Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave(mmWave)massive multiple-input multiple-output(MIMO)systems.In this paper,Gaussian Mixture lear...Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave(mmWave)massive multiple-input multiple-output(MIMO)systems.In this paper,Gaussian Mixture learned approximate message passing(GM-LAMP)network is presented for the design of optimal hybrid precoders suitable for mmWave Massive MIMO systems.Optimal hybrid precoder designs using a compressive sensing scheme such as orthogonal matching pursuit(OMP)and its derivatives results in high computational complexity when the dimensionality of the sparse signal is high.This drawback can be addressed using classical iterative algorithms such as approximate message passing(AMP),which has comparatively low computational complexity.The drawbacks of AMP algorithm are fixed shrinkage parameter and non-consideration of prior distribution of the hybrid precoders.In this paper,the fixed shrinkage parameter problem of the AMP algorithm is addressed using learned AMP(LAMP)network,and is further enhanced as GMLAMP network using the concept of Gaussian Mixture distribution of the hybrid precoders.The simula-tion results show that the proposed GM-LAMP network achieves optimal hybrid precoder design with enhanced achievable rates,better accuracy and low computational complexity compared to the existing algorithms.展开更多
Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple s...Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.展开更多
In this paper, the approximate expressions of the solitary wave solutions for a class of nonlinear disturbed long-wave system are constructed using the homotopie mapping method.
Established system equivalences for transition systems, such as trace equivalence and failures equivalence, require the ob- servations to be exactly identical. However, an accurate measure- ment is impossible when int...Established system equivalences for transition systems, such as trace equivalence and failures equivalence, require the ob- servations to be exactly identical. However, an accurate measure- ment is impossible when interacting with the physical world, hence exact equivalence is restrictive and not robust. Using Baire met- ric, a generalized framework of transition system approximation is proposed by developing the notions of approximate language equivalence and approximate singleton failures (SF) equivalence. The framework takes the traditional exact equivalence as a special case. The approximate language equivalence is coarser than the approximate Slc equivalence, just like the hierarchy of the exact ones. The main conclusion is that the two approximate equiva- lences satisfy the transitive property, consequently, they can be successively used in transition system approximation.展开更多
In this paper,we studied the approximate sampleddata observer design for a class of stochastic nonlinear systems.Euler-Maruyama approximation was investigated in this paper because it is the basis of other higher prec...In this paper,we studied the approximate sampleddata observer design for a class of stochastic nonlinear systems.Euler-Maruyama approximation was investigated in this paper because it is the basis of other higher precision numerical methods,and it preserves important structures of the nonlinear systems.Also,the form of Euler-Maruyama model is simple and easy to be calculated.The results provide a reference for sampled-data observer design method for such stochastic nonlinear systems,and may be useful to many practical control applications,such as tracking control in mechanical systems.And the effectiveness of the approach is demonstrated by a simulation example.展开更多
In massive multiple input and multiple output (MIMO) systems the challenge is the detection of the individual signals from the composite signal with a large system limit. The optimal detector becomes prohibitively c...In massive multiple input and multiple output (MIMO) systems the challenge is the detection of the individual signals from the composite signal with a large system limit. The optimal detector becomes prohibitively complex. The approximate message passing (AMP) algorithm, designed for compressed sensing, has attracted researchers to counter this problem due to its reduced complexity with a large system limit. For this reason the AMP algorithm has been used for detection in massive MIMO systems. In this paper, we focus on implementing this algorithm in a fixed-point format. To obtain an implementation friendly architecture, we propose approximations for the mean and variance estimation functions within the algorithm. These estimation functions are obtained using the log-sum approximation, then taking the exponent of the result. The log-sum approximation is obtained by the Jacobian logarithm with a correction function. We also provide a modification of the correction function for the approximations that best suits our case. We then transform the algorithm with the approximated functions to fixed-point and provide a BER performance for the algorithm with the variables set to 16-bit word lengths using the hybrid "ScaledDouble" data types.展开更多
Using Baire metric, this paper proposes a generalized framework of transition system approximation by developing the notions of approximate reachability and approximate bisimulation equivalences. The proposed framewor...Using Baire metric, this paper proposes a generalized framework of transition system approximation by developing the notions of approximate reachability and approximate bisimulation equivalences. The proposed framework captures the traditional exact equivalence as a special case. Approximate reachability equivalence is coarser than approximate bisimulation equivalence, just like the hierarchy of the exact ones. Both approximate equivalences satisfy the transitive property, consequently, they can be used in transition system approximation.展开更多
A weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The form invariance and the approximate conserved quantity of the Appell equations for a weakly nonholonomic ...A weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The form invariance and the approximate conserved quantity of the Appell equations for a weakly nonholonomic system are studied. The Appell equations for the weakly nonholonomic system are established, and the definition and the criterion of form invariance of the system are given. The structural equation of form invariance for the weakly nonholonomic system and the approximate conserved quantity deduced from the form invariance of the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
The performance of structures with active variable stiffness (AVS) systems exhibits strong nonlinearity due to the variety with time of the stiffness of each storey unit,in which the AVS system is installed.Hence,the ...The performance of structures with active variable stiffness (AVS) systems exhibits strong nonlinearity due to the variety with time of the stiffness of each storey unit,in which the AVS system is installed.Hence,the classical dynamic analysis method for linear structures,such as the mode-superposition method,is not applicable to structures with AVS systems.In this paper,an approximate analysis method is proposed for displacement responses of structures with AVS systems.Firstly,an equivalent relationship between single-degree-of-freedom (SDOF) structures equipped with AVS systems and so-called fictitious linear structures is established.Then,an approximate mode-superposition (AMS) method is presented for multi-degree-of-freedom (MDOF) structures equipped with AVS systems.The accuracy of this method is investigated through extensive parametrical study using different types of earthquake excitations,and some modification is made to the method. Numerical calculation results indicate that the modified AMS method is effective for estimating the maximum displacements relative to the ground and the maximum interstorey drifts of MDOF structures equipped with AVS systems.展开更多
Labelled transition systems(LTSs) are widely used to formally describe system behaviour.The labels of LTS are extended to offer a more satisfactory description of behaviour by refining the abstract labels into multiva...Labelled transition systems(LTSs) are widely used to formally describe system behaviour.The labels of LTS are extended to offer a more satisfactory description of behaviour by refining the abstract labels into multivariate polynomials.These labels can be simplified by numerous numerical approximation methods.Those LTSs that can not apply failures semantics equivalence in description and verification may have a chance after using approximation on labels.The technique that combines approximation and failures semantics equivalence effectively alleviates the computational complexity and minimizes LTS.展开更多
The private quantum channel (PQC) maps any quantum state to the maximally mixed state for the discrete as well as the bosonic Gaussian quantum systems, and it has fundamental meaning on the quantum cryptographic tasks...The private quantum channel (PQC) maps any quantum state to the maximally mixed state for the discrete as well as the bosonic Gaussian quantum systems, and it has fundamental meaning on the quantum cryptographic tasks and the quantum channel capacity problems. In this paper, we primally introduce a notion of approximate private quantum channel (<em>ε</em>-PQC) on <em>fermionic</em> Gaussian systems (<em>i.e.</em>, <em>ε</em>-FPQC), and construct its explicit form of the fermionic (Gaussian) private quantum channel. First of all, we suggest a general structure for <em>ε</em>-FPQC on the fermionic Gaussian systems with respect to the Schatten <em>p</em>-norm class, and then we give an explicit proof of the statement in the trace norm case. In addition, we study that the cardinality of a set of fermionic unitary operators agrees on the <em>ε</em>-FPQC condition in the trace norm case. This result may give birth to intuition on the construction of emerging fermionic Gaussian quantum communication or computing systems.展开更多
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in...A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.展开更多
Approximate calculation methods of prevention maintenance period under the random distribution are given,and three kinds of approximate calculation models of prevention maintenance period based on different security d...Approximate calculation methods of prevention maintenance period under the random distribution are given,and three kinds of approximate calculation models of prevention maintenance period based on different security demands are come up with according to maintenance problems of machinery systems in modern enterprise and starting with different demands of systems. And then,how to make certain the best maintenance period by using the approximate calculation methods is illustrated by an exam- ple.展开更多
In this article,we developed sufficient conditions for the existence and uniqueness of an approximate solution to a nonlinear system of Lorenz equations under Caputo-Fabrizio fractional order derivative(CFFD).The requ...In this article,we developed sufficient conditions for the existence and uniqueness of an approximate solution to a nonlinear system of Lorenz equations under Caputo-Fabrizio fractional order derivative(CFFD).The required results about the existence and uniqueness of a solution are derived via the fixed point approach due to Banach and Krassnoselskii.Also,we enriched our work by establishing a stable result based on the Ulam-Hyers(U-H)concept.Also,the approximate solution is computed by using a hybrid method due to the Laplace transform and the Adomian decomposition method.We computed a few terms of the required solution through the mentioned method and presented some graphical presentation of the considered problem corresponding to various fractional orders.The results of the existence and uniqueness tests for the Lorenz system under CFFD have not been studied earlier.Also,the suggested method results for the proposed system under the mentioned derivative are new.Furthermore,the adopted technique has some useful features,such as the lack of prior discrimination required by wavelet methods.our proposed method does not depend on auxiliary parameters like the homotopy method,which controls the method.Our proposed method is rapidly convergent and,in most cases,it has been used as a powerful technique to compute approximate solutions for various nonlinear problems.展开更多
