A field experiment was conducted to evaluate the effects of self-developed full-element bio-organic fertilizer on the growth,yield,and rhizosphere soil nutrients of pepper.Four treatments were designed,including full-...A field experiment was conducted to evaluate the effects of self-developed full-element bio-organic fertilizer on the growth,yield,and rhizosphere soil nutrients of pepper.Four treatments were designed,including full-element bio-organic fertilizer+conventional fertilizer reduced by 50%(T1),inactivated full-element bio-organic fertilizer+conventional fertilizer reduced by 50%(T2),conventional fertilizer(T3),and no fertilizer(CK).The results showed that T1 significantly increased the plant height,crown width,fruit number per plant,and yield of pepper.T1 had higher pH value,total nitrogen,total phosphorus,total potassium,available nitrogen,available phosphorus,and available potassium in the rhizosphere soil than T3 and CK,and it had higher available phosphorus and available potassium than T2.The disease index of bacterial wilt in T1 was 21.74,which was 10.37,20.19,and 35.48 lower than T2,T3,and CK,respectively.The control effect of T1 reached 56.71%.The above results indicated that whole bio-organic fertilizer promoted the growth to improve the yield and benefit of pepper.Moreover,the fertilizer activated soil nutrients to improve soil fertility and reduced soil-borne diseases.Therefore,the full-element bio-organic fertilizer can be promoted in the pepper fields with continuous cropping obstacles.展开更多
[Objective] This study aimed to investigate the effects of seaweed bio-or- ganic fertilizer on yield and quality of winter wheat. [Method] Seaweed bio-organic fertilizer was applied to leaves of winter wheat according...[Objective] This study aimed to investigate the effects of seaweed bio-or- ganic fertilizer on yield and quality of winter wheat. [Method] Seaweed bio-organic fertilizer was applied to leaves of winter wheat according to the dose of 45 kg/hm^2 from jointing stage to maturing stage, and plant height, dry matter accumulation, flag leaf photosynthetic characteristics and grain yield of winter wheat were investigated. [Result] Foliar spraying of seaweed bio-organic fertilizer showed little effect on plant height of winter wheat, thickened stems, promoted dry matter accumulation, in- creased flag leaf photosynthetic rate by 3.16%, and increased yield of winter wheat by 6.85%. [Conclusion] Foliar spraying of seaweed bio-organic fertilizer promoted the intelligent growth, thickened the stems, improved the lodging resistance, significantly increased the panicle weight per plant, and increased the bulk density of winter wheat, as well as improving the physical quality of wheat grain. In addition, foliar spraying of seaweed bio-organic fertilizer promoted the synthesis of chlorophyll and mitigated the decomposition of chlorophyll in winter wheat. Under the background of fertilizer-pesticide double reduction, the test results and data of this study can be promoted in the wheat-growing areas of Shandong Province and even whole China.展开更多
[Objective] This study aimed to investigate the characteristics of bio-organic fertilizer and its effect when applied to peach.[Method] Through launching demonstration trial on the application of bio-organic fertilize...[Objective] This study aimed to investigate the characteristics of bio-organic fertilizer and its effect when applied to peach.[Method] Through launching demonstration trial on the application of bio-organic fertilizer in the major fruit producing areas in Liaoning Province,the effects of bio-organic fertilizer on peach growth and soil were investigated.[Results] After application of bio-organic fertilizer,both the peach yield and fruit quality were improved to some extent,of which yields was increased by 16.4% compared with the control,and vitamin C and total sugar contents were also significantly increased; application of bio-organic fertilizer also improved the contents of total nitrogen,rapidly available phosphorus,available potassium and organic matter in soil,and reduced the soil volume weight.[Conclusion] Bioorganic fertilizer can significantly improve fruit yield and quality,as well as improving orchard soil and protecting the environment,thus possessing a bright application prospect in the production of green fruits.展开更多
[Objective] This study aimed to investigate the effects of liquid seaweed bio-organic fertilizer on seed germination and seedling growth of different vegetables. [Method] Serial dilution concentrations of liquid seawe...[Objective] This study aimed to investigate the effects of liquid seaweed bio-organic fertilizer on seed germination and seedling growth of different vegetables. [Method] Serial dilution concentrations of liquid seaweed bio-organic fertilizer were prepared for seed soaking and pot incubation of cucumber, tomato and chili, to ob- serve the effects of liquid seaweed bio-organic fertilizer on seed germination and seedling growth of vegetables. [Result] Compared with the control, germination rate of cucumber and tomato seeds applied with 600-fold liquid seaweed bio-organic fer- tilizer varied significantly; germination rate of chili seeds applied with 400-fold liquid seaweed bio-organic fertilizer varied significantly; germination energy and germination index of chili seeds applied with different dilution concentrations of liquid seaweed bio-organic fertilizer presented no significant differences. In addition, 200-fold and 400-fold liquid seaweed bio-organic fertilizer significantly improved the root length, plant height, plant fresh weight, plant dry weight, chlorophyll content and leaf area of cucumber, tomato and chili seedlings; after treated with 600-fold liquid seaweed bio-organic fertilizer, root length, chlorophyll content and leaf area of cucumber seedlings varied significantly compared with the control, but no significant differences were observed in plant height, plant fresh weight and plant dry weight; after treated with 600-fold liquid seaweed bio-organic fertilizer, root length, chlorophyll content, plant height, plant fresh weight and plant dry weight of chili and tomato varied sig- nificantly compared with the control, but no significant differences were observed in leaf area. [Conclusion] Soaking vegetable seeds with liquid seaweed bio-organic fer- tilizer can significantly improve seed generation rate and seedling growth.展开更多
In this study, the effects of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt on soil microbial communities and disease resist- ance of tobacco were investigated by field experiment. T...In this study, the effects of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt on soil microbial communities and disease resist- ance of tobacco were investigated by field experiment. The results showed that the incidence of tobacco bacterial wilt in bio-organic fertilizer treatments (T3 and T4) decreased remarkably among four treatments in the field. Compared with the local conventional fertilization group, the incidence of tobacco bacterial wilt was re- duced by 21.9% and 25.0% in T3 and T4, respectively ; the yield of flue-cured tobacco was improved by 5.7% and 5.3%, respectively ; the proportion of mid- high grade tobacco leaves increased by 2.3% and 2.6%, respectively. After application of bio-organie fertilizer with antagonistic bacteria against tobacco bacterial wilt, rhizosphere soil microbial communities exhibited vast amount and abundant species ; the amount of rhizosphere soil bacteria of infected tobacco plants was im- proved by 218.5% with fewer species. It could be concluded that the application of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt could improve the ecological environment of tobacco field, inhibit the growth of pathogenic bacteria, decrease the incidence of tobacco bacterial wilt, and enhance the quality of flue-cured tobacco. This study laid the foundation for further ecological prevention and control of soil-borne diseases of tobacco.展开更多
Through the application of bio-organic fertilizer on Chuanzhuo 16, the re- sults showed that the yield could reach 185.23 kg in treatment with bio-organic fer- tilizer, 40.22 kg more than the conventional fertilizatio...Through the application of bio-organic fertilizer on Chuanzhuo 16, the re- sults showed that the yield could reach 185.23 kg in treatment with bio-organic fer- tilizer, 40.22 kg more than the conventional fertilization, and the yield increase rate reached up to 27.7%.展开更多
