Marginal seas play important roles in regulating the global carbon budget, but there are great uncertainties in estimating carbon sources and sinks in the continental margins. A Pacific basin-wide physical-biogeochemi...Marginal seas play important roles in regulating the global carbon budget, but there are great uncertainties in estimating carbon sources and sinks in the continental margins. A Pacific basin-wide physical-biogeochemical model is used to estimate primary productivity and air-sea CO_2 flux in the South China Sea(SCS), the East China Sea(ECS), and the Yellow Sea(YS). The model is forced with daily air-sea fluxes which are derived from the NCEP2 reanalysis from 1982 to 2005. During the period of time, the modeled monthly-mean air-sea CO_2 fluxes in these three marginal seas altered from an atmospheric carbon sink in winter to a source in summer. On annualmean basis, the SCS acts as a source of carbon to the atmosphere(16 Tg/a, calculated by carbon, released to the atmosphere), and the ECS and the YS are sinks for atmospheric carbon(–6.73 Tg/a and –5.23 Tg/a, respectively,absorbed by the ocean). The model results suggest that the sea surface temperature(SST) controls the spatial and temporal variations of the oceanic pCO_2 in the SCS and ECS, and biological removal of carbon plays a compensating role in modulating the variability of the oceanic pCO_2 and determining its strength in each sea,especially in the ECS and the SCS. However, the biological activity is the dominating factor for controlling the oceanic pCO_2 in the YS. The modeled depth-integrated primary production(IPP) over the euphotic zone shows seasonal variation features with annual-mean values of 293, 297, and 315 mg/(m^2·d) in the SCS, the ECS, and the YS, respectively. The model-integrated annual-mean new production(uptake of nitrate) values, as in carbon units, are 103, 109, and 139 mg/(m^2·d), which yield the f-ratios of 0.35, 0.37, and 0.45 for the SCS, the ECS, and the YS, respectively. Compared to the productivity in the ECS and the YS, the seasonal variation of biological productivity in the SCS is rather weak. The atmospheric pCO_2 increases from 1982 to 2005, which is consistent with the anthropogenic CO_2 input to the atmosphere. The oceanic pCO_2 increases in responses to the atmospheric pCO_2 that drives air-sea CO_2 flux in the model. The modeled increase rate of oceanic pCO_2 is0.91 μatm/a in the YS, 1.04 μatm/a in the ECS, and 1.66 μatm/a in the SCS, respectively.展开更多
The 3rd Chinese National Arctic Research Expedition (CHINARE-Arctic III) was carried out from July to September in 2008. The partial pressure of CO2 (pCO2) in the atmosphere and in surface seawater were determined...The 3rd Chinese National Arctic Research Expedition (CHINARE-Arctic III) was carried out from July to September in 2008. The partial pressure of CO2 (pCO2) in the atmosphere and in surface seawater were determined in the Bering Sea during luly 11-27, 2008, and a large number of seawater samples were taken for total alkalinity (TA) and total dissolved inorganic carbon (DIC) analysis. The distributions of CO2 parameters in the Bering Sea and their controlling factors were discussed. The pCO2 values in surface seawater presented a drastic variation from 148 to 563 laatm (1 μatm = 1.013 25× 10-1Pa). The lowest pCOz values were observed near the Bering Sea shelf break while the highest pCO2 existed at the western Bering Strait. The Bering Sea generally acts as a net sink for atmospheric CO2 in summer. The air-sea CO2 fluxes in the Bering Sea shelf, slope, and basin were estimated at -9.4, -16.3, and -5.1 mmol/(m2.d), respectively. The annual uptake of CO2 was about 34 Tg C in the Bering Sea.展开更多
We applied a season-reliant empirical orthogonal function(S-EOF) analysis based on the results of the Community Earth System Model, version 1-Biogeochemistry, to seasonal mean air-sea CO_2 flux over the western North ...We applied a season-reliant empirical orthogonal function(S-EOF) analysis based on the results of the Community Earth System Model, version 1-Biogeochemistry, to seasonal mean air-sea CO_2 flux over the western North Pacific(WNP)(0°–35°N, 110°E–150°E). The first leading mode accounts for 29% of the total interannual variance, corresponding to the evolution of the El Ni-Southern Oscillation(ENSO) from its developing to decaying phases. During the ENSO developing phase in the summer and fall, the contribution of surface seawater CO_2 partial pressure anomalies is greater than that of gas transfer/solubility anomalies, which contribute to increasing oceanic CO_2 uptake over the WNP. During the ENSO mature phase in the winter, the anomalous southwesterly northwest of the western North Pacific anticyclone(WNPAC) reduces the surface wind speed in the China marginal sea and thus decreases oceanic CO_2 uptake by reducing the gas transfer coefficient. In the subsequent spring, the WNPAC maintains with an eastward shift in position. The anomalous southwesterly warms sea surface temperatures in the China marginal sea by reducing evaporation and thus decreases oceanic CO_2 uptake by enhancing surface seawater CO_2 partial pressure. This process, rather than the effect of decreasing gas transfer coefficient, dominates CO_2 flux anomalies in the spring.展开更多
Using stat ic chamber technique, fluxes of CO 2 , CH 4 and N 2 O were measured in the alpine grassland area from July 2000 to July 2001, d eterminations of mean fluxes showed that CO 2 and N 2 O were gene rally releas...Using stat ic chamber technique, fluxes of CO 2 , CH 4 and N 2 O were measured in the alpine grassland area from July 2000 to July 2001, d eterminations of mean fluxes showed that CO 2 and N 2 O were gene rally released from the soil, while the alpine grassland accounted for a weak CH 4 sink. Fluxes of CO 2 , CH 4 and N 2 O ranged widely. The highest CO 2 emission occurred in August, whereas a lmost 90% of the whole year emission occurred in the growing season. But the variations of CH 4 and N 2 O fluxes did not show any clear patterns over the one-year-experim ent. During a daily variation, the maximum CO 2 emission occurred at 16:00, and then decreased to the minimum emi ssion in the early morning. Daily pattern analyses indicated that the variation in CO 2 fluxes was positively related to air temperatures (R 2 =0.73) and soil temperatures at a depth of 5 cm (R 2 =0.86), whereas daily variations in CH 4 and N 2 O fluxes were poorly explained by soil temperatures and climatic va riables. CO 2 emissions in this area were much lower than other grasslands in plain areas .展开更多
