The anoxic decomposition and influence of carbon precursors on the properties of LiFePO_4/C prepared by using Fe_2O_3 were investigated.X-ray powder diffractometry,Fourier transform infrared spectroscopy(FTIR),scannin...The anoxic decomposition and influence of carbon precursors on the properties of LiFePO_4/C prepared by using Fe_2O_3 were investigated.X-ray powder diffractometry,Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM) and carbon content and charge–discharge tests were applied to the characterization of the as-synthesized cathodes.Partial carbon is lost in the anaerobic decomposition of organic precursors and a high hydrogen content leads to a high residual carbon rate.Pyromellitic anhydride and citric acid participate in reactions before and in ball-milling.All the chosen carbon precursors are capable of producing LiFePO_4 with high degree of crystallinity and purity.The carbon derived from α-D-glucose,pyromellitic anhydride,soluble starch,citric acid and polyacrylamide has a loose and porous texture in LiFePO_4/C which forms conduction on and between LiFePO_4 particles.LiFePO_4/C prepared by using α-D-glucose,pyromellitic anhydride,citric acid and sucrose exhibits appreciable electrochemical performance.Graphite alone is able to enhance the electrochemical performance of LiFePO_4 to a limited extent but incapable of preparing practical cathode.展开更多
The impregnation of a special grade PAN precursor,fibers wus carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical stncture and the mechani...The impregnation of a special grade PAN precursor,fibers wus carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical stncture and the mechanical properties of precursor fibers thermally stabilized and their resulting carbon fibers u'ere characterized by the combiination use of densities, wide-angle X-ray diffraction (WAXD), X-ray photoelectron speetroscopy (XPS), elemental analysis ( EA ), Fourier traasform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM), etc.KMnO4 as a strong oxidizer can swell, oxidize and corrode the skin of a precursor.fiber, and transform C≡N groups to C≡N ones, meamchile , it can decreuse the crystal .size increuse the orientation index and the costallinity index, furthermore it can increuse the densities of modified PAN precursors and resuhing thermally stabilized fibers. As a result, the carbon fibers developed from modified PAN fibers show an improvement in tensile strength of 31.25 % and an improvement in elongation of 77.78 % , but a decrease of 16. 52% in Young's modulus.展开更多
In this paper,two carbon-coated lithium titanate(LTO-C1 and LTO-C2)composites were synthesized using the ball-milling-assisted calcination method with different carbon precursor addition processes.The physical and ele...In this paper,two carbon-coated lithium titanate(LTO-C1 and LTO-C2)composites were synthesized using the ball-milling-assisted calcination method with different carbon precursor addition processes.The physical and electrochemical properties of the as-synthesized negative electrode materials were characterized to investigate the effects of two carbon-coated LTO synthesis processes on the electrochemical performance of LTO.The results show that the LTO-C2 synthesized by using Li2CO3 and TiO2 as the raw materials and sucrose as the carbon source in a one-pot method has less polarization during lithium insertion and extraction,minimal charge transfer impedance value and the best electrochemical performance among all samples.At the current density of 300 mA·h·g^(-1),the LTO-C2 composite delivers a charge capacity of 126.9 mA·h·g^(-1),and the reversible capacity after 300 cycles exceeds 121.3 mA·h·g^(-1) in the voltage range of 1.0–3.0 V.Furthermore,the electrochemical impedance spectra show that LTO-C2 has higher electronic conductivity and lithium diffusion coefficient,which indicates the advantages in electrode kinetics over LTO and LTO-C1.The results clarify the best electrochemical properties of the carbon-coated LTO-C2 composite prepared by the one-pot method.展开更多
Two different PAN precursors with various comonomers were wet-spun. The properties and structurul changes of PAN precursors and their evolution during preoxidation and carbonization process were characterized by the u...Two different PAN precursors with various comonomers were wet-spun. The properties and structurul changes of PAN precursors and their evolution during preoxidation and carbonization process were characterized by the use of DSC , FTIR and traditional parameters, e g, tensile strength. It is demonstrated that acrylamide( AAM ) is very effective to make the DSC peak be separated compared to methyl acrylate ( MA ). As a result, carbon fibers developed from AAM-contained precursors have a better tenacity compared to those developed from MAcontained ones.展开更多
Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers ...Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers displayed double separated peaks and these fibers were of high quality because of their process stability during their conversion to carbon fibers of high performance. Some fabrication processes, such as spinning, drawing, could not apparently change the DSC features of a PAN precursor fiber. It was concluded that the thermal properties of a PAN precursor fiber was mainly determined from its comonomer content type and compositions.展开更多
A simple growth technique of carbon nanotubes (CNTs) by combustion of ethanol was developed. In the experiment, copper plate was employed as substrate, nickel nitrate (Ni(NO3)2) and nickel chloride (NiCl2) as catalyst...A simple growth technique of carbon nanotubes (CNTs) by combustion of ethanol was developed. In the experiment, copper plate was employed as substrate, nickel nitrate (Ni(NO3)2) and nickel chloride (NiCl2) as catalyst precursor, and ethanol as carbon source. The cleaned copper substrate was dipped into catalyst precursor solution for mounting catalyst precursor particles. The dip-coated substrate was then placed into ethanol flame for about 10 min after drying. The black wool-like production grown on copper plate was obtained. This route is called an ethanol catalytic combustion(ECC) process. The black powders were characterized by means of scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive X-ray spectrometer(EDS) and Raman spectroscopy. The results show that the techique is much simpler and more economical to meet the future broader applications.展开更多
Thermal mechanical analysis,FT-IR,WAXD and some conventional measurements,such as densities and mechanical properties,were used to characterize the effect of the modification using KMnO4 and SnCl4 on the thermal mecha...Thermal mechanical analysis,FT-IR,WAXD and some conventional measurements,such as densities and mechanical properties,were used to characterize the effect of the modification using KMnO4 and SnCl4 on the thermal mechanical behaviors and structural changes during the process of thermal stabilization of modified PAN precursors.Compared to the unmodified original PAN precursors,some conclusions were drawn that the thermal stabilization starts at a lower temperature for modified PAN fibers,for example,the peak of thermal stress changes for modified PAN precursors using KMnO4 displays a decrease of 20℃ and a increase of 30% in the ultimate thermal stress,that chemical modification makes structural transformation perfect and increases by 25% of the thermal stress at the temperature range of 230℃-300℃,that the modified PAN fibers display an increase of 100% in the thermal strain,once after pre-oxidized,show an increase of 7.8% in orientation index,and a decrease of 9.9% in crystal size for identical preload in the region of 13.1-14.5MPa.It was also concluded that the modification using SnCl4 would alleviate the changes in physical and chemical stress regimes and result in improvement in structure and decrease in defects.展开更多
Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning e...Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning electron microscope (SEM), density method and optical microscope were used to characterize the preoxidation extent. A conventional approach, e.g., density aim, to evaluate the extent of preoxidation is not very exact. A DSC curve of a PAN precursor only can provide general information, major in the temperature regime of preoxidation reaction. However, the evaluation of a preoxidation extent, especially from conventional preoxidation temperature with a great span regime of 200~400癈, is put forward in this paper, in which the evolution of core/shell morphological structure is a kind of straightforward evidence.展开更多
A novel catalyst precursor, La2NiO4, was investigated to synthesize carbon nanotubes,obtained from catalytic disproportionation of CO. The morphology of carbon nanotubes has been examined by TEM (transmission electro...A novel catalyst precursor, La2NiO4, was investigated to synthesize carbon nanotubes,obtained from catalytic disproportionation of CO. The morphology of carbon nanotubes has been examined by TEM (transmission electron micrograph) and SEM (scaning electron micrograph). It was observed that the Ni nano-particle size formed at different reducing temperatures was a key factor to the yield and diameter of carbon nanotubes.展开更多