To explore the application effect of bio-organic fertilizer Kunyijian in flue-cured tobacco and provide scientific basis for its application in production,a plot trial was conducted with K326,a flue-cured tobacco vari...To explore the application effect of bio-organic fertilizer Kunyijian in flue-cured tobacco and provide scientific basis for its application in production,a plot trial was conducted with K326,a flue-cured tobacco variety,in the Science and Technology Test Base of Xundian County,Yunnan.Taking local fertilizer consumption(control 1)and 70%local fertilizer consumption(control 2)as controls,the following replacement groups were designed:under uniformly replacement 70%local fertilizer consumption,(i)organic fertilizer∶microbial agent=80∶1(kg),+600 kg/ha,+900 kg/ha,+1200 kg/ha,+1500 kg/ha Kunyijian;(ii)organic fertilizer∶microbial agent=40∶1(kg),+900 kg/ha Kunyijian.The results show that in the treatment of 70%local fertilizer consumption+1200 kg/ha Kunyijian[organic fertilizer∶microbial agent=80∶1(kg)],the comprehensive performance of flue-cured tobacco was significantly better than that in the control groups,the yield of tobacco leaves reached 2237.1 kg/ha,the output value was 45505.2 yuan/ha,and the average price of the tobacco leaves was 20.53 yuan/kg.The performance of flue-cured tobacco in the treatment of 70%local fertilizer consumption+1500 kg/ha Kunyijian ranked second.The performance of other fertilization treatments was not good,but it did not differ significantly from that of control 1.In terms of chemical composition of tobacco leaves,partial replacement of chemical fertilizer by bio-organic fertilizer Kunyijian,was beneficial to increase the sugar content and reduce the nicotine and total nitrogen contents in tobacco leaves,especially the treatment of 70%local fertilizer consumption+900 kg/ha Kunyijian[organic fertilizer∶microbial agent=80∶1(kg)],and it was also beneficial to increase the chlorine content in tobacco leaves,especially the treatment of 70%local fertilizer consumption+1500 kg/ha Kunyijian[organic fertilizer∶microbial agent=80∶1(kg)].Therefore,it is feasible to use the bio-organic fertilizer Kunyijian to replace 30%of chemical fertilizer in tobacco production.The rate is recommended to be 900-1500 kg/ha[organic fertilizer∶microbial agent=80∶1(kg)].It is suggested to further strengthen the demonstration and promotion of Kunyijian.展开更多
With strawberry as a test material,the effects of the bio-organic fertilizer containing high-efficiency nitrogen-fixing Bacillus amyloliquefaciens on nutrient contents in strawberry-planted soil,wilt occurrence and st...With strawberry as a test material,the effects of the bio-organic fertilizer containing high-efficiency nitrogen-fixing Bacillus amyloliquefaciens on nutrient contents in strawberry-planted soil,wilt occurrence and strawberry yield and quality were studied by a plot experiment,so as to provide reference for scientific use of the bio-organic fertilizer and green production of strawberry.The results showed that after hole-applying the bio-organic fertilizer at a rate of 22.5 t/hm^2,the contents of NH^+_4-N,available P,available K and organic matter did not change much with time;and when replacing 50%of chemical fertilizers with the bio-organic fertilizer at a rate of 11.25 t/hm^2(K_3),the contents of NH^+_4-N and available P in the soil did not change much with time,and the contents of available K and organic matter decreased slightly with time,but were both higher than the CK(the unfertilized treatment).Meanwhile,the disease index values of strawberry wilt disease in treatments K_2 and K_3were significantly lower than those of the CK and the conventional fertilization treatment(K_1),and the vitamin C contents of strawberry fruit in the two treatments were significantly higher than that of the CK.The yield determination showed that the cumulative yields of treatments K_2 and K_3 increased by 9.8% and 3.3%,respectively,and the increase rates of the early yields(before the Spring Festival)were 30.6% and 21.9%,respectively.Therefore,the application of the bio-organic fertilizer can replace chemical fertilizers,and can achieve the effects of reducing the occurrence of wilt,improving the early yield of fruit commodity and improving fruit quality.展开更多
Bio-organic fertilizer is a new type of fertilizer which have advantages of both organic manure and fertilizer. This study investigated the effects of bio-organic fertilizer on the growth and yield of cassava and the ...Bio-organic fertilizer is a new type of fertilizer which have advantages of both organic manure and fertilizer. This study investigated the effects of bio-organic fertilizer on the growth and yield of cassava and the soil fertility. The study was carried out in the period of 2004-2005 and the material was cassava cultivar FUXUAN01. The bio-organic fertilizers were applied as basic fertilizers on four different levels of 450 kg/hm^2, 600 kg/hm^2, 750 kg/hm^2, 900 kg/hm^2 in this experiment. The growth of stem and leaf, the yield of earthnut and the starch content of tuber root of cassava and the unit weight, the hole percent, the content of organic matters, nitrogen, phosphorus and potassium, microbes, the activity of soil urease and invertase were analyzed during the experiment. The results showed that not only can the bio-organic fertilizer promote the growth of cassava stems and leaves, increase the chlorophyll content and the photosynthesis of leaves, improve the physiological metabolism of cassava, and strengthen physiological function of anti-senility, promote the transformation from photosynthetic organism to tuber root and increase the yield and starch content in the tuber root of cassava, but also decrease the soil unit weight, increase the hole percent of soil, promote microbe activity in the soil, increase the activity of soil urease and invertase, promote the availability of nutrients, increase the content of organic matters, available nitrogen, phosphorus and potassium, and increase the utilization rate of fertilizer. It was an effective way to apply the bio-organic fertilizer to increase the yield and starch content in the tuber root of cassava, improving the physical and chemical characters of soil and increasing the soil fertility.展开更多
Rice (Oryza sativa) is becoming a staplefood in many regions of DR-Congo. However, its production is still limited to the North Eastern part of the country and grain yield is low. A study was carried out in the city o...Rice (Oryza sativa) is becoming a staplefood in many regions of DR-Congo. However, its production is still limited to the North Eastern part of the country and grain yield is low. A study was carried out in the city of Mbujimayi located in the Central part of the DR-Congo to assess the effects of organic and inorganic fertilizers on morpho-agronomic characteristics of O. sativa. The trial was conducted during the 2021 agricultural season A using a completely randomized design with three replicates. The six treatments studied consisted of application of T. diversifolia biomass at a dose of 2 kg/4m2 (BFT − 2 kg), 4 kg/4 m2 (BFT − 4 kg), inorganic fertilizer consisting with NPK17-17-17 + Urea (46% N) at a combined dose of 80 g/4 m2 (NP), 1/2 of the combination (BFT − 2 kg + NP) and finally 1/2 of the combination (BFT − 4 kg + NP). The untreated plots were used as controls. Plants treated with 1/2 combination (BFT − 4 kg + NP), BFT – 4 kg, and NP showed similar height (100.93 cm, 99.03 cm, and 98.63 cm, respectively) that were significantly higher than control and other treatments [1/2 (BFT – 2 kg + NP, BFT – 2 kg] For agronomic characteristics, days to 50% flowering varied between 73.00 and 74 days with an average of 74 days. The control and BFT – 4 kg showed significantly shorter panicles compared to other treatments. For yield components, 1/2 (BFT – 4 kg + NP) and the NP treatments generated a higher weight of 1000 grains. For yield per hectare, 1/2 (BFT − 4 kg + NP) induced significantly different levels of production than the control and other treatments, including 1/2 (BFT – 2 kg + NP), BFT – 4 kg + NP, BFT – 2 kg, BFT – 4 kg. The correlation coefficients between agronomic traits revealed that with the exception of the length of particle and the abortion rates, all the yield components (panicles per plant, seeds per panicle, weight of 1000 grains, and grail yield per plot) were strongly correlated with grain yield per hectare.展开更多
