To satisfy the interfacial shear force continuity conditions, a new model is proposed for the two-layer composite beam with partial interaction by modifying Reddy's higher order beam theory. The governing differentia...To satisfy the interfacial shear force continuity conditions, a new model is proposed for the two-layer composite beam with partial interaction by modifying Reddy's higher order beam theory. The governing differential equations for free vibration and buckling are formulated using the Hamilton's principle, the natural frequencies and axial forces are thus analytically obtained by Laplace transform technique. The analytical results are verified through the comparison with those of several other models common in use; and the presented model is found to be a finer one than the Reddy's. A parametric study is also performed to investigate the effects of geometry and material parameters.展开更多
We model the effects of weak fluctuations on the probability densities and normalized powers of vortex models for the Bessel–Gauss photon beam with fractional topological charge in the paraxial non-Kolmogorov turbule...We model the effects of weak fluctuations on the probability densities and normalized powers of vortex models for the Bessel–Gauss photon beam with fractional topological charge in the paraxial non-Kolmogorov turbulence channel. We find that probability density of signal vortex models is a function of deviation from the center of the photon beam, and the farther away from the beam center it is, the smaller the probability density is. For fractional topological charge, the average probability densities of signal/crosstalk vortex modes oscillate along the beam radius except the half-integer order. As the beam waist of the photon source grows, the average probability density of signal and crosstalk vortex modes grow together. Moreover, the peak of the average probability density of crosstalk vortex modes shifts outward from the beam center as the beam waist gets larger. The results also show that the smaller index of non-Kolmogorov turbulence and the smaller generalized refractive-index structure parameter may lead to the higher average probability densities of signal vortex modes and lower average probability densities of crosstalk vortex modes. Lower-coherence radius or beam waist can give rise to less reduction of the normalized powers of the signal vortex modes, which is opposite to the normalized powers of crosstalk vortex modes.展开更多
In this study, analytical relations for evaluating the exact solution of natural fre- quency and mode shape of beams with embedded shape memory alloy (SMA) wires are presented. Beams are modeled according to Euler-B...In this study, analytical relations for evaluating the exact solution of natural fre- quency and mode shape of beams with embedded shape memory alloy (SMA) wires are presented. Beams are modeled according to Euler-Bernoulli, Timoshenko and third order beam (Reddy) the- ories. A relation is obtained for determining the effect of axial load generated by the recovery action of pre-strained SMA wires. By defining some dimensionless quantities~ the effect of different me- chanical properties on the frequencies and mode shapes of the system are carefully examined. The effect of axial load generated by SMA wires with buckling load and frequency jump is accurately studied.展开更多
基金Project supported by the National High Technology Research and Development Program of China(No.2009AA032303-2)
文摘To satisfy the interfacial shear force continuity conditions, a new model is proposed for the two-layer composite beam with partial interaction by modifying Reddy's higher order beam theory. The governing differential equations for free vibration and buckling are formulated using the Hamilton's principle, the natural frequencies and axial forces are thus analytically obtained by Laplace transform technique. The analytical results are verified through the comparison with those of several other models common in use; and the presented model is found to be a finer one than the Reddy's. A parametric study is also performed to investigate the effects of geometry and material parameters.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140128)the National Natural Science Foundation of Special Theoretical Physics(Grant No.11447174)the Fundamental Research Funds for the Central Universities(JUSRP51517)
文摘We model the effects of weak fluctuations on the probability densities and normalized powers of vortex models for the Bessel–Gauss photon beam with fractional topological charge in the paraxial non-Kolmogorov turbulence channel. We find that probability density of signal vortex models is a function of deviation from the center of the photon beam, and the farther away from the beam center it is, the smaller the probability density is. For fractional topological charge, the average probability densities of signal/crosstalk vortex modes oscillate along the beam radius except the half-integer order. As the beam waist of the photon source grows, the average probability density of signal and crosstalk vortex modes grow together. Moreover, the peak of the average probability density of crosstalk vortex modes shifts outward from the beam center as the beam waist gets larger. The results also show that the smaller index of non-Kolmogorov turbulence and the smaller generalized refractive-index structure parameter may lead to the higher average probability densities of signal vortex modes and lower average probability densities of crosstalk vortex modes. Lower-coherence radius or beam waist can give rise to less reduction of the normalized powers of the signal vortex modes, which is opposite to the normalized powers of crosstalk vortex modes.
文摘In this study, analytical relations for evaluating the exact solution of natural fre- quency and mode shape of beams with embedded shape memory alloy (SMA) wires are presented. Beams are modeled according to Euler-Bernoulli, Timoshenko and third order beam (Reddy) the- ories. A relation is obtained for determining the effect of axial load generated by the recovery action of pre-strained SMA wires. By defining some dimensionless quantities~ the effect of different me- chanical properties on the frequencies and mode shapes of the system are carefully examined. The effect of axial load generated by SMA wires with buckling load and frequency jump is accurately studied.