM-D).Results indicate that the presence of cations Ca^(2+),Mg^(2+),Na^(+),and K^(+)leads to varying degrees of reduction in the adhesion performance of Mefp-1 on different substrates.The degree of this reduction,however,was much alleviated in the presence of palmitic acid,which is involved in the mussel adhesion process.Therefore,the involvement of palmitic acid is advantageous for mussel protein adhesion to the substrate surface in the marine environment.This study illustrated the significant contribution of palmitic acid to mussel adhesion,which can help to better understand biofouling mechanisms and develop biomimetic adhesive materials.展开更多
Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy...Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts.展开更多
The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synth...The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.展开更多
Combusting refuse for energy production is promising for their treatment and disposal. However, because of geographical constraints, there has not been a stable model for the energy utilization of refuse in low-oxygen...Combusting refuse for energy production is promising for their treatment and disposal. However, because of geographical constraints, there has not been a stable model for the energy utilization of refuse in low-oxygen plateau areas. This paper took Lhasa as an example to conduct gasification and incineration experiments on local representative combustible refuse,and relevant energy conversion laws were investigated. Results showed that under gasification and incineration modes, the energy conversion rate of any component of refuse can reach 75% and 85% in low-oxygen plateau areas at temperatures of 450 and 650 ℃, respectively, which were 5%–10% lower than those in plain areas. The regional distribution of energy conversion of refuse in Lhasa showed that the energy conversion rate under the gasification mode was 3%–5% lower than that of the incineration mode at 450 and 650 ℃. In terms of temperature, the energy conversion rates of refuse were 5%–10% lower at 450 ℃ than those at 650 ℃, but an energy conversion rate of more than 85% can still be achieved. Thus, gasification, incineration, or gasification-assisted secondary incineration at temperatures of at least 450 ℃ is suitable for energy recovery of refuse in low-oxygen plateau areas.展开更多
Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and ...Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.展开更多
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom...An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.展开更多
Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a po...Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a potential difference.However,the current SED process is limited by conventional commercial monovalent cation permselective membranes(MCPMs).This study systematically investigates the use of an independently developed MCPM in the SED process for acid recovery.Various factors such as current density,volume ratio,initial ion concentration,and waste acid systems are considered.The independently developed MCPM offers several advantages over the commercial monovalent selective cation-exchange membrane(CIMS),including higher recovered acid concentration,better ion flux ratio,improved acid recovery efficiency,increased recovered acid purity,and higher current efficiency.The SED process with the MCPM achieves a recovered acid of 95.9%and a concentration of 2.3 mol·L^(–1) in the HCl/FeCl_(2) system,when a current density of 20 mA·cm^(-2) and a volume ratio of 1:2 are applied.Similarly,in the H_(2)SO_(4)/FeSO_(4) system,a purity of over 99%and a concentration of 2.1 mol·L^(–1) can be achieved in the recovered acid.This study thoroughly examines the impact of operation conditions on acid recovery performance in the SED process.The independently developed MCPM demonstrates outstanding acid recovery performance,highlighting its potential for future commercial utilization.展开更多
Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high...Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high-value-added chemicals or fuels.The design and modification of electrocatalysts have been widely implemented to improve their performance in these reactions.However,bottle-necks are encountered,making it challenging to further improve performance through catalyst development alone.Recently,cations in the electrolyte have emerged as critical factors for tuning both the activity and product selectivity of reduction reactions.This review summarizes recent advances in understanding the role of cation effects in electrocatalytic reduction reactions.First,we introduce the mechanisms underlying cation effects.We then provide a comprehensive overview of their application in electroreduction reactions.Characterization techniques and theoretical calcula-tion methods for studying cation effects are also discussed.Finally,we address remaining challeng-es and future perspectives in this field.We hope that this review offers fundamental insights and design guidance for utilizing cation effects,thereby advancing their development.展开更多
文摘This paper describes the research achievement in manufacturing the cation asphalt emulsifier for micro-surfacing using an eco-friendly material which is rich in resources and low in production cost. This material is alkali lignin which used to be treated as wastes during the processing of wood and the cation asphalt emulsifier for micro-surfacing made from this is sulfomethylated lignin quaternary ammonium salt cation emulsifier. This emulsifier is synthesized through sulfomethylation and quaternary-ammonization of alkali lignin so as to allow the emulsifier molecule to contain two hydrophilic groups inside it. Newly developed cation emulsifier is widely used for micro-surfacing for its high emulsifying power and slowly-disintegrable and fast-setting ability.