Citrus is an important commercial crop in Uganda, especially the Eastern region. However, in spite of the increasing regional demand, citrus productivity is still low, attributed to pest and diseases, soil moisture st...Citrus is an important commercial crop in Uganda, especially the Eastern region. However, in spite of the increasing regional demand, citrus productivity is still low, attributed to pest and diseases, soil moisture stress, and low soil fertility, among others. Efforts to improve soil fertility are limited by inadequate supply of organic fertilizers due to competing demands. In addition, there is inadequate information on inorganic fertilizer requirements for citrus production in Uganda. The objective of this study was to develop optimum fertilizer recommendations for citrus production for Eastern Uganda. The study was conducted in Teso region, Eastern Uganda. Fertilizer (NPK, 17:17:17) was randomly applied to Hamlin, Valencia and Washington varieties with fertilizer and variety factorially arranged for each farm and citrus age range, replicated three times. Fertilizer rates were 0, 139, 278 and 556 kg NPK/ha for the 4 - 7-year old trees, and 0, 278, 556 and 1111 kg NPK/ha for the mature (8 years and above) trees. For a given variety, each fertilizer rate was applied onto three representative trees per farmer, six farmers per district. Results showed that yields and net profits were highest for variety Hamlin, and nearly the same for varieties Washington and Valencia. Fertilizer application increased fruit yield and profits for both the 4 to 7-year and 8 and above-year-old trees, with highest yield and profitability values observed at 556 kg NPK/ha. These results suggest applying 556 kg NPK/ha to citrus per year as an optimum fertilizer rate for citrus production in Teso region. The fertilizer should be applied in smaller splits of 800, 600, and 600 grams per tree, applied in April, June, and August.展开更多
Chemical fertilizers are a source of soil degradation. In order to mitigate soil degradation and to face the negative impacts of climate change, the use of organic fertilizers, accessible to small farmers can maintain...Chemical fertilizers are a source of soil degradation. In order to mitigate soil degradation and to face the negative impacts of climate change, the use of organic fertilizers, accessible to small farmers can maintain the productivity of cereals including rice. The objective of this experiment is to study the effect of organo-mineral fertilizers on soil chemical properties, growth and physiology parameters and yield of rice. For this purpose, a completely randomized block design with three replications was adopted. Different organic (Fertinova, Organova and Fertinova + Organova) and mineral (NPK + Urea) fertilizers were applied to cultivate the NERICA L19 variety of rice. The soil chemical properties (pH), germination rate, growth, yield and physiological (chlorophyll content) parameters were assessed. The results revealed a germination rate of the grains varying between 87.5 and 100%. Fertinova and Fertinova + Organova had the highest germination rates. Soil pH decreased significantly from initial (6.71 ± 0.01) to final (5.73 ± 0.04) with the development cycle of the rice. Organo-mineral fertilizers influenced significantly (p = 5.36e−09) soil chemical properties by increasing pH (4%) compared to Control. Analysis of variance on growth and yield parameters, yield and chlorophyll content revealed a significant difference (p < 0.05) between fertilizers. Growth and yield parameters and yield were significantly higher in NPK and Fertinova + Organova than in Fertinova, Organova and Control. For the biomass the NPK + Urea recorded significantly highest biomass (488.28 ± 60.83 g). Leaves chlorophyll content varied significantly according to the daytime and the status of leaf development. The higher chlorophyll content was recorded at noon (27.96 ± 0.32 SPAD value) and with young leaves (30.21 ± 0.35 SPAD value). NPK + Urea (29.36 ± 0.45 SPAD value) and Fertinova (27.78 ± 0.40 SPAD value) favored more chlorophyll content in the rice leaves. Rice performed better in NPK + Urea and Fertinova + Organova fertilizers.展开更多
【Objectives】Si and microbial application could relieve the crop replanting problems(CRPs).We further studied the change of key microorganisms that are related to the beneficial effects,aiming at provide reference fo...【Objectives】Si and microbial application could relieve the crop replanting problems(CRPs).We further studied the change of key microorganisms that are related to the beneficial effects,aiming at provide reference for the manufacture and application of both microbial agents and Si fertilizer in food lily production.【Methods】A field experiment was conducted over a three-year period,from March 2019 to March 2022.The experimental field had been continuously cultivated with lily for 9 years.Three treatments were established:silicon fertilizer(SF),microbial agents(“Special 8^(TM)”,MF),and combined application of silicon fertilizer and microbial agents(SMF).A control group with blank soil(CK)was also included.At seedling stage of Lanzhou lilies in 2020 and 2021,the shoot and bulb dry weight,and the plant height and stem diameter of Lanzhou lilies were investigated for calculation of seedling index.In July 2020,20 plants were selected in each plot,and root zone soils were sampled at a depth of 20 cm,10 cm away from the roots,and then mixed to form a composite sample.The soil available Si and organic matter content were analyzed,and the fungal community structure and some specific microbial groups in soils were determined with high-throughput sequencing of ITS.【Results】All the three treatments significantly enhanced the lily plant growth and the seedling index,compared to CK.Besides,SF and MF treatments increased the relative abundances(RA)and diversity of fungal communities,and altered the community structures.The RA of some specific groups were found to be significantly correlated with the seedling index and/or soil available Si.Of them,the RA of the genera Fusarium,Dactylonectria,Humicola,Stilbella,and the species Humicola_grisea showed a positive correlation,while that of the genera Mortierella,Stilbella,Holtermanniella,and the species Mortierella_fatshederae showed a negative correlation with seedling index.The genera Fusarium,Stilbella,the species Humicola_grisea,and Dactylonectria_estremocensis showed a positive correlation,while the genura Stilbella,and the species Mortierella fatshederae showed a negative correlation with available Si content.In the co-occurence network of top twenty fungal genera and top sixteen bacterial genera(RA>0.2%),Holtermanniella was the only genus that interacted with the bacteria and negatively correlated with bacterial genus Blastococcus.Holtermanniella was also the most densely connected genera,followed by the genus Fusarium,Didymella and Humicola.In addition,the genus Holtermanniella was the key species connecting fungal and bacterial community in soil.Fungal functional prediction revealed that SF,MF and SMF treatments decreased plant pathogens guilds and increased the beneficial guilds Ectomycorrhizal,plant saprophyte,leaf saprophyte,and arbuscular mycorrhizal compared to CK.【Conclusions】Combined application of silicon fertilizer and microbial agents can alleviate continuous replanting problems of Lanzhou lilies through restoring the fungal community diversity,and promoting plant residue depredation,thus reducing soil born disease incidence.The beneficial genus Humicola and its one species H.grisea acts as bioconversion,and the genus Acremonium acts as plant pathogen inhibitor.展开更多
Synthetic fertilizers are widely used to address the urgent challenge of ensuring food supplies for a growing world population in the context of climate change. However, their industrial production and use in agricult...Synthetic fertilizers are widely used to address the urgent challenge of ensuring food supplies for a growing world population in the context of climate change. However, their industrial production and use in agriculture have a negative impact on the environment and consequently on human health. While chemical fertilizers may not have to be abandoned in agricultural production systems, limiting their use could help to make agriculture sustainable and resilient to climate change. In Senegal, the level of mineral fertilizers used in market gardening has become alarming in the Niayes area. As a result, microbial biotechnologies have been promoted for biofertilizer production of common bean (Phaseolus vulgaris L.) cultivation. Rhizobial inoculums have thus been used to reduce the rate of chemical nitrogen fertilizers being applied in cropping systems. Several investigations in the laboratory, on experimental stations and in the field have shown a possibility of a significant reduction in the use of nitrogen fertilizers in common bean production. Conventional mineral fertilization use can be reduced from over 120 kg N/ha to 20 kg N/ha. This contributes both to a very significant reduction in the application rate with the same level of yield and to an improvement in the standard of living. In addition, the environmental impact of using chemical fertilizers can be mitigated. This study is a contribution to the promotion of biofertilizers adoption in agricultural systems.展开更多
