Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance...Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.展开更多
Challenges still remain in carrying out assembly modeling efficiently in virtual assembly (VA) fields. One of the root causes is the apparent weakness in effective description of assembly knowledge and information. ...Challenges still remain in carrying out assembly modeling efficiently in virtual assembly (VA) fields. One of the root causes is the apparent weakness in effective description of assembly knowledge and information. The assembly modeling, disassembly modeling, assembly interference inspection, assembly sequence planning and optimization, and assembly simulation display for key techniques is studied theoretically in this paper. An example of product assembly modeling is provided to illustrate the effectiveness of the proposed approach. On the basis of re- search, using assembly simulation techniques and multimedia techniques to finish structure design in linkage design of a large size wind-drive generator. The application of the modeling method has shortened the lead time dramatically.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 51275047)Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing of China(Grant No. 07205)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20091101110010)
文摘Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.
基金supported by the Foundation of Jiangsu Province for Talented Personnel and the Self-determined Research Program of Jiangnan University
文摘Challenges still remain in carrying out assembly modeling efficiently in virtual assembly (VA) fields. One of the root causes is the apparent weakness in effective description of assembly knowledge and information. The assembly modeling, disassembly modeling, assembly interference inspection, assembly sequence planning and optimization, and assembly simulation display for key techniques is studied theoretically in this paper. An example of product assembly modeling is provided to illustrate the effectiveness of the proposed approach. On the basis of re- search, using assembly simulation techniques and multimedia techniques to finish structure design in linkage design of a large size wind-drive generator. The application of the modeling method has shortened the lead time dramatically.