To accurately evaluate the carbon sequestration potential and better elucidate the relationship between the carbon cycle and regional climate change, using eddy covariance system, we conducted a long-term measurement ...To accurately evaluate the carbon sequestration potential and better elucidate the relationship between the carbon cycle and regional climate change, using eddy covariance system, we conducted a long-term measurement of CO 2 fluxes in the rain-fed winter wheat field of the Chinese Loess Plateau. The results showed that the annual net ecosystem CO 2 exchange (NEE) was (-71.6±5.7) and (-65.3±5.3) g C m-2 y-1 for 2008-2009 and 2009-2010 crop years, respectively, suggesting that the agro-ecosystem was a carbon sink (117.4-126.2 g C m-2 yr-1). However, after considering the harvested grain, the agro- ecosystem turned into a moderate carbon source. The variations in NEE and ecosystem respiration (R eco ) were sensitive to changes in soil water content (SWC). When SWC ranged form 0.15 to 0.21 m3 m-3, we found a highly significant relationship between NEE and photosynthetically active radiation (PAR), and a highly significant relationship between R eco and soil temperature (T s ). However, the highly significant relationships were not observed when SWC was outside the range of 0.15-0.21 m3 m-3. Further, in spring, the R eco instantly responded to a rapid increase in SWC after effective rainfall events, which could induce 2 to 4-fold increase in daily R eco , whereas the R eco was also inhibited by heavy summer rainfall when soils were saturated. Accumulated R eco in summer fallow period decreased carbon fixed in growing season by 16- 25%, indicating that the period imposed negative impacts on annual carbon sequestration.展开更多
With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and af...With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and after summer monsoon onset. It is discovered that, after summer monsoon onset, there are considerable changes in air-sea fluxes, especially in latent heat fluxes and net oceanic heat budget. Furthermore, the analyzed results of five synoptic stages are compared. And the characteristics of the flux transfer during different stages around onset of South China Sea monsoon are discussed. The flux change shows that there is an oceanic heat accumulating process during the pre-onset and the break period, as same as oceanic heat losing process during the onset period. Moreover, latent fluxes, the water vapor moving to the continent, even the rainfall appearance in Chinese Mainland also can be influenced by southwester. Comparing Xisha fluxes with those obtained from the Indian Ocean and the western Pacific Ocean, their differences may be observed. It is the reason why SSTs can keep stable over the South China Sea while they decrease quickly over the Arabian Sea and the Bay of Bengal after monsoon onset.展开更多
Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of t...Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.展开更多
As an important component of ecosystem carbon(C) budgets, soil carbon dioxide(CO2) flux is determined by a combination of a series of biotic and abiotic processes. Although there is evidence showing that the abiot...As an important component of ecosystem carbon(C) budgets, soil carbon dioxide(CO2) flux is determined by a combination of a series of biotic and abiotic processes. Although there is evidence showing that the abiotic component can be important in total soil CO2 flux(R(total)), its relative importance has never been systematically assessed. In this study, after comparative measurements of CO2 fluxes on sterilized and natural soils, the R(total) was partitioned into biotic flux(R(biotic)) and abiotic flux(R(abiotic)) across a broad range of land-cover types(including eight sampling sites: cotton field, hops field, halophyte garden, alkaline land, reservoir edge, native saline desert, dune crest and interdune lowland) in Gurbantunggut Desert, Xinjiang, China. The relative contribution of R(abiotic) to R(total), as well as the temperature dependency and predominant factors for R(total), R(biotic) and R(abiotic), were analyzed. Results showed that R(abiotic) always contributed to R(total) for all of the eight sampling sites, but the degree or magnitude of contribution varied greatly. Specifically, the ratio of R(abiotic) to R(total) was very low in cotton field and hops field and very high in alkaline land and dune crest. Statistically, the ratio of R(abiotic) to R(total) logarithmically increased with decreasing R(biotic), suggesting that R(abiotic) strongly affected R(total) when R(biotic) was low. This pattern confirms that soil CO2 flux is predominated by biotic processes in most soils, but abiotic processes can also be dominant when biotic processes are weak. On a diurnal basis, R(abiotic) cannot result in net gain or net loss of CO2, but its effect on transient CO2 flux was significant. Temperature dependency of R(total) varied among the eight sampling sites and was determined by the predominant processes(abiotic or biotic) of CO2 flux. Specifically, R(biotic) was driven by soil temperature while R(abiotic) was regulated by the change in soil temperature(ΔT). Namely, declining temperature(ΔT0) resulted in positive R(abiotic)(i.e., CO2 released from soil). Without recognition of R(abiotic), R(biotic) would be overestimated for the daytime and underestimated for the nighttime. Although R(abiotic) may not change the sum or the net value of daily soil CO2 exchange and may not directly constitute a C sink, it can significantly alter the transient apparent soil CO2 flux, either in magnitude or in temperature dependency. Thus, recognizing the fact that abiotic component in R(total) exists widely in soils has widespread consequences for the understanding of C cycling.展开更多
Soil CO 2 emission from an arable soil was measured by closed chamber method to quantify year round soil flux and to develop an equation to predict flux using soil temperature, dissolved organic carbon(DOC) and soil...Soil CO 2 emission from an arable soil was measured by closed chamber method to quantify year round soil flux and to develop an equation to predict flux using soil temperature, dissolved organic carbon(DOC) and soil moisture content. Soil CO 2 flux, soil temperature, DOC and soil moisture content were determined on selected days during the experiment from August 1999 to July 2000, at the Ecological Station of Red Soil, the Chinese Academy of Sciences, in a subtropical region of China. Soil CO 2 fluxes were generally higher in summer and autumn than in winter and spring, and had a seasonal pattern more similar to soil temperature and DOC than soil moisture. The estimation was 2 23 kgCO 2/(m 2·a) for average annual soil CO 2 flux. Regressed separately, the reasons for soil flux variability were 86 6% from soil temperature, 58 8% from DOC, and 26 3% from soil moisture, respectively. Regressed jointly, a multiple equation was developed by the above three variables that explained approximately 85 2% of the flux variance, however by stepwise regression, soil temperature was the dominant affecting soil flux. Based on the exponential equation developed from soil temperature, the predicted annual flux was 2 49 kgCO 2/(m 2·a), and essentially equal to the measured one. It is suggested the exponential relationship between soil flux and soil temperature could be used for accurately predicting soil CO 2 flux from arable soil in subtropical regions of China.展开更多