Organic fertilizers generally come from agricultural co-products. Their valuation is therefore a major issue for sustainable development. The main objective of this study aims to develop an organic fertilizer derived ...Organic fertilizers generally come from agricultural co-products. Their valuation is therefore a major issue for sustainable development. The main objective of this study aims to develop an organic fertilizer derived from moringa leaves and cocoa pod husks that can improve soil quality and plant growth. The experimental design consisted of completely randomized blocks in three repetitions. The experiment was carried out in five treatments: T0: no fertilization, T1: 100% cocoa pods, T2: 75% cocoa pods + 25% Moringa leaves;T3: 50% cocoa pods + 50% Moringa leaves;T4: 25% cocoa pods + 75% Moringa leaves;T5: 100% Moringa leaves. Three doses were applied: 1;2;4 kg/m2. The trial took place over three growing cycles. The results of the soil analysis compared to the control revealed a significant improvement in physicochemical parameters. Variation of pH from (6.1 to 7.2), calcium from (1.4 to 4.13), magnesium from (0.450 to 0.870), potassium from (0.096 to 0.365) cmol+/kg. Carbon and nitrogen were recorded (1.02% to 2.77%) and (0.12% to 2.56%) respectively. The CEC (cation exchange capacity) saw a clear improvement (4.2 to 9.03) cmol+/kg. Concerning the growth parameters, the control plants recorded an average height of (31.19 cm) while those that benefited from the treatments oscillated between (55.51 to 105.57 cm). In terms of production, the best yields are attributed to treatments T3 and T4 with (37.66 t/ha) and (51.176 t/ha) respectively. The T3 and T4 formulations could help improve the fertility of agricultural soils and the yield of market garden products such as eggplant.展开更多
This study was carried out with the aim of investigating the effect of indigenous microorganism (IMO), effective (EM) and mineral fertilizers (NPK) on the yield and nutritional value of groundnut (Arachis hypogaea) in...This study was carried out with the aim of investigating the effect of indigenous microorganism (IMO), effective (EM) and mineral fertilizers (NPK) on the yield and nutritional value of groundnut (Arachis hypogaea) in Western Cameroon (Baboutcha-Fongam). The study was conducted during two consecutive years, using a completely randomized block design of 8 treatments repeated three times in each subblock. The sub-plots were enriched with 0, 10, 20 and 40 g corresponding to the treatment of EM and IMO respectively and 3.2 g of NPK in 2019. Subsequently, the best dose that resulted in excellent yields was repeated for the rest of the experiment in 2020. The yield parameters and nutritional value of the two varieties of Arachis hypogaea used in the two consecutive years increase with the contribution of the different doses compared to the control. Overall, a significant increase (p A. hypogaea plants fertilized with EM 20 g (2.15 ± 0.24 and 2.01 ± 0.23 t/ha) and plants fertilized with NPK 3.2 g (2.36 ± 0.65 and 2.04 ± 0.17 t/ha) was not significant. On the other hand, there was a significant difference (P ≤ 0.05) between plants fertilized with IMO 10 g (2.65 ± 0.17 and 2.24 ± 0.2 t/ha) and plants fertilized with EM 20 g and plants fertilized with NPK 3.2 g for both varieties during the two years combined. In addition to being local and therefore adapted to environmental conditions, IMOs could be a promising biological means for improving soil fertility in Cameroon.展开更多
Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency...Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency and serious environmental pollution.Deep placement of nitrogen fertilizer(DPNF)is an agronomic measure that shows promise in addressing these issues.This review aims to offer a comprehensive understanding of DPNF,beginning with a succinct overview of its development and methodologies for implementation.Subsequently,the optimal fertilization depth and influencing factors for different crops are analyzed and discussed.Additionally,it investigates the regulation and mechanism underlying the DPNF on crop development,yield,N use efficiency and greenhouse gas emissions.Finally,the review delineates the limitations and challenges of this technology and provides suggestions for its improvement and application.This review provides valuable insight and reference for the promotion and adoption of DPNF in agricultural practice.展开更多
To improve the yield and quality of rice grown on saline-alkali soil,a meta-analysis combined with micro-district experimental studies was conducted in China to examine the impact of humic acidbased organic fertilizer...To improve the yield and quality of rice grown on saline-alkali soil,a meta-analysis combined with micro-district experimental studies was conducted in China to examine the impact of humic acidbased organic fertilizer and chemical fertilizer on rice yield and quality.This study employed a two-factor fully randomized experimental design,incorporating four levels of humic acid(F0,0.0 g/pot;F1,4.8 g/pot;F2,12.0 g/pot;and F3,19.2 g/pot)and three levels of chemical fertilizer(A1,full conventional dosage;A2,85% of conventional dosage;and A3,70% of conventional dosage).The meta-analysis revealed that the application of organic fertilizer(at a rate of 1500‒3000 kg/hm^(2))combined with chemical fertilizer had a significantly positive effect on the theoretical yield,tiller number,partial factor productivity,and SPAD value of rice.Temperature,organic fertilizer application,and chemical fertilizer levels were identified as critical factors affecting rice yield.The micro-experiments demonstrated that the application of humic acid organic fertilizer with treatment F3 significantly elevated the SPAD value at the full heading and grain filling stages.Increased panicle number and seed-setting rate were the main contributors to the rise in yield,with the F3 treatment yielding the highest overall.The effective leaf area,high-efficiency leaf area,and dry matter accumulation in rice treated with F3 were all higher compared with the F0 treatment.Our findings indicated that the addition of humic acid organic fertilizer can markedly improve the partial factor productivity and agronomic efficiency of rice.In conclusion,the application of F3 organic fertilizer combined with A3 chemical fertilizer(F3A3)significantly increased the yield of saline-alkali rice,which was 6.62% higher than that of the F0A1 treatment,thereby validating the meta-analysis outcomes.We propose that the combined use of humic acid organic fertilizer and chemical fertilizer can promote the growth of rice in saline-alkali soils.Consequently,these management practices provide a means to foster the green and healthy development of rice in saline-alkali regions across China.展开更多
Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in t...Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.展开更多
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ...Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.展开更多
基金Supported by National Nature Science Foundation of China(32000047)Selecting the Best Candidates for Making Technological Breakthroughs in Hunan Province(2021NK1040)Natural Science Foundation of Changsha City(kq2208130)。
文摘A field experiment was conducted to evaluate the effects of self-developed full-element bio-organic fertilizer on the growth,yield,and rhizosphere soil nutrients of pepper.Four treatments were designed,including full-element bio-organic fertilizer+conventional fertilizer reduced by 50%(T1),inactivated full-element bio-organic fertilizer+conventional fertilizer reduced by 50%(T2),conventional fertilizer(T3),and no fertilizer(CK).The results showed that T1 significantly increased the plant height,crown width,fruit number per plant,and yield of pepper.T1 had higher pH value,total nitrogen,total phosphorus,total potassium,available nitrogen,available phosphorus,and available potassium in the rhizosphere soil than T3 and CK,and it had higher available phosphorus and available potassium than T2.The disease index of bacterial wilt in T1 was 21.74,which was 10.37,20.19,and 35.48 lower than T2,T3,and CK,respectively.The control effect of T1 reached 56.71%.The above results indicated that whole bio-organic fertilizer promoted the growth to improve the yield and benefit of pepper.Moreover,the fertilizer activated soil nutrients to improve soil fertility and reduced soil-borne diseases.Therefore,the full-element bio-organic fertilizer can be promoted in the pepper fields with continuous cropping obstacles.
