The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(M...The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.展开更多
Let K be a closed convex subset of a real reflexive Banach space E, T:K→K be a nonexpansive mapping, and f:K→K be a fixed weakly contractive (may not be contractive) mapping. Then for any t∈(0, 1), let x1∈K ...Let K be a closed convex subset of a real reflexive Banach space E, T:K→K be a nonexpansive mapping, and f:K→K be a fixed weakly contractive (may not be contractive) mapping. Then for any t∈(0, 1), let x1∈K be the unique fixed point of the weak contraction x1→tf(x)+(1-t)Tx. If T has a fixed point and E admits a weakly sequentially continuous duality mapping from E to E^*, then it is shown that {xt} converges to a fixed point of T as t→0. The results presented here improve and generalize the corresponding results in (Xu, 2004).展开更多
An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator...An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.展开更多
In this paper, we firstly define a decreasing sequence {Pn(S)} by the generation of the Sierpinski gasket where each Pn(S) can be obtained in finite steps. Then we prove that the Hausdorff measure Hs(S) of the Sierpin...In this paper, we firstly define a decreasing sequence {Pn(S)} by the generation of the Sierpinski gasket where each Pn(S) can be obtained in finite steps. Then we prove that the Hausdorff measure Hs(S) of the Sierpinski gasket S can be approximated by {Pn(S)} with Pn(S)/(l + l/2n-3)s≤Hs(S)≤ Pn(S). An algorithm is presented to get Pn(S) for n ≤5. As an application, we obtain the best lower bound of Hs(S) till now: Hs(S)≥0.5631.展开更多
The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes ...The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.展开更多
In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation ...In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation method (HWAM). To prove the applicabifity of the HWAM, a more general applicability theorem on an approximation method (AM) for an operator equation Ax = y is proved first. As an application, applicability of the HWAM is obtained. Fhrthermore, four steps to use the HWAM are listed and three numerical examples are given in order to illustrate the effectiveness of the method.展开更多
An industrial building is a non-classically damped system due to the different damping properties of the primary structure and equipment.The objective of this paper is to quantify the range of applicability of the rea...An industrial building is a non-classically damped system due to the different damping properties of the primary structure and equipment.The objective of this paper is to quantify the range of applicability of the real model superposition approximation method to the seismic response calculation of industrial buildings.The analysis using lumped mass-and-shear spring models indicates that for the equipment-to-structure frequency ratiosγf>1.1 orγf<0.9,the non-classical damping effect is limited,and the real mode superposition approximation method provides accurate estimates.For 0.9<γf<1.1,the system may have a pair of closely spaced frequency modes,and the non-zero off-diagonal damping terms have a non-negligible effect on the damping ratios and mode shape vectors of these modes.For 0.9<γf<1.1 and the equipment-to-structure mass ratiosγm<0.07,the real mode superposition approximation method results in large errors,while the approximation method can provide an accurate estimation for 0.9<γf<1.1 andγm>0.07.Furthermore,extensive parametric analyses are conducted,where both steel structures and reinforced concrete structures with equipment with various damping ratios are considered.Finally,the finite element analysis of a five-story industrial building is adopted to validate the proposed range of applicability.展开更多
In this paper, to find the fixed points of the nonexpansive nonself-mappings, we introduced two new viscosity approximation methods, and then we prove the iterative sequences defined by above viscosity approximation m...In this paper, to find the fixed points of the nonexpansive nonself-mappings, we introduced two new viscosity approximation methods, and then we prove the iterative sequences defined by above viscosity approximation methods which converge strongly to the fixed points of nonexpansive nonself-mappings. The results presented in this paper extend and improve the results of Song-Chen [1] and Song-Li [2].展开更多
This paper considers a class of stochastic variational inequality problems. As proposed by Jiang and Xu (2008), by using the so-called regularized gap function, the authors formulate the problems as constrained opti...This paper considers a class of stochastic variational inequality problems. As proposed by Jiang and Xu (2008), by using the so-called regularized gap function, the authors formulate the problems as constrained optimization problems and then propose a sample average approximation method for solving the problems. Under some moderate conditions, the authors investigate the limiting behavior of the optimal values and the optimal solutions of the approximation problems. Finally, some numerical results are reported to show efficiency of the proposed method.展开更多
By the use of approximation method a general criterion of algebraic independence of complex numbers is established. As its application the algebraic independence of values of certain gap series at algebraic and transc...By the use of approximation method a general criterion of algebraic independence of complex numbers is established. As its application the algebraic independence of values of certain gap series at algebraic and transcendental points is given.展开更多
In this paper, we introduce an iterative scheme with error by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpan...In this paper, we introduce an iterative scheme with error by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. A strong convergence theorem is given, which generalizes all the results obtained by S.Takahashi and W.Takahashi in 2007. In addition, some of the methods applied in this paper improve those of S.Takahashi and W.Takahashi.展开更多