The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, mo...The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System-(EOS-) Terra/Aqua satellite, as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water, heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.展开更多
The turbidity maximum zone(TMZ) is one of the most important regions in an estuary.However,the high concentration of suspended material makes it difficult to measure the partial pressure of CO_2(pCO_2) in these region...The turbidity maximum zone(TMZ) is one of the most important regions in an estuary.However,the high concentration of suspended material makes it difficult to measure the partial pressure of CO_2(pCO_2) in these regions.Therefore,very little data is available on the pCO_2 levels in TMZs.To relatively accurately evaluate the CO_2 flux in an example estuary,we studied the TMZ and surrounding area in the Changjiang(Yangtze) River estuary.From seasonal cruises during February,August,November 2010,and May 2012,the pCO_2 in the TMZ and surrounding area was calculated from pH and total alkalinity(TA)measured in situ,from which the CO_2 flux was calculated.Overall,the TMZ and surrounding area acted as a source of atmosphere CO_2 in February and November,and as a sink in May and August.The average FCO_2was-9,-16,5,and 5 mmol/(m^2·d) in May,August,November,and February,respectively.The TMZ's role as a source or sink of atmosphere CO_2 was quite different to the outer estuary.In the TMZ and surrounding area,suspended matter,phytoplankton,and pH were the main factors controlling the FCO_2,but here the influence of temperature,salinity,and total alkalinity on the FCO_2 was weak.Organic carbon decomposition in suspended matter was the main reason for the region acting as a CO_2 source in winter,and phytoplankton production was the main reason the region was a CO_2 sink in summer.展开更多
During the Huanghai Sea Circulation and Material Flux Expedition in Spring 1996, fco_2 in surface water and atmosphere was measured. The fco2 in surface water varied in a range from 220 to 360 uatm1) while atmospheric...During the Huanghai Sea Circulation and Material Flux Expedition in Spring 1996, fco_2 in surface water and atmosphere was measured. The fco2 in surface water varied in a range from 220 to 360 uatm1) while atmospheric concentration was nearly constant at 360μatm, showing that the Huanghai Sea surface waters were undersaturated with respect to atmospheric Co during the time of investigation. A model was developed in this study in order to estimate the Co flux at the air-sea interface. The model incorporates the time-series variations of the distributions in SST (sea surface temperature), salinity, mixed-layer depth, atmospheric fco2, gas-transfer velocity, and CZCS chlorophyll concentration in the Huanghai Sea and was calibrated with the observed fco2 data. The primary parameter affecting fco2 in surface water is the variation of SST through time. The annual fluxes of Co are estimated as 0. 033 Gt C from the sea into the atmosphere and 0. 044 Gt C from the air into sea. The Huanghai Sea, thus behaves as a CO2 sink absorbing 0. 011 Gi C of CO2 a year. which.corresponds to about 0. 5 % of global oceanic absorption capacity.展开更多
P CO 2 of air and seawater samples from the East China Sea (ECS) were measured in situ in autumn, 1994. Ocean currents, terrestrial fluviation, biological activities, etc.,P CO 2 characters in air and seawater were in...P CO 2 of air and seawater samples from the East China Sea (ECS) were measured in situ in autumn, 1994. Ocean currents, terrestrial fluviation, biological activities, etc.,P CO 2 characters in air and seawater were investigated. CO 2 flux and its character in the East China Sea are discussed on the basis of theP CO 2 profiles of air and seawater. It was clear that the nearshore was the source of CO 2; and that the outer sea area was the sink of CO 2; and that the shelf area of the ECS is a net sink for atmospheric CO 2 in autumn.展开更多
The measurement of atmospheric O_(2)concentrations and related oxygen budget have been used to estimate terrestrial and oceanic carbon uptake.However,a discrepancy remains in assessments of O_(2)exchange between ocean...The measurement of atmospheric O_(2)concentrations and related oxygen budget have been used to estimate terrestrial and oceanic carbon uptake.However,a discrepancy remains in assessments of O_(2)exchange between ocean and atmosphere(i.e.air-sea O_(2)flux),which is one of the major contributors to uncertainties in the O_(2)-based estimations of the carbon uptake.Here,we explore the variability of air-sea O_(2)flux with the use of outputs from Coupled Model Intercomparison Project phase 6(CMIP6).The simulated air-sea O_(2)flux exhibits an obvious warming-induced upward trend(~1.49 Tmol yr−2)since the mid-1980s,accompanied by a strong decadal variability dominated by oceanic climate modes.We subsequently revise the O_(2)-based carbon uptakes in response to this changing air-sea O_(2)flux.Our results show that,for the 1990−2000 period,the averaged net ocean and land sinks are 2.10±0.43 and 1.14±0.52 GtC yr−1 respectively,overall consistent with estimates derived by the Global Carbon Project(GCP).An enhanced carbon uptake is found in both land and ocean after year 2000,reflecting the modification of carbon cycle under human activities.Results derived from CMIP5 simulations also investigated in the study allow for comparisons from which we can see the vital importance of oxygen dataset on carbon uptake estimations.展开更多