基金Supported by Key Project of the National Twelfth Five-Year Research Program of China(2011BAD32B02)Crosswise Project of Shandong Shidai Marine Biological Technology(Weihai)Co.,Ltd.(2015-2017)~~
文摘[Objective] This study aimed to investigate the effects of seaweed bio-or- ganic fertilizer on yield and quality of winter wheat. [Method] Seaweed bio-organic fertilizer was applied to leaves of winter wheat according to the dose of 45 kg/hm^2 from jointing stage to maturing stage, and plant height, dry matter accumulation, flag leaf photosynthetic characteristics and grain yield of winter wheat were investigated. [Result] Foliar spraying of seaweed bio-organic fertilizer showed little effect on plant height of winter wheat, thickened stems, promoted dry matter accumulation, in- creased flag leaf photosynthetic rate by 3.16%, and increased yield of winter wheat by 6.85%. [Conclusion] Foliar spraying of seaweed bio-organic fertilizer promoted the intelligent growth, thickened the stems, improved the lodging resistance, significantly increased the panicle weight per plant, and increased the bulk density of winter wheat, as well as improving the physical quality of wheat grain. In addition, foliar spraying of seaweed bio-organic fertilizer promoted the synthesis of chlorophyll and mitigated the decomposition of chlorophyll in winter wheat. Under the background of fertilizer-pesticide double reduction, the test results and data of this study can be promoted in the wheat-growing areas of Shandong Province and even whole China.
文摘[Objective] This study aimed to investigate the characteristics of bio-organic fertilizer and its effect when applied to peach.[Method] Through launching demonstration trial on the application of bio-organic fertilizer in the major fruit producing areas in Liaoning Province,the effects of bio-organic fertilizer on peach growth and soil were investigated.[Results] After application of bio-organic fertilizer,both the peach yield and fruit quality were improved to some extent,of which yields was increased by 16.4% compared with the control,and vitamin C and total sugar contents were also significantly increased; application of bio-organic fertilizer also improved the contents of total nitrogen,rapidly available phosphorus,available potassium and organic matter in soil,and reduced the soil volume weight.[Conclusion] Bioorganic fertilizer can significantly improve fruit yield and quality,as well as improving orchard soil and protecting the environment,thus possessing a bright application prospect in the production of green fruits.
文摘[Objective] This study aimed to investigate the effects of liquid seaweed bio-organic fertilizer on seed germination and seedling growth of different vegetables. [Method] Serial dilution concentrations of liquid seaweed bio-organic fertilizer were prepared for seed soaking and pot incubation of cucumber, tomato and chili, to ob- serve the effects of liquid seaweed bio-organic fertilizer on seed germination and seedling growth of vegetables. [Result] Compared with the control, germination rate of cucumber and tomato seeds applied with 600-fold liquid seaweed bio-organic fer- tilizer varied significantly; germination rate of chili seeds applied with 400-fold liquid seaweed bio-organic fertilizer varied significantly; germination energy and germination index of chili seeds applied with different dilution concentrations of liquid seaweed bio-organic fertilizer presented no significant differences. In addition, 200-fold and 400-fold liquid seaweed bio-organic fertilizer significantly improved the root length, plant height, plant fresh weight, plant dry weight, chlorophyll content and leaf area of cucumber, tomato and chili seedlings; after treated with 600-fold liquid seaweed bio-organic fertilizer, root length, chlorophyll content and leaf area of cucumber seedlings varied significantly compared with the control, but no significant differences were observed in plant height, plant fresh weight and plant dry weight; after treated with 600-fold liquid seaweed bio-organic fertilizer, root length, chlorophyll content, plant height, plant fresh weight and plant dry weight of chili and tomato varied sig- nificantly compared with the control, but no significant differences were observed in leaf area. [Conclusion] Soaking vegetable seeds with liquid seaweed bio-organic fer- tilizer can significantly improve seed generation rate and seedling growth.
基金Supported by Project of Nanping Tobacco Monopoly Bureau(NYK2012-14-3)
文摘In this study, the effects of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt on soil microbial communities and disease resist- ance of tobacco were investigated by field experiment. The results showed that the incidence of tobacco bacterial wilt in bio-organic fertilizer treatments (T3 and T4) decreased remarkably among four treatments in the field. Compared with the local conventional fertilization group, the incidence of tobacco bacterial wilt was re- duced by 21.9% and 25.0% in T3 and T4, respectively ; the yield of flue-cured tobacco was improved by 5.7% and 5.3%, respectively ; the proportion of mid- high grade tobacco leaves increased by 2.3% and 2.6%, respectively. After application of bio-organie fertilizer with antagonistic bacteria against tobacco bacterial wilt, rhizosphere soil microbial communities exhibited vast amount and abundant species ; the amount of rhizosphere soil bacteria of infected tobacco plants was im- proved by 218.5% with fewer species. It could be concluded that the application of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt could improve the ecological environment of tobacco field, inhibit the growth of pathogenic bacteria, decrease the incidence of tobacco bacterial wilt, and enhance the quality of flue-cured tobacco. This study laid the foundation for further ecological prevention and control of soil-borne diseases of tobacco.