This paper deals with the problem of approximate controllability of infinite dimensional linear systems in nonreflexive state spaces. A necessary and sufficient condition for approximate controllability via L^p([0, T...This paper deals with the problem of approximate controllability of infinite dimensional linear systems in nonreflexive state spaces. A necessary and sufficient condition for approximate controllability via L^p([0, T], U), 1≤p〈∞ is obtained,where L^p( [0, T], U) is the control function space.展开更多
In this paper, K-controllability and approximate K-controllability of non- linear neutral differential equations in Banach spaces are studied. Sufficient conditions are established for each of these types of controlla...In this paper, K-controllability and approximate K-controllability of non- linear neutral differential equations in Banach spaces are studied. Sufficient conditions are established for each of these types of controllability. The results are obtained by using Leray-Schauder theory.展开更多
Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, partic...Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, particularly operative in the analysis of physiological signals that involve relatively small amount of data. However, the similarity definition of vectors based on Heaviside function, of which the boundary is discontinuous and hard, may cause some problems in the validity and accuracy of ApEn. To overcome these problems, a modified ApEn based on fuzzy similarity (mApEn) was proposed. The performance on the MIX stochastic model, as well as those on the Logistic map and the Hennon map with noise, shows that the fuzzy similarity-based ApEn gets more satisfying results than the standard ApEn when characterizing systems with different regularities.展开更多
We study the approximate conserved quantity of the weakly nonholonomic mechanical-electrical system. By means of the Lagrange-Maxwell equation, the Noether equality of the weakly nonholonomic mechanical-electrical sys...We study the approximate conserved quantity of the weakly nonholonomic mechanical-electrical system. By means of the Lagrange-Maxwell equation, the Noether equality of the weakly nonholonomic mechanical-electrical system is obtained. The multiple powers-series expansion of the parameter of the generators of infinitesimal transformations and the gauge function is put into a generalized Noether identity. Using the Noether theorem, we obtain an approximate conserved quantity. An example is provided to prove the existence of the approximate conserved quantity.展开更多
The electrode regulator system is a complex system with many variables, strong coupling and strong nonlinearity, while conventional control methods such as proportional integral derivative (PID) can not meet the req...The electrode regulator system is a complex system with many variables, strong coupling and strong nonlinearity, while conventional control methods such as proportional integral derivative (PID) can not meet the requirements. A robust adaptive neural network controller (RANNC) for electrode regulator system was proposed. Artificial neural networks were established to learn the system dynamics. The nonlinear control law was derived directly based on an input-output approximating method via the Taylor expansion, which avoids complex control development and intensive computation. The stability of the closed-loop system was established by the Lyapunov method. The current fluctuation relative percentage is less than ±8% and heating rate is up to 6.32 ℃/min when the proposed controller is used. The experiment results show that the proposed control scheme is better than inverse neural network controller (INNC) and PID controller (PIDC).展开更多
This paper concerns the approximate controllability of the initialboundary problem of double coupled semilinear degenerate parabolic equations.The equations are degenerate at the boundary,and the control function acts...This paper concerns the approximate controllability of the initialboundary problem of double coupled semilinear degenerate parabolic equations.The equations are degenerate at the boundary,and the control function acts in the interior of the spacial domain and acts only on one equation.We overcome the difficulty of the degeneracy of the equations to show that the problem is approximately controllable in L2 by means of a fixed point theorem and some compact estimates.That is to say,for any initial and desired data in L2,one can find a control function in L2 such that the weak solution to the problem approximately reaches the desired data in L2 at the terminal time.展开更多
文摘Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave(mmWave)massive multiple-input multiple-output(MIMO)systems.In this paper,Gaussian Mixture learned approximate message passing(GM-LAMP)network is presented for the design of optimal hybrid precoders suitable for mmWave Massive MIMO systems.Optimal hybrid precoder designs using a compressive sensing scheme such as orthogonal matching pursuit(OMP)and its derivatives results in high computational complexity when the dimensionality of the sparse signal is high.This drawback can be addressed using classical iterative algorithms such as approximate message passing(AMP),which has comparatively low computational complexity.The drawbacks of AMP algorithm are fixed shrinkage parameter and non-consideration of prior distribution of the hybrid precoders.In this paper,the fixed shrinkage parameter problem of the AMP algorithm is addressed using learned AMP(LAMP)network,and is further enhanced as GMLAMP network using the concept of Gaussian Mixture distribution of the hybrid precoders.The simula-tion results show that the proposed GM-LAMP network achieves optimal hybrid precoder design with enhanced achievable rates,better accuracy and low computational complexity compared to the existing algorithms.