基金Gansu Science and Technology Key Project under Grant No.2GS057-A52-008
文摘Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.
基金the National Natural Science Foundation of China(81471840,81171837)the Shanghai Traditional Medicine Development Project(ZY3-CCCX3-3018,ZHYY-ZXYJH-201615)the Key Project of Shanghai Municipal Health Bureau(2016ZB0202).
文摘BACKGROUND:The dynamic monitoring of immune status is crucial to the precise and individualized treatment of sepsis.In this study,we aim to introduce a model to describe and monitor the immune status of sepsis and to explore its prognostic value.METHODS:A prospective observational study was carried out in Zhongshan Hospital,Hehai University,enrolling septic patients admitted between July 2016 and December 2018.Blood samples were collected at days 1 and 3.Serum cytokine levels(e.g.,tumor necrosis factor-α[TNF-α],interleukin-10[IL-10])and CD14+monocyte human leukocyte antigen-D-related(HLA-DR)expression were measured to serve as immune markers.Classifi cation of each immune status,namely systemic inflammatory response syndrome(SIRS),compensatory anti-inflammatory response syndrome(CARS),and mixed antagonistic response syndrome(MARS),was defined based on levels of immune markers.Changes of immune status were classifi ed into four groups which were stabilization(SB),deterioration(DT),remission(RM),and non-remission(NR).RESULTS:A total of 174 septic patients were enrolled including 50 non-survivors.Multivariate analysis discovered that IL-10 and HLA-DR expression levels at day 3 were independent prognostic factors.Patients with MARS had the highest mortality rate.Immune status of 46.1%patients changed from day 1 to day 3.Among four groups of immune status changes,DT had the highest mortality rate,followed by NR,RM,and SB with mortality rates of 64.7%,42.9%,and 11.2%,respectively.CONCLUSIONS:Severe immune disorder defi ned as MARS or deterioration of immune status defi ned as DT lead to the worst outcomes.The preliminary model of the classifi cation and dynamic monitoring of immune status based on immune markers has prognostic values and is worthy of further investigation.
基金supported by China National High Technology Research and Development Program(863 Program, 2013AA064803)
文摘Cationic polymer fluid loss additive (CPFL) was prepared by using the reaction of 2,3-epoxypropy- ltrimethyl ammonium chloride (EPTMAC) (as cationic reagent) with the amide group in the molecular structure of the sodium salt of partially hydrolyzed polyacrylonitrile fibers (HPAN-Na). The chemical reaction was determined by studying the infrared absorption peaks of the materials and the products. The results proved that the cationic groups of EPTMAC were successfully grafted onto the HPAN molecular chain. The composition of the molecular chain of the product CPFL was determined by investigation and calculation of the elemental analysis results of the grafted HPAN and the final reaction product CPFL. The drilling fluid performance was evaluated, and the result showed that when the cation content was more than 0.27 mmol/g, the drilling fluid would have good resistance to fluid loss and to pollution from calcium chloride.
文摘Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents based on keywords.An efficient classification algorithm for retrieving documents based on keyword words is required.The traditional algorithm performs less because it never considers words’polysemy and the relationship between bag-of-words in keywords.To solve the above problem,Semantic Featured Convolution Neural Networks(SF-CNN)is proposed to obtain the key relationships among the searching keywords and build a structure for matching the words for retrieving correct text documents.The proposed SF-CNN is based on deep semantic-based bag-of-word representation for document retrieval.Traditional deep learning methods such as Convolutional Neural Network and Recurrent Neural Network never use semantic representation for bag-of-words.The experiment is performed with different document datasets for evaluating the performance of the proposed SF-CNN method.SF-CNN classifies the documents with an accuracy of 94%than the traditional algorithms.