文摘Through the application of bio-organic fertilizer on Chuanzhuo 16, the re- sults showed that the yield could reach 185.23 kg in treatment with bio-organic fer- tilizer, 40.22 kg more than the conventional fertilization, and the yield increase rate reached up to 27.7%.
基金Key Project of Yunnan Branch of China National Tobacco Corporation(Research and Integrated Application of Key Techniques for Quality Promotion of Original Honghua Dajinyuan).
文摘To explore the application effect of bio-organic fertilizer Kunyijian in flue-cured tobacco and provide scientific basis for its application in production,a plot trial was conducted with K326,a flue-cured tobacco variety,in the Science and Technology Test Base of Xundian County,Yunnan.Taking local fertilizer consumption(control 1)and 70%local fertilizer consumption(control 2)as controls,the following replacement groups were designed:under uniformly replacement 70%local fertilizer consumption,(i)organic fertilizer∶microbial agent=80∶1(kg),+600 kg/ha,+900 kg/ha,+1200 kg/ha,+1500 kg/ha Kunyijian;(ii)organic fertilizer∶microbial agent=40∶1(kg),+900 kg/ha Kunyijian.The results show that in the treatment of 70%local fertilizer consumption+1200 kg/ha Kunyijian[organic fertilizer∶microbial agent=80∶1(kg)],the comprehensive performance of flue-cured tobacco was significantly better than that in the control groups,the yield of tobacco leaves reached 2237.1 kg/ha,the output value was 45505.2 yuan/ha,and the average price of the tobacco leaves was 20.53 yuan/kg.The performance of flue-cured tobacco in the treatment of 70%local fertilizer consumption+1500 kg/ha Kunyijian ranked second.The performance of other fertilization treatments was not good,but it did not differ significantly from that of control 1.In terms of chemical composition of tobacco leaves,partial replacement of chemical fertilizer by bio-organic fertilizer Kunyijian,was beneficial to increase the sugar content and reduce the nicotine and total nitrogen contents in tobacco leaves,especially the treatment of 70%local fertilizer consumption+900 kg/ha Kunyijian[organic fertilizer∶microbial agent=80∶1(kg)],and it was also beneficial to increase the chlorine content in tobacco leaves,especially the treatment of 70%local fertilizer consumption+1500 kg/ha Kunyijian[organic fertilizer∶microbial agent=80∶1(kg)].Therefore,it is feasible to use the bio-organic fertilizer Kunyijian to replace 30%of chemical fertilizer in tobacco production.The rate is recommended to be 900-1500 kg/ha[organic fertilizer∶microbial agent=80∶1(kg)].It is suggested to further strengthen the demonstration and promotion of Kunyijian.
文摘With strawberry as a test material,the effects of the bio-organic fertilizer containing high-efficiency nitrogen-fixing Bacillus amyloliquefaciens on nutrient contents in strawberry-planted soil,wilt occurrence and strawberry yield and quality were studied by a plot experiment,so as to provide reference for scientific use of the bio-organic fertilizer and green production of strawberry.The results showed that after hole-applying the bio-organic fertilizer at a rate of 22.5 t/hm^2,the contents of NH^+_4-N,available P,available K and organic matter did not change much with time;and when replacing 50%of chemical fertilizers with the bio-organic fertilizer at a rate of 11.25 t/hm^2(K_3),the contents of NH^+_4-N and available P in the soil did not change much with time,and the contents of available K and organic matter decreased slightly with time,but were both higher than the CK(the unfertilized treatment).Meanwhile,the disease index values of strawberry wilt disease in treatments K_2 and K_3were significantly lower than those of the CK and the conventional fertilization treatment(K_1),and the vitamin C contents of strawberry fruit in the two treatments were significantly higher than that of the CK.The yield determination showed that the cumulative yields of treatments K_2 and K_3 increased by 9.8% and 3.3%,respectively,and the increase rates of the early yields(before the Spring Festival)were 30.6% and 21.9%,respectively.Therefore,the application of the bio-organic fertilizer can replace chemical fertilizers,and can achieve the effects of reducing the occurrence of wilt,improving the early yield of fruit commodity and improving fruit quality.
文摘Bio-organic fertilizer is a new type of fertilizer which have advantages of both organic manure and fertilizer. This study investigated the effects of bio-organic fertilizer on the growth and yield of cassava and the soil fertility. The study was carried out in the period of 2004-2005 and the material was cassava cultivar FUXUAN01. The bio-organic fertilizers were applied as basic fertilizers on four different levels of 450 kg/hm^2, 600 kg/hm^2, 750 kg/hm^2, 900 kg/hm^2 in this experiment. The growth of stem and leaf, the yield of earthnut and the starch content of tuber root of cassava and the unit weight, the hole percent, the content of organic matters, nitrogen, phosphorus and potassium, microbes, the activity of soil urease and invertase were analyzed during the experiment. The results showed that not only can the bio-organic fertilizer promote the growth of cassava stems and leaves, increase the chlorophyll content and the photosynthesis of leaves, improve the physiological metabolism of cassava, and strengthen physiological function of anti-senility, promote the transformation from photosynthetic organism to tuber root and increase the yield and starch content in the tuber root of cassava, but also decrease the soil unit weight, increase the hole percent of soil, promote microbe activity in the soil, increase the activity of soil urease and invertase, promote the availability of nutrients, increase the content of organic matters, available nitrogen, phosphorus and potassium, and increase the utilization rate of fertilizer. It was an effective way to apply the bio-organic fertilizer to increase the yield and starch content in the tuber root of cassava, improving the physical and chemical characters of soil and increasing the soil fertility.
文摘Rice (Oryza sativa) is becoming a staplefood in many regions of DR-Congo. However, its production is still limited to the North Eastern part of the country and grain yield is low. A study was carried out in the city of Mbujimayi located in the Central part of the DR-Congo to assess the effects of organic and inorganic fertilizers on morpho-agronomic characteristics of O. sativa. The trial was conducted during the 2021 agricultural season A using a completely randomized design with three replicates. The six treatments studied consisted of application of T. diversifolia biomass at a dose of 2 kg/4m2 (BFT − 2 kg), 4 kg/4 m2 (BFT − 4 kg), inorganic fertilizer consisting with NPK17-17-17 + Urea (46% N) at a combined dose of 80 g/4 m2 (NP), 1/2 of the combination (BFT − 2 kg + NP) and finally 1/2 of the combination (BFT − 4 kg + NP). The untreated plots were used as controls. Plants treated with 1/2 combination (BFT − 4 kg + NP), BFT – 4 kg, and NP showed similar height (100.93 cm, 99.03 cm, and 98.63 cm, respectively) that were significantly higher than control and other treatments [1/2 (BFT – 2 kg + NP, BFT – 2 kg] For agronomic characteristics, days to 50% flowering varied between 73.00 and 74 days with an average of 74 days. The control and BFT – 4 kg showed significantly shorter panicles compared to other treatments. For yield components, 1/2 (BFT – 4 kg + NP) and the NP treatments generated a higher weight of 1000 grains. For yield per hectare, 1/2 (BFT − 4 kg + NP) induced significantly different levels of production than the control and other treatments, including 1/2 (BFT – 2 kg + NP), BFT – 4 kg + NP, BFT – 2 kg, BFT – 4 kg. The correlation coefficients between agronomic traits revealed that with the exception of the length of particle and the abortion rates, all the yield components (panicles per plant, seeds per panicle, weight of 1000 grains, and grail yield per plot) were strongly correlated with grain yield per hectare.