Let f(x)be a continued fraction with elements a<sub>n</sub>x,where coefficients a<sub>n</sub> are positive alge- braic numbers.Using the criterion of[1]for any nonzero real algebraic numbers ...Let f(x)be a continued fraction with elements a<sub>n</sub>x,where coefficients a<sub>n</sub> are positive alge- braic numbers.Using the criterion of[1]for any nonzero real algebraic numbers α<sub>1</sub>,...,α<sub>s</sub> with distinct absolute values the algebraic independence of the values f(α<sub>1</sub>),...,f(α<sub>s</sub>)is proved under certain as- sumption concerning only with a<sub>n</sub>.For some transcendental numbers ζ the algebraic independence of values f(ζ<sup>j</sup>)(j∈Z)is also established.展开更多
We use the method of discrete dipole approximation with surface interaction to construct a model in which a plurality of nanoparticles is arranged on the surface of BK7 glass. Nanoparticles are in air medium illuminat...We use the method of discrete dipole approximation with surface interaction to construct a model in which a plurality of nanoparticles is arranged on the surface of BK7 glass. Nanoparticles are in air medium illuminated by evanescent wave generated from total internal reflection. The effects of the wavelength, the polarization of the incident wave, the number of nanoparticles and the spacing of multiple nanoparticles on the field enhancement and extinction efficiency are calculated by our model. Our work could pave the way to improve the field enhancement of multiple nanoparticles systems.展开更多
In this paper, a unified method based on the strong approximation(SA) of renewal process(RP) is developed for the law of the iterated logarithm(LIL) and the functional LIL(FLIL), which quantify the magnitude of the as...In this paper, a unified method based on the strong approximation(SA) of renewal process(RP) is developed for the law of the iterated logarithm(LIL) and the functional LIL(FLIL), which quantify the magnitude of the asymptotic rate of the increasing variability around the mean value of the RP in numerical and functional forms respectively. For the GI/G/1 queue, the method provides a complete analysis for both the LIL and the FLIL limits for four performance functions: The queue length, workload, busy time and idle time processes, covering three regimes divided by the traffic intensity.展开更多
A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in th...A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.展开更多
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu...In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].展开更多
In this paper, a new algorithm-approximate penalty function method is designed, which can be used to solve a bilevel optimization problem with linear constrained function. In this kind of bilevel optimization problem....In this paper, a new algorithm-approximate penalty function method is designed, which can be used to solve a bilevel optimization problem with linear constrained function. In this kind of bilevel optimization problem. the evaluation of the objective function is very difficult, so that only their approximate values can be obtained. This algorithm is obtained by combining penalty function method and approximation in bilevel programming. The presented algorithm is completely different from existing methods. That convergence for this algorithm is proved.展开更多
The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the p...The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the present work, an effective method to calculate the EIE cross sections of an atom/ion in the whole energy region is presented. We use the EIE cross sections of helium as an illustration example. The optical forbidden 1^(1)S–n^(1)S(n = 2–4) and optical allowed 1^(1)S–n^(1)P(n = 2–4) excitation cross sections are calculated in the whole energy region using the scheme that combines the partial wave R-matrix method and the first Born approximation. The calculated cross sections are in good agreement with the available experimental measurements. Based on these accurate cross sections of our calculation, we find that the ratios between the accurate cross sections and Born cross sections are nearly the same for different excitation final states in the same channel. According to this interesting property, a universal correction function is proposed and given to calculate the accurate EIE cross sections with the same computational efforts of the widely used Born cross sections,which should be very useful in the related application fields. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00142.展开更多
In the reliability analysis of complex structures,response surface method(RSM)has been suggested as an efficient technique to estimate the actual but implicit limit state function.A set of sample points are needed to ...In the reliability analysis of complex structures,response surface method(RSM)has been suggested as an efficient technique to estimate the actual but implicit limit state function.A set of sample points are needed to fit to the implicit function.It has been noted that the accuracy of RSM depends highly on the so-called sample points.However,the technique for point selection has had little attention.In the present study,an improved response surface method(IRSM)based on two sample point selection techniques,named the direction cosines projected strategy(DCS)and the limit step length iteration strategy(LSS),is investigated.Since it uses the sampling points selected to be located in the region close to the original failure surface,and since it needs only one response surface,the IRSM should be accurate and simple in practical structural problems.Applications to several typical examples have helped to elucidate the successful working of the IRSM.展开更多
This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions an...This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.展开更多
基金supported by the Board of Research in Nuclear Sciences of the Department of Atomic Energy,India(2012/36/69-BRNS/2012)
文摘The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.