基金Project(2010ZC051)supported by Natural Science Foundation of Yunnan Province,ChinaProject(20140439)supported by Analysis and Testing Foundation of Kuming University of Science and Technology,ChinaProject(14118245)supported by the Starting Research Fund from Kunming University of Science and Technology,China
文摘The anoxic decomposition and influence of carbon precursors on the properties of LiFePO_4/C prepared by using Fe_2O_3 were investigated.X-ray powder diffractometry,Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM) and carbon content and charge–discharge tests were applied to the characterization of the as-synthesized cathodes.Partial carbon is lost in the anaerobic decomposition of organic precursors and a high hydrogen content leads to a high residual carbon rate.Pyromellitic anhydride and citric acid participate in reactions before and in ball-milling.All the chosen carbon precursors are capable of producing LiFePO_4 with high degree of crystallinity and purity.The carbon derived from α-D-glucose,pyromellitic anhydride,soluble starch,citric acid and polyacrylamide has a loose and porous texture in LiFePO_4/C which forms conduction on and between LiFePO_4 particles.LiFePO_4/C prepared by using α-D-glucose,pyromellitic anhydride,citric acid and sucrose exhibits appreciable electrochemical performance.Graphite alone is able to enhance the electrochemical performance of LiFePO_4 to a limited extent but incapable of preparing practical cathode.
基金Founded by the National Natural Science Foundation of China(No.50333070)
文摘The impregnation of a special grade PAN precursor,fibers wus carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical stncture and the mechanical properties of precursor fibers thermally stabilized and their resulting carbon fibers u'ere characterized by the combiination use of densities, wide-angle X-ray diffraction (WAXD), X-ray photoelectron speetroscopy (XPS), elemental analysis ( EA ), Fourier traasform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM), etc.KMnO4 as a strong oxidizer can swell, oxidize and corrode the skin of a precursor.fiber, and transform C≡N groups to C≡N ones, meamchile , it can decreuse the crystal .size increuse the orientation index and the costallinity index, furthermore it can increuse the densities of modified PAN precursors and resuhing thermally stabilized fibers. As a result, the carbon fibers developed from modified PAN fibers show an improvement in tensile strength of 31.25 % and an improvement in elongation of 77.78 % , but a decrease of 16. 52% in Young's modulus.
文摘In this paper,two carbon-coated lithium titanate(LTO-C1 and LTO-C2)composites were synthesized using the ball-milling-assisted calcination method with different carbon precursor addition processes.The physical and electrochemical properties of the as-synthesized negative electrode materials were characterized to investigate the effects of two carbon-coated LTO synthesis processes on the electrochemical performance of LTO.The results show that the LTO-C2 synthesized by using Li2CO3 and TiO2 as the raw materials and sucrose as the carbon source in a one-pot method has less polarization during lithium insertion and extraction,minimal charge transfer impedance value and the best electrochemical performance among all samples.At the current density of 300 mA·h·g^(-1),the LTO-C2 composite delivers a charge capacity of 126.9 mA·h·g^(-1),and the reversible capacity after 300 cycles exceeds 121.3 mA·h·g^(-1) in the voltage range of 1.0–3.0 V.Furthermore,the electrochemical impedance spectra show that LTO-C2 has higher electronic conductivity and lithium diffusion coefficient,which indicates the advantages in electrode kinetics over LTO and LTO-C1.The results clarify the best electrochemical properties of the carbon-coated LTO-C2 composite prepared by the one-pot method.
基金Funded bythe National Natural Science Foundation of China(No.50333070 and 50273002)
文摘Two different PAN precursors with various comonomers were wet-spun. The properties and structurul changes of PAN precursors and their evolution during preoxidation and carbonization process were characterized by the use of DSC , FTIR and traditional parameters, e g, tensile strength. It is demonstrated that acrylamide( AAM ) is very effective to make the DSC peak be separated compared to methyl acrylate ( MA ). As a result, carbon fibers developed from AAM-contained precursors have a better tenacity compared to those developed from MAcontained ones.