文摘Citrus is an important commercial crop in Uganda, especially the Eastern region. However, in spite of the increasing regional demand, citrus productivity is still low, attributed to pest and diseases, soil moisture stress, and low soil fertility, among others. Efforts to improve soil fertility are limited by inadequate supply of organic fertilizers due to competing demands. In addition, there is inadequate information on inorganic fertilizer requirements for citrus production in Uganda. The objective of this study was to develop optimum fertilizer recommendations for citrus production for Eastern Uganda. The study was conducted in Teso region, Eastern Uganda. Fertilizer (NPK, 17:17:17) was randomly applied to Hamlin, Valencia and Washington varieties with fertilizer and variety factorially arranged for each farm and citrus age range, replicated three times. Fertilizer rates were 0, 139, 278 and 556 kg NPK/ha for the 4 - 7-year old trees, and 0, 278, 556 and 1111 kg NPK/ha for the mature (8 years and above) trees. For a given variety, each fertilizer rate was applied onto three representative trees per farmer, six farmers per district. Results showed that yields and net profits were highest for variety Hamlin, and nearly the same for varieties Washington and Valencia. Fertilizer application increased fruit yield and profits for both the 4 to 7-year and 8 and above-year-old trees, with highest yield and profitability values observed at 556 kg NPK/ha. These results suggest applying 556 kg NPK/ha to citrus per year as an optimum fertilizer rate for citrus production in Teso region. The fertilizer should be applied in smaller splits of 800, 600, and 600 grams per tree, applied in April, June, and August.
文摘Chemical fertilizers are a source of soil degradation. In order to mitigate soil degradation and to face the negative impacts of climate change, the use of organic fertilizers, accessible to small farmers can maintain the productivity of cereals including rice. The objective of this experiment is to study the effect of organo-mineral fertilizers on soil chemical properties, growth and physiology parameters and yield of rice. For this purpose, a completely randomized block design with three replications was adopted. Different organic (Fertinova, Organova and Fertinova + Organova) and mineral (NPK + Urea) fertilizers were applied to cultivate the NERICA L19 variety of rice. The soil chemical properties (pH), germination rate, growth, yield and physiological (chlorophyll content) parameters were assessed. The results revealed a germination rate of the grains varying between 87.5 and 100%. Fertinova and Fertinova + Organova had the highest germination rates. Soil pH decreased significantly from initial (6.71 ± 0.01) to final (5.73 ± 0.04) with the development cycle of the rice. Organo-mineral fertilizers influenced significantly (p = 5.36e−09) soil chemical properties by increasing pH (4%) compared to Control. Analysis of variance on growth and yield parameters, yield and chlorophyll content revealed a significant difference (p < 0.05) between fertilizers. Growth and yield parameters and yield were significantly higher in NPK and Fertinova + Organova than in Fertinova, Organova and Control. For the biomass the NPK + Urea recorded significantly highest biomass (488.28 ± 60.83 g). Leaves chlorophyll content varied significantly according to the daytime and the status of leaf development. The higher chlorophyll content was recorded at noon (27.96 ± 0.32 SPAD value) and with young leaves (30.21 ± 0.35 SPAD value). NPK + Urea (29.36 ± 0.45 SPAD value) and Fertinova (27.78 ± 0.40 SPAD value) favored more chlorophyll content in the rice leaves. Rice performed better in NPK + Urea and Fertinova + Organova fertilizers.
基金Key Research project of Gansu Province of China(22YF7NA108)National Natural Science Foundation of China(31860549)+1 种基金Industry Supporting Project from Education Department of Gansu Province(2023CYZC-49)Major Science and Technology project of Gansu province(24ZDNA006)。
文摘【Objectives】Si and microbial application could relieve the crop replanting problems(CRPs).We further studied the change of key microorganisms that are related to the beneficial effects,aiming at provide reference for the manufacture and application of both microbial agents and Si fertilizer in food lily production.【Methods】A field experiment was conducted over a three-year period,from March 2019 to March 2022.The experimental field had been continuously cultivated with lily for 9 years.Three treatments were established:silicon fertilizer(SF),microbial agents(“Special 8^(TM)”,MF),and combined application of silicon fertilizer and microbial agents(SMF).A control group with blank soil(CK)was also included.At seedling stage of Lanzhou lilies in 2020 and 2021,the shoot and bulb dry weight,and the plant height and stem diameter of Lanzhou lilies were investigated for calculation of seedling index.In July 2020,20 plants were selected in each plot,and root zone soils were sampled at a depth of 20 cm,10 cm away from the roots,and then mixed to form a composite sample.The soil available Si and organic matter content were analyzed,and the fungal community structure and some specific microbial groups in soils were determined with high-throughput sequencing of ITS.【Results】All the three treatments significantly enhanced the lily plant growth and the seedling index,compared to CK.Besides,SF and MF treatments increased the relative abundances(RA)and diversity of fungal communities,and altered the community structures.The RA of some specific groups were found to be significantly correlated with the seedling index and/or soil available Si.Of them,the RA of the genera Fusarium,Dactylonectria,Humicola,Stilbella,and the species Humicola_grisea showed a positive correlation,while that of the genera Mortierella,Stilbella,Holtermanniella,and the species Mortierella_fatshederae showed a negative correlation with seedling index.The genera Fusarium,Stilbella,the species Humicola_grisea,and Dactylonectria_estremocensis showed a positive correlation,while the genura Stilbella,and the species Mortierella fatshederae showed a negative correlation with available Si content.In the co-occurence network of top twenty fungal genera and top sixteen bacterial genera(RA>0.2%),Holtermanniella was the only genus that interacted with the bacteria and negatively correlated with bacterial genus Blastococcus.Holtermanniella was also the most densely connected genera,followed by the genus Fusarium,Didymella and Humicola.In addition,the genus Holtermanniella was the key species connecting fungal and bacterial community in soil.Fungal functional prediction revealed that SF,MF and SMF treatments decreased plant pathogens guilds and increased the beneficial guilds Ectomycorrhizal,plant saprophyte,leaf saprophyte,and arbuscular mycorrhizal compared to CK.【Conclusions】Combined application of silicon fertilizer and microbial agents can alleviate continuous replanting problems of Lanzhou lilies through restoring the fungal community diversity,and promoting plant residue depredation,thus reducing soil born disease incidence.The beneficial genus Humicola and its one species H.grisea acts as bioconversion,and the genus Acremonium acts as plant pathogen inhibitor.