基金supported by the Natural Science Foundation of Shanghai Municipality(21ZR1423400)the National Natural Science Funds of China(62173217)NSFC/Royal Society Cooperation and Exchange Project(62111530154,IEC\NSFC\201107).
文摘Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.
基金Supported by the National Natural Science Foundation of China under Grant No.40876010the Main Direction Program of the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No.KZCX2-YW-Q03-08+2 种基金the LASG State Key Laboratory Special Fundthe Foundation of Shanghai Municipal Education Commission under Grant No.E03004the Natural Science Foundation of Zhejiang Province under Grant No.Y6090164
文摘In this paper, the approximate expressions of the solitary wave solutions for a class of nonlinear disturbed long-wave system are constructed using the homotopie mapping method.
基金supported by the National Natural Science Foundation of China(1137100311461006)+4 种基金the Natural Science Foundation of Guangxi(2011GXNSFA0181542012GXNSFGA060003)the Science and Technology Foundation of Guangxi(10169-1)the Scientific Research Project from Guangxi Education Department(201012MS274)Open Research Fund Program of Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis(HCIC201301)
文摘Established system equivalences for transition systems, such as trace equivalence and failures equivalence, require the ob- servations to be exactly identical. However, an accurate measure- ment is impossible when interacting with the physical world, hence exact equivalence is restrictive and not robust. Using Baire met- ric, a generalized framework of transition system approximation is proposed by developing the notions of approximate language equivalence and approximate singleton failures (SF) equivalence. The framework takes the traditional exact equivalence as a special case. The approximate language equivalence is coarser than the approximate Slc equivalence, just like the hierarchy of the exact ones. The main conclusion is that the two approximate equiva- lences satisfy the transitive property, consequently, they can be successively used in transition system approximation.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2014AA06A503)the National Natural Science Foundation of China(61422307,61673361)+3 种基金the Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars and Ministry of Education of Chinasupports from the Youth Top-notch Talent Support Programthe 1000-talent Youth Programthe Youth Yangtze River Scholarship
文摘In this paper,we studied the approximate sampleddata observer design for a class of stochastic nonlinear systems.Euler-Maruyama approximation was investigated in this paper because it is the basis of other higher precision numerical methods,and it preserves important structures of the nonlinear systems.Also,the form of Euler-Maruyama model is simple and easy to be calculated.The results provide a reference for sampled-data observer design method for such stochastic nonlinear systems,and may be useful to many practical control applications,such as tracking control in mechanical systems.And the effectiveness of the approach is demonstrated by a simulation example.
文摘In massive multiple input and multiple output (MIMO) systems the challenge is the detection of the individual signals from the composite signal with a large system limit. The optimal detector becomes prohibitively complex. The approximate message passing (AMP) algorithm, designed for compressed sensing, has attracted researchers to counter this problem due to its reduced complexity with a large system limit. For this reason the AMP algorithm has been used for detection in massive MIMO systems. In this paper, we focus on implementing this algorithm in a fixed-point format. To obtain an implementation friendly architecture, we propose approximations for the mean and variance estimation functions within the algorithm. These estimation functions are obtained using the log-sum approximation, then taking the exponent of the result. The log-sum approximation is obtained by the Jacobian logarithm with a correction function. We also provide a modification of the correction function for the approximations that best suits our case. We then transform the algorithm with the approximated functions to fixed-point and provide a BER performance for the algorithm with the variables set to 16-bit word lengths using the hybrid "ScaledDouble" data types.