基金supported by the National Key R&D Program of China(2017YFB0702800)National Natural Science Foundation of China(21802168,21503280,21603277)China Petrochemical Corporation(Sinopec Group)~~
文摘In this contribution,we report the cooperative structure-directing effect of choline hydroxide and aluminosilicate*BEA zeolite in the synthesis of aluminogermanosilicate IWR zeolites for the first time.*BEA zeolites,at variance with any other aluminosilicate zeolites,can serve as heterogeneous seeds for the growth of IWR zeolites and play a cooperative structure-directing role.The crystallization process was investigated using multiple techniques to characterize a series of solid products obtained with various crystallization times.The experiments clearly showed the dissolution of the*BEA zeolite and of an intermediate CDO-type structure.A plausible mechanism for the novel cooperative synthesis has been proposed.The crystallization of the IWR zeolite involves several steps,among which the crucial one is believed to be the reassembly of the building units produced from the decomposition of*BEA zeolite seeds,induced by choline molecules.Having similar structure and common building units(four-,five-,and six-membered rings)with the IWR zeolite,the*BEA zeolite is capable of promoting the reassembly of the building units and can thus play a cooperative structure-directing role.By highlighting the cooperative structure-directing effect of organic molecules and heterogeneous seeds,this study opens up new perspectives for the synthesis of target zeolites that are difficult to prepare by traditional methods.This new synthetic route is also expected to shed light on the discovery of novel zeolites.
基金Supported by the National Natural Science Foundation of China(52070119)Key Laboratory of Financial Mathematics of Fujian Province University(Putian University)(JR201801).
文摘This paper extends the criterion of the misclassification ratio of discriminant model and presents a new selection method of discriminant model.For selecting the discriminant model,this method establishes the rule of misclassification degree ratio through misclassification ratio of the discriminant model and misclassification degree of the samples.To test the effect of this method,this work uses seven UCI data sets.Numerical experiments on these examples indicate that this method has certain rationality and has a better effect to select a discriminant model.
基金This research work was funded by National Key Projects on Basic Research and Development (The "973" Project, No. 2002CB211800).
文摘Two oxetane-derived monomers, 3-(2-cyano-ethoxy)methyl- and 3-(methoxy-(triethylenoxy))methyl-3'- methyloxetane (COX and MTOX), were prepared from 3-hydroxymethyl-3'-methyloxetane. Their homo- and copolymerization in solution were carried out by the cationic ring-opening polymerization with BF3 · Et2O and 1,4-butanediol as co-initiator. The molecular weight and molecular weight distribution were determined using GPC so as to reveal the competition and interchange between active chain end (ACE) and activated monomer (AM) mechanism in the process. The reactivity ratios of the two monomers were calculated according to Kelen-Tudos using ^1H-NMR analysis. The influence of functional side chains in the monomers on the copolymerization behaviors was discussed in virtue of the reactivity ratio data. When doped with lithium salt LiTFSI, the ion conductivity of the homopolymer of MTOX reached 10^-3.58 S/cm at 30℃ and 10^-2.73 S/cm at 80℃, respectively, showing its potential to be used as polymer electrolyte for lithium ion battery.
基金Supported by the National Natural Science Foundation of China (20676012).
文摘Ferrocenium monocations as photoinitiators for cationic photopolymerization suffer from a limitation of low absorption and low reactivity under high-pressure Hg lamp. Here, a ferrocenium dication salt, biphenyl bis [π-cyclopentadienyl)iron] hexafluorophosphate ([bis(Cp-Fe)-biphenyl] (PF6)2 was synthesized by the ligand exchange reaction between ferrocene and biphenyl. The chemical structure was characterized with FTIR and ^1HNMR. The separation of ferrocenium monocation cyclopentadien-iron-biphenyl hexafluorophosphate ([Cp-Fe-biphenyl] PF6) and dication [bis(Cp-Fe)-biphenyl] (PF6)2 was carried out by column chromatography. The photoactivity of initiating photopolyinerization of epoxide ER14221 was studied as a cationic photoinitiator. [Bis(Cp-Fe)-biphenyl] (PF6)2 can efficiently absorb radiation above 300nm and its photoactivity is higher than that of its monocation.