The CO_2 released from respiring cells in woody tissues of trees can contribute to one of three fluxes:efflux to the atmosphere(E_A),internal xylem sap transport flux(F_T),and storage flux(DS).Adding those fluxes toge...The CO_2 released from respiring cells in woody tissues of trees can contribute to one of three fluxes:efflux to the atmosphere(E_A),internal xylem sap transport flux(F_T),and storage flux(DS).Adding those fluxes together provides an estimate of actual stem respiration(R_S).We know that the relative proportion of CO_2 in those fluxes varies greatly among tree species,but we do not yet have a clear understanding of the causes for this variation.One possible explanation is that species differ in stem radial CO_2 conductance(g_c).A high g_c would favor the E_A pathway and a low g_cwould favor the F_Tpathway.However,g_chas only been measured once in situ and only in a single tree species.We measured g_cusing two methods in stems of Fraxinus mandshurica Rupr.(ash)and Betula platyphylla Suk.(birch)trees in situ,along with R_S,E_A,F_T and DS.Stem radial CO_2 conductance was substantially greater in ash trees than in birch trees.Corresponding to that finding,in ash trees over 24 h,E_Aconstituted the entire flux of respired CO_2 ,and F_Twas negative,indicating that additional CO_2 ,probably transported from the root system via the xylem,was also diffusing into the atmosphere.In ash trees,F_T was negative over the entire 24 h,and this study represents the first time that has been reported.The addition of xylem-transported CO_2 to E_A caused E_Ato be 9% higher than the actual R_Sover the diel measurement period.Birch trees,which had lower g_c,also had a more commonly seen pattern,with E_A accounting for about 80% of the CO_2 released from local cell respiration and F_T accounting for the remainder.The inorganic carbon concentration in xylem sap was also lower in ash trees than in birch trees:2.7 versus 5.3 mmol L^(-1),respectively.Our results indicate that stem CO_2 conductance could be a very useful measurement to help explain differences among species in the proportion of respired CO_2 that remains in the xylem or diffuses into the atmosphere.展开更多
A comparison between simulated land surface fluxes and observed eddy covariance (EC) measurements was conducted to validate Integrated Biosphere Simulator (IBIS) at Tongyu field observation station (44°25'N...A comparison between simulated land surface fluxes and observed eddy covariance (EC) measurements was conducted to validate Integrated Biosphere Simulator (IBIS) at Tongyu field observation station (44°25'N, 122°52'E) in Jilin Province, China. Results showed that the IBIS model could reproduce net ecosystem CO2 exchange (NEE), sensible and latent heat fluxes reasonably, as indicated by correlation coefficients exceeding the significant level of 0.05. It was also evident that the NEE and sensible heat fluxes were characterized by diurnal and seasonal variation both in the grassland and the cropland ecosystems, while the latent heat fluxes correlated with evapotranspiration, only took on the diurnal variation during the growing season. Moreover, both sensible heat fluxes and the latent heat fluxes were larger in the cropland ecosystem than that in the degraded grassland ecosystem. This different characteristic was possibly correlated with vegetation growing situation in the two kinds of ecosystems. A close agreement between observation and simulation on NEE, sensible heat fluxes and latent heat flux was obtained both in the degraded grassland and the cropland ecosystems. In addition, the annual NEE in the model was overestimated by 23.21% at the grassland and 27.43% at the cropland, sensible heat flux with corresponding 9.90% and 11.98%, respectively, and the annual latent heat flux was underestimated by 4.63% and 3.48%, respectively.展开更多
Although the annual global sea-air CO2 flux has been estimated extensively with various wind-dependent-k parameterizations,uncertainty still exists in the estimates. The sea-state-dependent-k parameterization is expec...Although the annual global sea-air CO2 flux has been estimated extensively with various wind-dependent-k parameterizations,uncertainty still exists in the estimates. The sea-state-dependent-k parameterization is expected to improve the uncertainty existing in these estimates. In the present study,the annual global sea-air CO2 flux is estimated with the sea-state-dependent-k parameterization proposed by Woolf(2005) ,using NOAA/NCEP reanalysis wind speed and hindcast wave data from 1998 to 2006,and a new estimate,-2.18 Gt C year-1,is obtained,which is comparable with previous estimates with biochemical methods. It is interesting to note that the averaged value of previous estimates with various wind-dependent-k parameterizations is almost identical to that of previous estimates with biochemical methods by various authors,and that the new estimate is quite consistent with these averaged estimates.展开更多
Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects,...Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects, mean vertical velocity and perturbation of the density of dry air are two critical parameters in treating those physical processes responsible for density variations. Based on various underlying assumptions, different studies have obtained different formulas for the mean vertical velocity and perturbation of the density of dry air, leading to a number of approaches to correct density effects. In this study, we re-examine physical processes related to different assumptions that are made to formulate the density effects. Specifically, we re-examine the assumptions of a zero dry air flux and a zero moist air flux in the surface layer, used for treating density variations, and their implications for correcting density effects. It is found that physical processes in relation to the assumption of a zero dry air flux account for the influence of dry air expansion/compression on density variations. Meanwhile, physical processes in relation to the assumption of a zero moist air flux account for the influence of moist air expansion/compression on density variations. In this study, we also re-examine mixing ratio issues. Our results indicate that the assumption of a zero dry air flux favors the use of the mixing ratio relative to dry air, while the assumption of a zero moist air flux favors the use of the mixing ratio relative to the total moist air. Additionally, we compare different formula for the mean vertical velocity, generated by air-parcel expansion/compression, and for density effect corrections using eddy covariance data measured over three boreal ecosystems.展开更多