基金supported by the National Natural Science Foundation of China under grant No.59783002by the Natural Science Foundation of Henan under grant Nos.200510465008 and 0523021200.
文摘Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers displayed double separated peaks and these fibers were of high quality because of their process stability during their conversion to carbon fibers of high performance. Some fabrication processes, such as spinning, drawing, could not apparently change the DSC features of a PAN precursor fiber. It was concluded that the thermal properties of a PAN precursor fiber was mainly determined from its comonomer content type and compositions.
基金Project (KM200510772013) supported by the Science and Technology Development Program of Education Committee of Beijing City Project (2005-2007) supported by Academic Innovative Team Program (Novel Sensor and Materials: Nanodevice and Nanomaterials) of Education Committee of Beijing City
文摘A simple growth technique of carbon nanotubes (CNTs) by combustion of ethanol was developed. In the experiment, copper plate was employed as substrate, nickel nitrate (Ni(NO3)2) and nickel chloride (NiCl2) as catalyst precursor, and ethanol as carbon source. The cleaned copper substrate was dipped into catalyst precursor solution for mounting catalyst precursor particles. The dip-coated substrate was then placed into ethanol flame for about 10 min after drying. The black wool-like production grown on copper plate was obtained. This route is called an ethanol catalytic combustion(ECC) process. The black powders were characterized by means of scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive X-ray spectrometer(EDS) and Raman spectroscopy. The results show that the techique is much simpler and more economical to meet the future broader applications.
基金HAIPURT (No2006KYCX009)National Natural Science Foundation of Henan,China (No200510465008)Henan Innovation Project of China(No0523021300)
文摘Thermal mechanical analysis,FT-IR,WAXD and some conventional measurements,such as densities and mechanical properties,were used to characterize the effect of the modification using KMnO4 and SnCl4 on the thermal mechanical behaviors and structural changes during the process of thermal stabilization of modified PAN precursors.Compared to the unmodified original PAN precursors,some conclusions were drawn that the thermal stabilization starts at a lower temperature for modified PAN fibers,for example,the peak of thermal stress changes for modified PAN precursors using KMnO4 displays a decrease of 20℃ and a increase of 30% in the ultimate thermal stress,that chemical modification makes structural transformation perfect and increases by 25% of the thermal stress at the temperature range of 230℃-300℃,that the modified PAN fibers display an increase of 100% in the thermal strain,once after pre-oxidized,show an increase of 7.8% in orientation index,and a decrease of 9.9% in crystal size for identical preload in the region of 13.1-14.5MPa.It was also concluded that the modification using SnCl4 would alleviate the changes in physical and chemical stress regimes and result in improvement in structure and decrease in defects.
基金the National Natural Science Foundatlon of China under grant No.50172004,50273002 ,50333070.
文摘Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning electron microscope (SEM), density method and optical microscope were used to characterize the preoxidation extent. A conventional approach, e.g., density aim, to evaluate the extent of preoxidation is not very exact. A DSC curve of a PAN precursor only can provide general information, major in the temperature regime of preoxidation reaction. However, the evaluation of a preoxidation extent, especially from conventional preoxidation temperature with a great span regime of 200~400癈, is put forward in this paper, in which the evolution of core/shell morphological structure is a kind of straightforward evidence.
文摘A novel catalyst precursor, La2NiO4, was investigated to synthesize carbon nanotubes,obtained from catalytic disproportionation of CO. The morphology of carbon nanotubes has been examined by TEM (transmission electron micrograph) and SEM (scaning electron micrograph). It was observed that the Ni nano-particle size formed at different reducing temperatures was a key factor to the yield and diameter of carbon nanotubes.