文摘Let K be a closed convex subset of a real reflexive Banach space E, T:K→K be a nonexpansive mapping, and f:K→K be a fixed weakly contractive (may not be contractive) mapping. Then for any t∈(0, 1), let x1∈K be the unique fixed point of the weak contraction x1→tf(x)+(1-t)Tx. If T has a fixed point and E admits a weakly sequentially continuous duality mapping from E to E^*, then it is shown that {xt} converges to a fixed point of T as t→0. The results presented here improve and generalize the corresponding results in (Xu, 2004).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172093 and 11372102)the Hunan Provincial Innovation Foundation for Postgraduate,China(Grant No.CX2012B159)
文摘An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.
文摘In this paper, we firstly define a decreasing sequence {Pn(S)} by the generation of the Sierpinski gasket where each Pn(S) can be obtained in finite steps. Then we prove that the Hausdorff measure Hs(S) of the Sierpinski gasket S can be approximated by {Pn(S)} with Pn(S)/(l + l/2n-3)s≤Hs(S)≤ Pn(S). An algorithm is presented to get Pn(S) for n ≤5. As an application, we obtain the best lower bound of Hs(S) till now: Hs(S)≥0.5631.
基金Work sponsored by"Ministero dell' University"CNR of Italy
文摘The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.
基金support by the NSFC(11371012,11401359,11471200)the FRF for the Central Universities(GK201301007)the NSRP of Shaanxi Province(2014JQ1010)
文摘In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation method (HWAM). To prove the applicabifity of the HWAM, a more general applicability theorem on an approximation method (AM) for an operator equation Ax = y is proved first. As an application, applicability of the HWAM is obtained. Fhrthermore, four steps to use the HWAM are listed and three numerical examples are given in order to illustrate the effectiveness of the method.
基金Fund of China National Industrial Building Diagnosis and Reconstruction Engineering Technology Research Center under Grant No.YZA2017Ky03the Beijing Natural Science Foundation under Grant No.JQ18029the National Natural Science Foundation of China under Grant No.52078277。
文摘An industrial building is a non-classically damped system due to the different damping properties of the primary structure and equipment.The objective of this paper is to quantify the range of applicability of the real model superposition approximation method to the seismic response calculation of industrial buildings.The analysis using lumped mass-and-shear spring models indicates that for the equipment-to-structure frequency ratiosγf>1.1 orγf<0.9,the non-classical damping effect is limited,and the real mode superposition approximation method provides accurate estimates.For 0.9<γf<1.1,the system may have a pair of closely spaced frequency modes,and the non-zero off-diagonal damping terms have a non-negligible effect on the damping ratios and mode shape vectors of these modes.For 0.9<γf<1.1 and the equipment-to-structure mass ratiosγm<0.07,the real mode superposition approximation method results in large errors,while the approximation method can provide an accurate estimation for 0.9<γf<1.1 andγm>0.07.Furthermore,extensive parametric analyses are conducted,where both steel structures and reinforced concrete structures with equipment with various damping ratios are considered.Finally,the finite element analysis of a five-story industrial building is adopted to validate the proposed range of applicability.
文摘In this paper, to find the fixed points of the nonexpansive nonself-mappings, we introduced two new viscosity approximation methods, and then we prove the iterative sequences defined by above viscosity approximation methods which converge strongly to the fixed points of nonexpansive nonself-mappings. The results presented in this paper extend and improve the results of Song-Chen [1] and Song-Li [2].
基金This research is partly supported by the National Natural Science Foundation of China under Grant Nos. 71171027 and 11071028, the Fundamental Research Funds for the Central Universities under Grant No. DUT11SX11, and the Key Project of the National Natural Science Foundation of China under Grant No. 71031002.
文摘This paper considers a class of stochastic variational inequality problems. As proposed by Jiang and Xu (2008), by using the so-called regularized gap function, the authors formulate the problems as constrained optimization problems and then propose a sample average approximation method for solving the problems. Under some moderate conditions, the authors investigate the limiting behavior of the optimal values and the optimal solutions of the approximation problems. Finally, some numerical results are reported to show efficiency of the proposed method.
基金Subject supported by the National Natural Science Foundation of China
文摘By the use of approximation method a general criterion of algebraic independence of complex numbers is established. As its application the algebraic independence of values of certain gap series at algebraic and transcendental points is given.