The Arctic ecosystem, especially High Arctic tundra, plays a unique role in the global carbon cycle because of amplified warming in the region. However, relatively little research has been conducted in High Arctic tun...The Arctic ecosystem, especially High Arctic tundra, plays a unique role in the global carbon cycle because of amplified warming in the region. However, relatively little research has been conducted in High Arctic tundra compared with other global ecosystems. In the present work, summertime net ecosystem exchange (NEE), ecosystem respiration (ER), and photosynthesis were investigated at six tundra sites (DM1-DM6) on Ny-A.lesund in the High Arctic. NEE at the tundra sites varied between a weak sink and strong source (-3.3 to 19.0 mg CO2·m-2.h-1). ER and gross photosynthesis were 42.8 to 92.9 mg CO2·m-2·h-1 and 54.7 to 108.7 mg CO2·m-2·h-1, respectively. The NEE variations showed a significant correlation with photosynthesis rates, whereas no significant correlation was found with ecosystem respiration, indicating that NEE variations across the region were controlled by differences in net uptake of CO2 owing to photosynthesis, rather than by variations in ER. A Qm value of 1.80 indicated weak temperature sensitivity of tundra ER and its response to future global warming. NEE and gross photosynthesis also showed relatively strong correlations with C/N ratio. The tundra ER, NEE, and gross photosynthesis showed variations over slightly waterlogged wetland tundra, mesic and dry tundra. Overall, soil temperature, nutrients and moisture can be key effects on CO2 fluxes, ecosystem respiration, and NEE in the High Arctic.展开更多
基金The National Key Research and Development Program of China under contract No.2016YFC1401605the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA 1102010403+1 种基金the National Natural Science Foundation of China under contract Nos 41222038,41206023 and 41406036the Guangdong Provincial Key Laboratory of Fishery Ecology and Environment under contract No.LFE-2015-3
文摘Marginal seas play important roles in regulating the global carbon budget, but there are great uncertainties in estimating carbon sources and sinks in the continental margins. A Pacific basin-wide physical-biogeochemical model is used to estimate primary productivity and air-sea CO_2 flux in the South China Sea(SCS), the East China Sea(ECS), and the Yellow Sea(YS). The model is forced with daily air-sea fluxes which are derived from the NCEP2 reanalysis from 1982 to 2005. During the period of time, the modeled monthly-mean air-sea CO_2 fluxes in these three marginal seas altered from an atmospheric carbon sink in winter to a source in summer. On annualmean basis, the SCS acts as a source of carbon to the atmosphere(16 Tg/a, calculated by carbon, released to the atmosphere), and the ECS and the YS are sinks for atmospheric carbon(–6.73 Tg/a and –5.23 Tg/a, respectively,absorbed by the ocean). The model results suggest that the sea surface temperature(SST) controls the spatial and temporal variations of the oceanic pCO_2 in the SCS and ECS, and biological removal of carbon plays a compensating role in modulating the variability of the oceanic pCO_2 and determining its strength in each sea,especially in the ECS and the SCS. However, the biological activity is the dominating factor for controlling the oceanic pCO_2 in the YS. The modeled depth-integrated primary production(IPP) over the euphotic zone shows seasonal variation features with annual-mean values of 293, 297, and 315 mg/(m^2·d) in the SCS, the ECS, and the YS, respectively. The model-integrated annual-mean new production(uptake of nitrate) values, as in carbon units, are 103, 109, and 139 mg/(m^2·d), which yield the f-ratios of 0.35, 0.37, and 0.45 for the SCS, the ECS, and the YS, respectively. Compared to the productivity in the ECS and the YS, the seasonal variation of biological productivity in the SCS is rather weak. The atmospheric pCO_2 increases from 1982 to 2005, which is consistent with the anthropogenic CO_2 input to the atmosphere. The oceanic pCO_2 increases in responses to the atmospheric pCO_2 that drives air-sea CO_2 flux in the model. The modeled increase rate of oceanic pCO_2 is0.91 μatm/a in the YS, 1.04 μatm/a in the ECS, and 1.66 μatm/a in the SCS, respectively.
基金The National Natural Science Foundation of China (NSFC) under contract Nos 40976116 and 40531007the Fujian Science Foundation under contract No.2009J06025+3 种基金the SOA Youth Foundation Grant under contract No.2012538the Chinese Projects for Investigations and Assessments of the Arctic and Antarctic under contract Nos CHINARE2012: 01-04, 02-01, 03-04, 04-03, 04-04, and CHINARE2013: 01-04, 02-01, 03-04, 04-03, 04-04the Chinese International Cooperation Projects under contract Nos IC201114, IC201201, IC201308, and HC120601the Scientific Research Foundation of Third Institute of Oceanography, SOA under contract Nos 2012006 and 2014006
文摘The 3rd Chinese National Arctic Research Expedition (CHINARE-Arctic III) was carried out from July to September in 2008. The partial pressure of CO2 (pCO2) in the atmosphere and in surface seawater were determined in the Bering Sea during luly 11-27, 2008, and a large number of seawater samples were taken for total alkalinity (TA) and total dissolved inorganic carbon (DIC) analysis. The distributions of CO2 parameters in the Bering Sea and their controlling factors were discussed. The pCO2 values in surface seawater presented a drastic variation from 148 to 563 laatm (1 μatm = 1.013 25× 10-1Pa). The lowest pCOz values were observed near the Bering Sea shelf break while the highest pCO2 existed at the western Bering Strait. The Bering Sea generally acts as a net sink for atmospheric CO2 in summer. The air-sea CO2 fluxes in the Bering Sea shelf, slope, and basin were estimated at -9.4, -16.3, and -5.1 mmol/(m2.d), respectively. The annual uptake of CO2 was about 34 Tg C in the Bering Sea.
基金supported by the National Natural Science Foundation of China(Grant Nos.41330423,41420104006)Jiangsu Collaborative Innovation Center for Climate Change
文摘We applied a season-reliant empirical orthogonal function(S-EOF) analysis based on the results of the Community Earth System Model, version 1-Biogeochemistry, to seasonal mean air-sea CO_2 flux over the western North Pacific(WNP)(0°–35°N, 110°E–150°E). The first leading mode accounts for 29% of the total interannual variance, corresponding to the evolution of the El Ni-Southern Oscillation(ENSO) from its developing to decaying phases. During the ENSO developing phase in the summer and fall, the contribution of surface seawater CO_2 partial pressure anomalies is greater than that of gas transfer/solubility anomalies, which contribute to increasing oceanic CO_2 uptake over the WNP. During the ENSO mature phase in the winter, the anomalous southwesterly northwest of the western North Pacific anticyclone(WNPAC) reduces the surface wind speed in the China marginal sea and thus decreases oceanic CO_2 uptake by reducing the gas transfer coefficient. In the subsequent spring, the WNPAC maintains with an eastward shift in position. The anomalous southwesterly warms sea surface temperatures in the China marginal sea by reducing evaporation and thus decreases oceanic CO_2 uptake by enhancing surface seawater CO_2 partial pressure. This process, rather than the effect of decreasing gas transfer coefficient, dominates CO_2 flux anomalies in the spring.