文摘Object detection and classification are the trending research topics in thefield of computer vision because of their applications like visual surveillance.However,the vision-based objects detection and classification methods still suffer from detecting smaller objects and dense objects in the complex dynamic envir-onment with high accuracy and precision.The present paper proposes a novel enhanced method to detect and classify objects using Hyperbolic Tangent based You Only Look Once V4 with a Modified Manta-Ray Foraging Optimization-based Convolution Neural Network.Initially,in the pre-processing,the video data was converted into image sequences and Polynomial Adaptive Edge was applied to preserve the Algorithm method for image resizing and noise removal.The noiseless resized image sequences contrast was enhanced using Contrast Limited Adaptive Edge Preserving Algorithm.And,with the contrast-enhanced image sequences,the Hyperbolic Tangent based You Only Look Once V4 was trained for object detection.Additionally,to detect smaller objects with high accuracy,Grasp configuration was observed for every detected object.Finally,the Modified Manta-Ray Foraging Optimization-based Convolution Neural Network method was carried out for the detection and the classification of objects.Comparative experiments were conducted on various benchmark datasets and methods that showed improved accurate detection and classification results.
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(No.2020R1I1A3068274),Received by Junho Ahn.https://www.nrf.re.kr/supported by the Korea Agency for Infrastructure Technology Advancement(KAIA)by the Ministry of Land,Infrastructure and Transport under Grant(No.22QPWO-C152223-04),Received by Chulsu Kim.https://www.kaia.re.kr/.
文摘Existingfirefighting robots are focused on simple storage orfire sup-pression outside buildings rather than detection or recognition.Utilizing a large number of robots using expensive equipment is challenging.This study aims to increase the efficiency of search and rescue operations and the safety offirefigh-ters by detecting and identifying the disaster site by recognizing collapsed areas,obstacles,and rescuers on-site.A fusion algorithm combining a camera and three-dimension light detection and ranging(3D LiDAR)is proposed to detect and loca-lize the interiors of disaster sites.The algorithm detects obstacles by analyzingfloor segmentation and edge patterns using a mask regional convolutional neural network(mask R-CNN)features model based on the visual data collected from a parallelly connected camera and 3D LiDAR.People as objects are detected using you only look once version 4(YOLOv4)in the image data to localize persons requiring rescue.The point cloud data based on 3D LiDAR cluster the objects using the density-based spatial clustering of applications with noise(DBSCAN)clustering algorithm and estimate the distance to the actual object using the center point of the clustering result.The proposed artificial intelligence(AI)algorithm was verified based on individual sensors using a sensor-mounted robot in an actual building to detectfloor surfaces,atypical obstacles,and persons requiring rescue.Accordingly,the fused AI algorithm was comparatively verified.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金Supported by the National Natural Science Foundation of China(No.41776177)the Qingdao Marine Science and Technology Pilot National Laboratory Fund(Nos.2016ASKJ14,QNLM2016ORP0403)。
文摘Mussels are common anchoring organisms that adhere to the surfaces of various substrates with their byssus.The adhesion of mussel to substrates is contingent upon the presence of mussel foot proteins,of which Mytilus edulis foot protein-1(Mefp-1)has been identified as the most abundant protein.It has been found that lipids are involved in the mussel adhesion process and can facilitate Mefp-1adhesion.In this research,the adhesion behavior of Mefp-1 on various substrate surfaces under the effect of typical seawater cations with or without the presence of lipid were investigated using a quartz crystal microbalance with dissipation(QCM-D).Results indicate that the presence of cations Ca^(2+),Mg^(2+),Na^(+),and K^(+)leads to varying degrees of reduction in the adhesion performance of Mefp-1 on different substrates.The degree of this reduction,however,was much alleviated in the presence of palmitic acid,which is involved in the mussel adhesion process.Therefore,the involvement of palmitic acid is advantageous for mussel protein adhesion to the substrate surface in the marine environment.This study illustrated the significant contribution of palmitic acid to mussel adhesion,which can help to better understand biofouling mechanisms and develop biomimetic adhesive materials.
文摘Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts.
基金Funded by the National Natural Science Foundation of China(No.21865017)。
文摘The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.