文摘Synthetic fertilizers are widely used to address the urgent challenge of ensuring food supplies for a growing world population in the context of climate change. However, their industrial production and use in agriculture have a negative impact on the environment and consequently on human health. While chemical fertilizers may not have to be abandoned in agricultural production systems, limiting their use could help to make agriculture sustainable and resilient to climate change. In Senegal, the level of mineral fertilizers used in market gardening has become alarming in the Niayes area. As a result, microbial biotechnologies have been promoted for biofertilizer production of common bean (Phaseolus vulgaris L.) cultivation. Rhizobial inoculums have thus been used to reduce the rate of chemical nitrogen fertilizers being applied in cropping systems. Several investigations in the laboratory, on experimental stations and in the field have shown a possibility of a significant reduction in the use of nitrogen fertilizers in common bean production. Conventional mineral fertilization use can be reduced from over 120 kg N/ha to 20 kg N/ha. This contributes both to a very significant reduction in the application rate with the same level of yield and to an improvement in the standard of living. In addition, the environmental impact of using chemical fertilizers can be mitigated. This study is a contribution to the promotion of biofertilizers adoption in agricultural systems.
文摘Organic fertilizers generally come from agricultural co-products. Their valuation is therefore a major issue for sustainable development. The main objective of this study aims to develop an organic fertilizer derived from moringa leaves and cocoa pod husks that can improve soil quality and plant growth. The experimental design consisted of completely randomized blocks in three repetitions. The experiment was carried out in five treatments: T0: no fertilization, T1: 100% cocoa pods, T2: 75% cocoa pods + 25% Moringa leaves;T3: 50% cocoa pods + 50% Moringa leaves;T4: 25% cocoa pods + 75% Moringa leaves;T5: 100% Moringa leaves. Three doses were applied: 1;2;4 kg/m2. The trial took place over three growing cycles. The results of the soil analysis compared to the control revealed a significant improvement in physicochemical parameters. Variation of pH from (6.1 to 7.2), calcium from (1.4 to 4.13), magnesium from (0.450 to 0.870), potassium from (0.096 to 0.365) cmol+/kg. Carbon and nitrogen were recorded (1.02% to 2.77%) and (0.12% to 2.56%) respectively. The CEC (cation exchange capacity) saw a clear improvement (4.2 to 9.03) cmol+/kg. Concerning the growth parameters, the control plants recorded an average height of (31.19 cm) while those that benefited from the treatments oscillated between (55.51 to 105.57 cm). In terms of production, the best yields are attributed to treatments T3 and T4 with (37.66 t/ha) and (51.176 t/ha) respectively. The T3 and T4 formulations could help improve the fertility of agricultural soils and the yield of market garden products such as eggplant.
文摘This study was carried out with the aim of investigating the effect of indigenous microorganism (IMO), effective (EM) and mineral fertilizers (NPK) on the yield and nutritional value of groundnut (Arachis hypogaea) in Western Cameroon (Baboutcha-Fongam). The study was conducted during two consecutive years, using a completely randomized block design of 8 treatments repeated three times in each subblock. The sub-plots were enriched with 0, 10, 20 and 40 g corresponding to the treatment of EM and IMO respectively and 3.2 g of NPK in 2019. Subsequently, the best dose that resulted in excellent yields was repeated for the rest of the experiment in 2020. The yield parameters and nutritional value of the two varieties of Arachis hypogaea used in the two consecutive years increase with the contribution of the different doses compared to the control. Overall, a significant increase (p A. hypogaea plants fertilized with EM 20 g (2.15 ± 0.24 and 2.01 ± 0.23 t/ha) and plants fertilized with NPK 3.2 g (2.36 ± 0.65 and 2.04 ± 0.17 t/ha) was not significant. On the other hand, there was a significant difference (P ≤ 0.05) between plants fertilized with IMO 10 g (2.65 ± 0.17 and 2.24 ± 0.2 t/ha) and plants fertilized with EM 20 g and plants fertilized with NPK 3.2 g for both varieties during the two years combined. In addition to being local and therefore adapted to environmental conditions, IMOs could be a promising biological means for improving soil fertility in Cameroon.
基金funded by grants from the National Natural Science Foundation of China(32301947,32272220 and 32172120)the China Postdoctoral Science Foundation(2023M730909).
文摘Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency and serious environmental pollution.Deep placement of nitrogen fertilizer(DPNF)is an agronomic measure that shows promise in addressing these issues.This review aims to offer a comprehensive understanding of DPNF,beginning with a succinct overview of its development and methodologies for implementation.Subsequently,the optimal fertilization depth and influencing factors for different crops are analyzed and discussed.Additionally,it investigates the regulation and mechanism underlying the DPNF on crop development,yield,N use efficiency and greenhouse gas emissions.Finally,the review delineates the limitations and challenges of this technology and provides suggestions for its improvement and application.This review provides valuable insight and reference for the promotion and adoption of DPNF in agricultural practice.
基金supported by the Project of Sanya Yazhou Bay Science and Technology City,China(Grant No.SCKJ-JYRC-2022-94)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA28020203)+1 种基金Postgraduate Innovation Research Project of Hainan Province,China(Grant No.Qhyb2022-67)PhD Scientific Research and Innovation Foundation of Sanya Yazhou Bay Science and Technology City,China(Grant No.HSPHDSRF-2023-12-008).
文摘To improve the yield and quality of rice grown on saline-alkali soil,a meta-analysis combined with micro-district experimental studies was conducted in China to examine the impact of humic acidbased organic fertilizer and chemical fertilizer on rice yield and quality.This study employed a two-factor fully randomized experimental design,incorporating four levels of humic acid(F0,0.0 g/pot;F1,4.8 g/pot;F2,12.0 g/pot;and F3,19.2 g/pot)and three levels of chemical fertilizer(A1,full conventional dosage;A2,85% of conventional dosage;and A3,70% of conventional dosage).The meta-analysis revealed that the application of organic fertilizer(at a rate of 1500‒3000 kg/hm^(2))combined with chemical fertilizer had a significantly positive effect on the theoretical yield,tiller number,partial factor productivity,and SPAD value of rice.Temperature,organic fertilizer application,and chemical fertilizer levels were identified as critical factors affecting rice yield.The micro-experiments demonstrated that the application of humic acid organic fertilizer with treatment F3 significantly elevated the SPAD value at the full heading and grain filling stages.Increased panicle number and seed-setting rate were the main contributors to the rise in yield,with the F3 treatment yielding the highest overall.The effective leaf area,high-efficiency leaf area,and dry matter accumulation in rice treated with F3 were all higher compared with the F0 treatment.Our findings indicated that the addition of humic acid organic fertilizer can markedly improve the partial factor productivity and agronomic efficiency of rice.In conclusion,the application of F3 organic fertilizer combined with A3 chemical fertilizer(F3A3)significantly increased the yield of saline-alkali rice,which was 6.62% higher than that of the F0A1 treatment,thereby validating the meta-analysis outcomes.We propose that the combined use of humic acid organic fertilizer and chemical fertilizer can promote the growth of rice in saline-alkali soils.Consequently,these management practices provide a means to foster the green and healthy development of rice in saline-alkali regions across China.
基金supported by the National Natural Science Foundation of China(42177341)the Natural Science Basic Research Program of Shanxi,China(202203021222138).
文摘Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.
基金supported by the Shenyang Municipal Science and Technology Project,China(23-409-2-03)the Liaoning Provincial Department of Science and Technology Project,China(Z20230183)the Liaoning Provincial Applied Basic Research Program,China(2022JH2/101300173).
文摘Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.