基金National Key Project for Basic Research,No.G1998040800
文摘Using stat ic chamber technique, fluxes of CO 2 , CH 4 and N 2 O were measured in the alpine grassland area from July 2000 to July 2001, d eterminations of mean fluxes showed that CO 2 and N 2 O were gene rally released from the soil, while the alpine grassland accounted for a weak CH 4 sink. Fluxes of CO 2 , CH 4 and N 2 O ranged widely. The highest CO 2 emission occurred in August, whereas a lmost 90% of the whole year emission occurred in the growing season. But the variations of CH 4 and N 2 O fluxes did not show any clear patterns over the one-year-experim ent. During a daily variation, the maximum CO 2 emission occurred at 16:00, and then decreased to the minimum emi ssion in the early morning. Daily pattern analyses indicated that the variation in CO 2 fluxes was positively related to air temperatures (R 2 =0.73) and soil temperatures at a depth of 5 cm (R 2 =0.86), whereas daily variations in CH 4 and N 2 O fluxes were poorly explained by soil temperatures and climatic va riables. CO 2 emissions in this area were much lower than other grasslands in plain areas .
基金supported by the National Natural Science Foundation of China (31171506 and 31071375)
文摘To accurately evaluate the carbon sequestration potential and better elucidate the relationship between the carbon cycle and regional climate change, using eddy covariance system, we conducted a long-term measurement of CO 2 fluxes in the rain-fed winter wheat field of the Chinese Loess Plateau. The results showed that the annual net ecosystem CO 2 exchange (NEE) was (-71.6±5.7) and (-65.3±5.3) g C m-2 y-1 for 2008-2009 and 2009-2010 crop years, respectively, suggesting that the agro-ecosystem was a carbon sink (117.4-126.2 g C m-2 yr-1). However, after considering the harvested grain, the agro- ecosystem turned into a moderate carbon source. The variations in NEE and ecosystem respiration (R eco ) were sensitive to changes in soil water content (SWC). When SWC ranged form 0.15 to 0.21 m3 m-3, we found a highly significant relationship between NEE and photosynthetically active radiation (PAR), and a highly significant relationship between R eco and soil temperature (T s ). However, the highly significant relationships were not observed when SWC was outside the range of 0.15-0.21 m3 m-3. Further, in spring, the R eco instantly responded to a rapid increase in SWC after effective rainfall events, which could induce 2 to 4-fold increase in daily R eco , whereas the R eco was also inhibited by heavy summer rainfall when soils were saturated. Accumulated R eco in summer fallow period decreased carbon fixed in growing season by 16- 25%, indicating that the period imposed negative impacts on annual carbon sequestration.
基金National Natural Science Foundation of China under contract No. 40075003The Prior Study of State Key Project for Basic Research "East Asian Monsoon Experiment".
文摘With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and after summer monsoon onset. It is discovered that, after summer monsoon onset, there are considerable changes in air-sea fluxes, especially in latent heat fluxes and net oceanic heat budget. Furthermore, the analyzed results of five synoptic stages are compared. And the characteristics of the flux transfer during different stages around onset of South China Sea monsoon are discussed. The flux change shows that there is an oceanic heat accumulating process during the pre-onset and the break period, as same as oceanic heat losing process during the onset period. Moreover, latent fluxes, the water vapor moving to the continent, even the rainfall appearance in Chinese Mainland also can be influenced by southwester. Comparing Xisha fluxes with those obtained from the Indian Ocean and the western Pacific Ocean, their differences may be observed. It is the reason why SSTs can keep stable over the South China Sea while they decrease quickly over the Arabian Sea and the Bay of Bengal after monsoon onset.
基金Supported by the National Natural Science Foundation of China(Nos.42122040,42076016)。
文摘Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.
基金supported by the National Natural Science Foundation of China (41301279, 41201041)the International Science & Technology Cooperation Program of China (2010DFA92720)the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-YW-T09)
文摘As an important component of ecosystem carbon(C) budgets, soil carbon dioxide(CO2) flux is determined by a combination of a series of biotic and abiotic processes. Although there is evidence showing that the abiotic component can be important in total soil CO2 flux(R(total)), its relative importance has never been systematically assessed. In this study, after comparative measurements of CO2 fluxes on sterilized and natural soils, the R(total) was partitioned into biotic flux(R(biotic)) and abiotic flux(R(abiotic)) across a broad range of land-cover types(including eight sampling sites: cotton field, hops field, halophyte garden, alkaline land, reservoir edge, native saline desert, dune crest and interdune lowland) in Gurbantunggut Desert, Xinjiang, China. The relative contribution of R(abiotic) to R(total), as well as the temperature dependency and predominant factors for R(total), R(biotic) and R(abiotic), were analyzed. Results showed that R(abiotic) always contributed to R(total) for all of the eight sampling sites, but the degree or magnitude of contribution varied greatly. Specifically, the ratio of R(abiotic) to R(total) was very low in cotton field and hops field and very high in alkaline land and dune crest. Statistically, the ratio of R(abiotic) to R(total) logarithmically increased with decreasing R(biotic), suggesting that R(abiotic) strongly affected R(total) when R(biotic) was low. This pattern confirms that soil CO2 flux is predominated by biotic processes in most soils, but abiotic processes can also be dominant when biotic processes are weak. On a diurnal basis, R(abiotic) cannot result in net gain or net loss of CO2, but its effect on transient CO2 flux was significant. Temperature dependency of R(total) varied among the eight sampling sites and was determined by the predominant processes(abiotic or biotic) of CO2 flux. Specifically, R(biotic) was driven by soil temperature while R(abiotic) was regulated by the change in soil temperature(ΔT). Namely, declining temperature(ΔT0) resulted in positive R(abiotic)(i.e., CO2 released from soil). Without recognition of R(abiotic), R(biotic) would be overestimated for the daytime and underestimated for the nighttime. Although R(abiotic) may not change the sum or the net value of daily soil CO2 exchange and may not directly constitute a C sink, it can significantly alter the transient apparent soil CO2 flux, either in magnitude or in temperature dependency. Thus, recognizing the fact that abiotic component in R(total) exists widely in soils has widespread consequences for the understanding of C cycling.