基金Supported by the National Natural Science Foundation of China(No.11371003 and No.11461006)the Natural Science Foundation of Guangxi(No.2011GXNSFA018154 and No.2012GXNSFGA060003)
文摘Using Baire metric, this paper proposes a generalized framework of transition system approximation by developing the notions of approximate reachability and approximate bisimulation equivalences. The proposed framework captures the traditional exact equivalence as a special case. Approximate reachability equivalence is coarser than approximate bisimulation equivalence, just like the hierarchy of the exact ones. Both approximate equivalences satisfy the transitive property, consequently, they can be used in transition system approximation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032)
文摘A weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The form invariance and the approximate conserved quantity of the Appell equations for a weakly nonholonomic system are studied. The Appell equations for the weakly nonholonomic system are established, and the definition and the criterion of form invariance of the system are given. The structural equation of form invariance for the weakly nonholonomic system and the approximate conserved quantity deduced from the form invariance of the system are obtained. Finally, an example is given to illustrate the application of the results.
基金National Natural Science foundation of China,Grant number 59895410
文摘The performance of structures with active variable stiffness (AVS) systems exhibits strong nonlinearity due to the variety with time of the stiffness of each storey unit,in which the AVS system is installed.Hence,the classical dynamic analysis method for linear structures,such as the mode-superposition method,is not applicable to structures with AVS systems.In this paper,an approximate analysis method is proposed for displacement responses of structures with AVS systems.Firstly,an equivalent relationship between single-degree-of-freedom (SDOF) structures equipped with AVS systems and so-called fictitious linear structures is established.Then,an approximate mode-superposition (AMS) method is presented for multi-degree-of-freedom (MDOF) structures equipped with AVS systems.The accuracy of this method is investigated through extensive parametrical study using different types of earthquake excitations,and some modification is made to the method. Numerical calculation results indicate that the modified AMS method is effective for estimating the maximum displacements relative to the ground and the maximum interstorey drifts of MDOF structures equipped with AVS systems.
基金National Natural Science Foundation of China(No.11371003)Natural Science Foundations of Guangxi,China(No.2011GXNSFA018154,No.2012GXNSFGA060003)+2 种基金Science and Technology Foundation of Guangxi,China(No.10169-1)Scientific Research Project from Guangxi Education Department,China(No.201012MS274)Open Research Fund Program of Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis,China(No.HCIC201301)
文摘Labelled transition systems(LTSs) are widely used to formally describe system behaviour.The labels of LTS are extended to offer a more satisfactory description of behaviour by refining the abstract labels into multivariate polynomials.These labels can be simplified by numerous numerical approximation methods.Those LTSs that can not apply failures semantics equivalence in description and verification may have a chance after using approximation on labels.The technique that combines approximation and failures semantics equivalence effectively alleviates the computational complexity and minimizes LTS.
文摘The private quantum channel (PQC) maps any quantum state to the maximally mixed state for the discrete as well as the bosonic Gaussian quantum systems, and it has fundamental meaning on the quantum cryptographic tasks and the quantum channel capacity problems. In this paper, we primally introduce a notion of approximate private quantum channel (<em>ε</em>-PQC) on <em>fermionic</em> Gaussian systems (<em>i.e.</em>, <em>ε</em>-FPQC), and construct its explicit form of the fermionic (Gaussian) private quantum channel. First of all, we suggest a general structure for <em>ε</em>-FPQC on the fermionic Gaussian systems with respect to the Schatten <em>p</em>-norm class, and then we give an explicit proof of the statement in the trace norm case. In addition, we study that the cardinality of a set of fermionic unitary operators agrees on the <em>ε</em>-FPQC condition in the trace norm case. This result may give birth to intuition on the construction of emerging fermionic Gaussian quantum communication or computing systems.
基金supported by the General Program of the National Natural Science Foundation of China(Grant No.52074295)the Special Fund for Basic Scientific Research Business Expenses of Central Universities(Grant No.2022YJSSB06)supported by State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and technology,Beijing,China(Grant No.SKLGDUEK202217).
文摘A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.
文摘Approximate calculation methods of prevention maintenance period under the random distribution are given,and three kinds of approximate calculation models of prevention maintenance period based on different security demands are come up with according to maintenance problems of machinery systems in modern enterprise and starting with different demands of systems. And then,how to make certain the best maintenance period by using the approximate calculation methods is illustrated by an exam- ple.