基金the Youth Founcation of Sichuan Educational Committee (No.08ZB002)
文摘In this paper, we introduce an iterative scheme with error by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. A strong convergence theorem is given, which generalizes all the results obtained by S.Takahashi and W.Takahashi in 2007. In addition, some of the methods applied in this paper improve those of S.Takahashi and W.Takahashi.
基金Supported by the National Natural Science Foundation of China
文摘Let f(x)be a continued fraction with elements a<sub>n</sub>x,where coefficients a<sub>n</sub> are positive alge- braic numbers.Using the criterion of[1]for any nonzero real algebraic numbers α<sub>1</sub>,...,α<sub>s</sub> with distinct absolute values the algebraic independence of the values f(α<sub>1</sub>),...,f(α<sub>s</sub>)is proved under certain as- sumption concerning only with a<sub>n</sub>.For some transcendental numbers ζ the algebraic independence of values f(ζ<sup>j</sup>)(j∈Z)is also established.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LGF20C050001)the National Nature Science Foundation of China(No.61805213)。
文摘We use the method of discrete dipole approximation with surface interaction to construct a model in which a plurality of nanoparticles is arranged on the surface of BK7 glass. Nanoparticles are in air medium illuminated by evanescent wave generated from total internal reflection. The effects of the wavelength, the polarization of the incident wave, the number of nanoparticles and the spacing of multiple nanoparticles on the field enhancement and extinction efficiency are calculated by our model. Our work could pave the way to improve the field enhancement of multiple nanoparticles systems.
基金supported by the National Natural Science Foundation of China under Grant No.11471053
文摘In this paper, a unified method based on the strong approximation(SA) of renewal process(RP) is developed for the law of the iterated logarithm(LIL) and the functional LIL(FLIL), which quantify the magnitude of the asymptotic rate of the increasing variability around the mean value of the RP in numerical and functional forms respectively. For the GI/G/1 queue, the method provides a complete analysis for both the LIL and the FLIL limits for four performance functions: The queue length, workload, busy time and idle time processes, covering three regimes divided by the traffic intensity.
基金This research has been supported in part by the Natural Sciences and Engineering Research Council of Canada(Grant OGPIN-336)and by the"Ministere de l'Education du Quebec"(FCAR Grant-ER-0725)
文摘A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.
基金supported by Scientific Research Fund of Sichuan Provincial Education Department (09ZB102)Scientific Research Fund of Science and Technology Deportment of Sichuan Provincial (2011JYZ011)
文摘In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].
文摘In this paper, a new algorithm-approximate penalty function method is designed, which can be used to solve a bilevel optimization problem with linear constrained function. In this kind of bilevel optimization problem. the evaluation of the objective function is very difficult, so that only their approximate values can be obtained. This algorithm is obtained by combining penalty function method and approximation in bilevel programming. The presented algorithm is completely different from existing methods. That convergence for this algorithm is proved.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12241410)。
文摘The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the present work, an effective method to calculate the EIE cross sections of an atom/ion in the whole energy region is presented. We use the EIE cross sections of helium as an illustration example. The optical forbidden 1^(1)S–n^(1)S(n = 2–4) and optical allowed 1^(1)S–n^(1)P(n = 2–4) excitation cross sections are calculated in the whole energy region using the scheme that combines the partial wave R-matrix method and the first Born approximation. The calculated cross sections are in good agreement with the available experimental measurements. Based on these accurate cross sections of our calculation, we find that the ratios between the accurate cross sections and Born cross sections are nearly the same for different excitation final states in the same channel. According to this interesting property, a universal correction function is proposed and given to calculate the accurate EIE cross sections with the same computational efforts of the widely used Born cross sections,which should be very useful in the related application fields. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00142.
文摘In the reliability analysis of complex structures,response surface method(RSM)has been suggested as an efficient technique to estimate the actual but implicit limit state function.A set of sample points are needed to fit to the implicit function.It has been noted that the accuracy of RSM depends highly on the so-called sample points.However,the technique for point selection has had little attention.In the present study,an improved response surface method(IRSM)based on two sample point selection techniques,named the direction cosines projected strategy(DCS)and the limit step length iteration strategy(LSS),is investigated.Since it uses the sampling points selected to be located in the region close to the original failure surface,and since it needs only one response surface,the IRSM should be accurate and simple in practical structural problems.Applications to several typical examples have helped to elucidate the successful working of the IRSM.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.10735030,10475055,10675065 and 90503006)the National Basic Research Program of China(Grant No.2007CB814800)
文摘This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.