文摘Soil CO 2 emission from an arable soil was measured by closed chamber method to quantify year round soil flux and to develop an equation to predict flux using soil temperature, dissolved organic carbon(DOC) and soil moisture content. Soil CO 2 flux, soil temperature, DOC and soil moisture content were determined on selected days during the experiment from August 1999 to July 2000, at the Ecological Station of Red Soil, the Chinese Academy of Sciences, in a subtropical region of China. Soil CO 2 fluxes were generally higher in summer and autumn than in winter and spring, and had a seasonal pattern more similar to soil temperature and DOC than soil moisture. The estimation was 2 23 kgCO 2/(m 2·a) for average annual soil CO 2 flux. Regressed separately, the reasons for soil flux variability were 86 6% from soil temperature, 58 8% from DOC, and 26 3% from soil moisture, respectively. Regressed jointly, a multiple equation was developed by the above three variables that explained approximately 85 2% of the flux variance, however by stepwise regression, soil temperature was the dominant affecting soil flux. Based on the exponential equation developed from soil temperature, the predicted annual flux was 2 49 kgCO 2/(m 2·a), and essentially equal to the measured one. It is suggested the exponential relationship between soil flux and soil temperature could be used for accurately predicting soil CO 2 flux from arable soil in subtropical regions of China.
文摘The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System-(EOS-) Terra/Aqua satellite, as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water, heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05030402)the National Natural Science Foundation of China(Nos.U1406403,41121064,41376092)the Public Science and Technology Research Funds Projects of Ocean(No.200905012-9)
文摘The turbidity maximum zone(TMZ) is one of the most important regions in an estuary.However,the high concentration of suspended material makes it difficult to measure the partial pressure of CO_2(pCO_2) in these regions.Therefore,very little data is available on the pCO_2 levels in TMZs.To relatively accurately evaluate the CO_2 flux in an example estuary,we studied the TMZ and surrounding area in the Changjiang(Yangtze) River estuary.From seasonal cruises during February,August,November 2010,and May 2012,the pCO_2 in the TMZ and surrounding area was calculated from pH and total alkalinity(TA)measured in situ,from which the CO_2 flux was calculated.Overall,the TMZ and surrounding area acted as a source of atmosphere CO_2 in February and November,and as a sink in May and August.The average FCO_2was-9,-16,5,and 5 mmol/(m^2·d) in May,August,November,and February,respectively.The TMZ's role as a source or sink of atmosphere CO_2 was quite different to the outer estuary.In the TMZ and surrounding area,suspended matter,phytoplankton,and pH were the main factors controlling the FCO_2,but here the influence of temperature,salinity,and total alkalinity on the FCO_2 was weak.Organic carbon decomposition in suspended matter was the main reason for the region acting as a CO_2 source in winter,and phytoplankton production was the main reason the region was a CO_2 sink in summer.
文摘During the Huanghai Sea Circulation and Material Flux Expedition in Spring 1996, fco_2 in surface water and atmosphere was measured. The fco2 in surface water varied in a range from 220 to 360 uatm1) while atmospheric concentration was nearly constant at 360μatm, showing that the Huanghai Sea surface waters were undersaturated with respect to atmospheric Co during the time of investigation. A model was developed in this study in order to estimate the Co flux at the air-sea interface. The model incorporates the time-series variations of the distributions in SST (sea surface temperature), salinity, mixed-layer depth, atmospheric fco2, gas-transfer velocity, and CZCS chlorophyll concentration in the Huanghai Sea and was calibrated with the observed fco2 data. The primary parameter affecting fco2 in surface water is the variation of SST through time. The annual fluxes of Co are estimated as 0. 033 Gt C from the sea into the atmosphere and 0. 044 Gt C from the air into sea. The Huanghai Sea, thus behaves as a CO2 sink absorbing 0. 011 Gi C of CO2 a year. which.corresponds to about 0. 5 % of global oceanic absorption capacity.
文摘P CO 2 of air and seawater samples from the East China Sea (ECS) were measured in situ in autumn, 1994. Ocean currents, terrestrial fluviation, biological activities, etc.,P CO 2 characters in air and seawater were investigated. CO 2 flux and its character in the East China Sea are discussed on the basis of theP CO 2 profiles of air and seawater. It was clear that the nearshore was the source of CO 2; and that the outer sea area was the sink of CO 2; and that the shelf area of the ECS is a net sink for atmospheric CO 2 in autumn.
基金the World Climate Recruitment Programme’s (WCRP) Working Group on Coupled Modelling (WGCM)the Global Organization for Earth System Science Portals (GO-ESSP)+2 种基金jointly supported by the National Science Foundation of China (Grant Nos. 41991231, 91937302)the China 111 project (Grant No. B13045)supported by Supercomputing Center of Lanzhou University
文摘The measurement of atmospheric O_(2)concentrations and related oxygen budget have been used to estimate terrestrial and oceanic carbon uptake.However,a discrepancy remains in assessments of O_(2)exchange between ocean and atmosphere(i.e.air-sea O_(2)flux),which is one of the major contributors to uncertainties in the O_(2)-based estimations of the carbon uptake.Here,we explore the variability of air-sea O_(2)flux with the use of outputs from Coupled Model Intercomparison Project phase 6(CMIP6).The simulated air-sea O_(2)flux exhibits an obvious warming-induced upward trend(~1.49 Tmol yr−2)since the mid-1980s,accompanied by a strong decadal variability dominated by oceanic climate modes.We subsequently revise the O_(2)-based carbon uptakes in response to this changing air-sea O_(2)flux.Our results show that,for the 1990−2000 period,the averaged net ocean and land sinks are 2.10±0.43 and 1.14±0.52 GtC yr−1 respectively,overall consistent with estimates derived by the Global Carbon Project(GCP).An enhanced carbon uptake is found in both land and ocean after year 2000,reflecting the modification of carbon cycle under human activities.Results derived from CMIP5 simulations also investigated in the study allow for comparisons from which we can see the vital importance of oxygen dataset on carbon uptake estimations.