文摘Combusting refuse for energy production is promising for their treatment and disposal. However, because of geographical constraints, there has not been a stable model for the energy utilization of refuse in low-oxygen plateau areas. This paper took Lhasa as an example to conduct gasification and incineration experiments on local representative combustible refuse,and relevant energy conversion laws were investigated. Results showed that under gasification and incineration modes, the energy conversion rate of any component of refuse can reach 75% and 85% in low-oxygen plateau areas at temperatures of 450 and 650 ℃, respectively, which were 5%–10% lower than those in plain areas. The regional distribution of energy conversion of refuse in Lhasa showed that the energy conversion rate under the gasification mode was 3%–5% lower than that of the incineration mode at 450 and 650 ℃. In terms of temperature, the energy conversion rates of refuse were 5%–10% lower at 450 ℃ than those at 650 ℃, but an energy conversion rate of more than 85% can still be achieved. Thus, gasification, incineration, or gasification-assisted secondary incineration at temperatures of at least 450 ℃ is suitable for energy recovery of refuse in low-oxygen plateau areas.
基金supported by the the National Key R&D Program of China(No.2021YFC2900800)National Natural Science Foundation of China(Nos.52425406,51874247,51922091,and 52204285)+4 种基金the Open Research Fund of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2001)Science and Technology Major Project of Ordos City-Iconic Innovation Team and “Rejuvenating Inner Mongolia through Science and Technology”(No.202204/2023)Yueqi Outstanding Scholar Award of CUMTB(No.202022)Funded by Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-05)Fundamental Research Funds for the Central Universities(Ph.D.Top Innovative Talents Fund of CUMT BBJ2024048)。
文摘Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.
基金financial support from Singapore Ministry of Education under its AcRF Tier 2 Grant No MOE-T2EP10123-0001Singapore National Research Foundation Investigatorship under Grant No NRF-NRFI08-2022-0009Academic Excellence Foundation of BUAA for PhD Students(applicant:Hongfei Xu).
文摘An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.
基金supported by the National Key Research and Development Program of China(2022YFB3805100)National Natural Science Foundation of China(22222812 and 22178330)+1 种基金Anhui Provincial Key Research and Development Plan(202104b11020030)Major Science and Technology Innovation Projects in Shandong Province(2022CXGC020415).
文摘Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a potential difference.However,the current SED process is limited by conventional commercial monovalent cation permselective membranes(MCPMs).This study systematically investigates the use of an independently developed MCPM in the SED process for acid recovery.Various factors such as current density,volume ratio,initial ion concentration,and waste acid systems are considered.The independently developed MCPM offers several advantages over the commercial monovalent selective cation-exchange membrane(CIMS),including higher recovered acid concentration,better ion flux ratio,improved acid recovery efficiency,increased recovered acid purity,and higher current efficiency.The SED process with the MCPM achieves a recovered acid of 95.9%and a concentration of 2.3 mol·L^(–1) in the HCl/FeCl_(2) system,when a current density of 20 mA·cm^(-2) and a volume ratio of 1:2 are applied.Similarly,in the H_(2)SO_(4)/FeSO_(4) system,a purity of over 99%and a concentration of 2.1 mol·L^(–1) can be achieved in the recovered acid.This study thoroughly examines the impact of operation conditions on acid recovery performance in the SED process.The independently developed MCPM demonstrates outstanding acid recovery performance,highlighting its potential for future commercial utilization.
文摘Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high-value-added chemicals or fuels.The design and modification of electrocatalysts have been widely implemented to improve their performance in these reactions.However,bottle-necks are encountered,making it challenging to further improve performance through catalyst development alone.Recently,cations in the electrolyte have emerged as critical factors for tuning both the activity and product selectivity of reduction reactions.This review summarizes recent advances in understanding the role of cation effects in electrocatalytic reduction reactions.First,we introduce the mechanisms underlying cation effects.We then provide a comprehensive overview of their application in electroreduction reactions.Characterization techniques and theoretical calcula-tion methods for studying cation effects are also discussed.Finally,we address remaining challeng-es and future perspectives in this field.We hope that this review offers fundamental insights and design guidance for utilizing cation effects,thereby advancing their development.