基金support of Taif University Researchers Supporting Project No. (TURSP-2020/162),Taif University,Taif,Saudi Arabiafunding this work through research groups program under Grant No.R.G.P.1/195/42.
文摘In this article,we developed sufficient conditions for the existence and uniqueness of an approximate solution to a nonlinear system of Lorenz equations under Caputo-Fabrizio fractional order derivative(CFFD).The required results about the existence and uniqueness of a solution are derived via the fixed point approach due to Banach and Krassnoselskii.Also,we enriched our work by establishing a stable result based on the Ulam-Hyers(U-H)concept.Also,the approximate solution is computed by using a hybrid method due to the Laplace transform and the Adomian decomposition method.We computed a few terms of the required solution through the mentioned method and presented some graphical presentation of the considered problem corresponding to various fractional orders.The results of the existence and uniqueness tests for the Lorenz system under CFFD have not been studied earlier.Also,the suggested method results for the proposed system under the mentioned derivative are new.Furthermore,the adopted technique has some useful features,such as the lack of prior discrimination required by wavelet methods.our proposed method does not depend on auxiliary parameters like the homotopy method,which controls the method.Our proposed method is rapidly convergent and,in most cases,it has been used as a powerful technique to compute approximate solutions for various nonlinear problems.
文摘This paper deals with the problem of approximate controllability of infinite dimensional linear systems in nonreflexive state spaces. A necessary and sufficient condition for approximate controllability via L^p([0, T], U), 1≤p〈∞ is obtained,where L^p( [0, T], U) is the control function space.
基金The Young Scholar Foundation of Institute of Mathematics of Jilin University
文摘In this paper, K-controllability and approximate K-controllability of non- linear neutral differential equations in Banach spaces are studied. Sufficient conditions are established for each of these types of controllability. The results are obtained by using Leray-Schauder theory.
基金The National Basic Research Program (973)of China (No 2005CB724303)
文摘Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, particularly operative in the analysis of physiological signals that involve relatively small amount of data. However, the similarity definition of vectors based on Heaviside function, of which the boundary is discontinuous and hard, may cause some problems in the validity and accuracy of ApEn. To overcome these problems, a modified ApEn based on fuzzy similarity (mApEn) was proposed. The performance on the MIX stochastic model, as well as those on the Logistic map and the Hennon map with noise, shows that the fuzzy similarity-based ApEn gets more satisfying results than the standard ApEn when characterizing systems with different regularities.
文摘We study the approximate conserved quantity of the weakly nonholonomic mechanical-electrical system. By means of the Lagrange-Maxwell equation, the Noether equality of the weakly nonholonomic mechanical-electrical system is obtained. The multiple powers-series expansion of the parameter of the generators of infinitesimal transformations and the gauge function is put into a generalized Noether identity. Using the Noether theorem, we obtain an approximate conserved quantity. An example is provided to prove the existence of the approximate conserved quantity.
基金Project(N100604002) supported by the Fundamental Research Funds for Central Universities of ChinaProject(61074074) supported by the National Natural Science Foundation of China
文摘The electrode regulator system is a complex system with many variables, strong coupling and strong nonlinearity, while conventional control methods such as proportional integral derivative (PID) can not meet the requirements. A robust adaptive neural network controller (RANNC) for electrode regulator system was proposed. Artificial neural networks were established to learn the system dynamics. The nonlinear control law was derived directly based on an input-output approximating method via the Taylor expansion, which avoids complex control development and intensive computation. The stability of the closed-loop system was established by the Lyapunov method. The current fluctuation relative percentage is less than ±8% and heating rate is up to 6.32 ℃/min when the proposed controller is used. The experiment results show that the proposed control scheme is better than inverse neural network controller (INNC) and PID controller (PIDC).
基金the National Natural Science Foundation of China(Grant Nos.11925105,11801211).
文摘This paper concerns the approximate controllability of the initialboundary problem of double coupled semilinear degenerate parabolic equations.The equations are degenerate at the boundary,and the control function acts in the interior of the spacial domain and acts only on one equation.We overcome the difficulty of the degeneracy of the equations to show that the problem is approximately controllable in L2 by means of a fixed point theorem and some compact estimates.That is to say,for any initial and desired data in L2,one can find a control function in L2 such that the weak solution to the problem approximately reaches the desired data in L2 at the terminal time.