基金supported by the National Natural Science Foundation of China(31670476 and 31100284)the Fundamental Research Funds for the Central Universities(2572016CA02)
文摘The CO_2 released from respiring cells in woody tissues of trees can contribute to one of three fluxes:efflux to the atmosphere(E_A),internal xylem sap transport flux(F_T),and storage flux(DS).Adding those fluxes together provides an estimate of actual stem respiration(R_S).We know that the relative proportion of CO_2 in those fluxes varies greatly among tree species,but we do not yet have a clear understanding of the causes for this variation.One possible explanation is that species differ in stem radial CO_2 conductance(g_c).A high g_c would favor the E_A pathway and a low g_cwould favor the F_Tpathway.However,g_chas only been measured once in situ and only in a single tree species.We measured g_cusing two methods in stems of Fraxinus mandshurica Rupr.(ash)and Betula platyphylla Suk.(birch)trees in situ,along with R_S,E_A,F_T and DS.Stem radial CO_2 conductance was substantially greater in ash trees than in birch trees.Corresponding to that finding,in ash trees over 24 h,E_Aconstituted the entire flux of respired CO_2 ,and F_Twas negative,indicating that additional CO_2 ,probably transported from the root system via the xylem,was also diffusing into the atmosphere.In ash trees,F_T was negative over the entire 24 h,and this study represents the first time that has been reported.The addition of xylem-transported CO_2 to E_A caused E_Ato be 9% higher than the actual R_Sover the diel measurement period.Birch trees,which had lower g_c,also had a more commonly seen pattern,with E_A accounting for about 80% of the CO_2 released from local cell respiration and F_T accounting for the remainder.The inorganic carbon concentration in xylem sap was also lower in ash trees than in birch trees:2.7 versus 5.3 mmol L^(-1),respectively.Our results indicate that stem CO_2 conductance could be a very useful measurement to help explain differences among species in the proportion of respired CO_2 that remains in the xylem or diffuses into the atmosphere.
基金This paper was supported by the National Basic Research Program of China (2006CB400506).
文摘A comparison between simulated land surface fluxes and observed eddy covariance (EC) measurements was conducted to validate Integrated Biosphere Simulator (IBIS) at Tongyu field observation station (44°25'N, 122°52'E) in Jilin Province, China. Results showed that the IBIS model could reproduce net ecosystem CO2 exchange (NEE), sensible and latent heat fluxes reasonably, as indicated by correlation coefficients exceeding the significant level of 0.05. It was also evident that the NEE and sensible heat fluxes were characterized by diurnal and seasonal variation both in the grassland and the cropland ecosystems, while the latent heat fluxes correlated with evapotranspiration, only took on the diurnal variation during the growing season. Moreover, both sensible heat fluxes and the latent heat fluxes were larger in the cropland ecosystem than that in the degraded grassland ecosystem. This different characteristic was possibly correlated with vegetation growing situation in the two kinds of ecosystems. A close agreement between observation and simulation on NEE, sensible heat fluxes and latent heat flux was obtained both in the degraded grassland and the cropland ecosystems. In addition, the annual NEE in the model was overestimated by 23.21% at the grassland and 27.43% at the cropland, sensible heat flux with corresponding 9.90% and 11.98%, respectively, and the annual latent heat flux was underestimated by 4.63% and 3.48%, respectively.
文摘Although the annual global sea-air CO2 flux has been estimated extensively with various wind-dependent-k parameterizations,uncertainty still exists in the estimates. The sea-state-dependent-k parameterization is expected to improve the uncertainty existing in these estimates. In the present study,the annual global sea-air CO2 flux is estimated with the sea-state-dependent-k parameterization proposed by Woolf(2005) ,using NOAA/NCEP reanalysis wind speed and hindcast wave data from 1998 to 2006,and a new estimate,-2.18 Gt C year-1,is obtained,which is comparable with previous estimates with biochemical methods. It is interesting to note that the averaged value of previous estimates with various wind-dependent-k parameterizations is almost identical to that of previous estimates with biochemical methods by various authors,and that the new estimate is quite consistent with these averaged estimates.
文摘Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects, mean vertical velocity and perturbation of the density of dry air are two critical parameters in treating those physical processes responsible for density variations. Based on various underlying assumptions, different studies have obtained different formulas for the mean vertical velocity and perturbation of the density of dry air, leading to a number of approaches to correct density effects. In this study, we re-examine physical processes related to different assumptions that are made to formulate the density effects. Specifically, we re-examine the assumptions of a zero dry air flux and a zero moist air flux in the surface layer, used for treating density variations, and their implications for correcting density effects. It is found that physical processes in relation to the assumption of a zero dry air flux account for the influence of dry air expansion/compression on density variations. Meanwhile, physical processes in relation to the assumption of a zero moist air flux account for the influence of moist air expansion/compression on density variations. In this study, we also re-examine mixing ratio issues. Our results indicate that the assumption of a zero dry air flux favors the use of the mixing ratio relative to dry air, while the assumption of a zero moist air flux favors the use of the mixing ratio relative to the total moist air. Additionally, we compare different formula for the mean vertical velocity, generated by air-parcel expansion/compression, and for density effect corrections using eddy covariance data measured over three boreal ecosystems.
基金supported by the National Natural Science Foundation of China (Grant nos.41576181 and 41176171)Specialized Research Fund for the Doctoral Program of Higher Education (Grant no.20123402110026)
文摘The Arctic ecosystem, especially High Arctic tundra, plays a unique role in the global carbon cycle because of amplified warming in the region. However, relatively little research has been conducted in High Arctic tundra compared with other global ecosystems. In the present work, summertime net ecosystem exchange (NEE), ecosystem respiration (ER), and photosynthesis were investigated at six tundra sites (DM1-DM6) on Ny-A.lesund in the High Arctic. NEE at the tundra sites varied between a weak sink and strong source (-3.3 to 19.0 mg CO2·m-2.h-1). ER and gross photosynthesis were 42.8 to 92.9 mg CO2·m-2·h-1 and 54.7 to 108.7 mg CO2·m-2·h-1, respectively. The NEE variations showed a significant correlation with photosynthesis rates, whereas no significant correlation was found with ecosystem respiration, indicating that NEE variations across the region were controlled by differences in net uptake of CO2 owing to photosynthesis, rather than by variations in ER. A Qm value of 1.80 indicated weak temperature sensitivity of tundra ER and its response to future global warming. NEE and gross photosynthesis also showed relatively strong correlations with C/N ratio. The tundra ER, NEE, and gross photosynthesis showed variations over slightly waterlogged wetland tundra, mesic and dry tundra. Overall, soil temperature, nutrients and moisture can be key effects on CO2 fluxes, ecosystem respiration, and NEE in the High Arctic.