期刊文献+
共找到332篇文章
< 1 2 17 >
每页显示 20 50 100
A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model 被引量:6
1
作者 ZHANG Zeguo YIN Jianchuan +2 位作者 WANG Nini HU Jiangqiang WANG Ning 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期94-105,共12页
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat... An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability. 展开更多
关键词 tidal level prediction harmonious analysis method adaptive network-based fuzzy inference system correlation analysis
在线阅读 下载PDF
APPLICATION STUDY ON ADAPTIVE NEURAL FUZZY INFERENCE MODEL IN COMPLEX SOCIAL-TECHNICAL SYSTEM
2
作者 冯绍红 李东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第4期393-399,共7页
The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re... The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields. 展开更多
关键词 complex adaptive system adaptive neural fuzzy inference system (anfis complex social-technical system organizational efficiency
在线阅读 下载PDF
Comparison between Neural Network and Adaptive Neuro-Fuzzy Inference System for Forecasting Chaotic Traffic Volumes
3
作者 Jiin-Po Yeh Yu-Chen Chang 《Journal of Intelligent Learning Systems and Applications》 2012年第4期247-254,共8页
This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the ... This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the input vector, one hidden layer and output layer. Bayesian regularization is employed to obtain the effective number of neurons in the hidden layer. The input variables and target of the adaptive neuro-fuzzy inference system are the same as those of the neural network. The data clustering technique is used to group data points so that the membership functions will be more tailored to the input data, which in turn greatly reduces the number of fuzzy rules. Numerical results indicate that these two models have almost the same accuracy, while the adaptive neuro-fuzzy inference system takes more time to train. It is also shown that although the effective number of neurons in the hidden layer is less than half the number of the input elements, the neural network can have satisfactory performance. 展开更多
关键词 NEURAL network adaptive NEURO-fuzzy inference System CHAOTIC TRAFFIC VOLUMES State Space Reconstruction
在线阅读 下载PDF
Study of impact from the genetic algorithm combined adaptive network-based fuzzy inference system model on business performance
4
作者 HUANG Jui-Ching PAN Wen-Tsao 《通讯和计算机(中英文版)》 2008年第10期52-57,共6页
关键词 遗传算法 计算方法 模糊系统 网络 电子商务
在线阅读 下载PDF
Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System 被引量:11
5
作者 JIA Zhenyuan MA Jianwei WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期200-208,共9页
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass... Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting. 展开更多
关键词 characteristics prediction rough set adaptive neuro-fuzzy inference system electro-hydraulic servo valve artificial neural networks
在线阅读 下载PDF
An Adaptive Neuro-Fuzzy Inference System to Improve Fractional Order Controller Performance
6
作者 N.Kanagaraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3213-3226,共14页
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant... The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria. 展开更多
关键词 adaptive neuro-fuzzy inference system(anfis) fuzzy logic controller fractional order control PID controller first order time delay system
在线阅读 下载PDF
The Development of an Alternative Method for the Sovereign Credit Rating System Based on Adaptive Neuro-Fuzzy Inference System
7
作者 Hakan Pabuccu Tuba Yakici Ayan 《American Journal of Operations Research》 2017年第1期41-55,共15页
The main purpose of this article is to determine the factors affecting credit rating and to develop the credit rating system based on statistical methods, fuzzy logic and artificial neural network. Variables used in t... The main purpose of this article is to determine the factors affecting credit rating and to develop the credit rating system based on statistical methods, fuzzy logic and artificial neural network. Variables used in this study were determined by the literature review and then the number of them was reduced by using stepwise regression analysis. Resulting variables were used as independent variables in the logistic model and as input variables for ANN and ANFIS model. After evaluating the models and comparing with each other, the ANFIS model was chosen as the best model to forecast credit rating. Rating determination was made for the countries that haven’t had a credit rating. Consequently, the ANFIS model made consistent, reliable and successful rating forecasts for the countries. 展开更多
关键词 Credit Rating Logistic Regression (LR) Neural networks (ANN) adaptive Neuro-fuzzy inference System (anfis) Comparative Studies
在线阅读 下载PDF
基于ANFIS-LSSVM的计算颜色恒常性算法研究
8
作者 王兴光 罗运辉 +1 位作者 王庆 陈业红 《齐鲁工业大学学报》 CAS 2024年第2期62-72,共11页
计算颜色恒常性是指消除场景光源的影响从而再现物体真实颜色的能力。目前,深度神经网络的应用使颜色恒常性精度显著提高,但大多数深度学习算法训练时间长、计算复杂度高,且需要大量的训练样本。针对此问题,提出了一种结合自适应神经模... 计算颜色恒常性是指消除场景光源的影响从而再现物体真实颜色的能力。目前,深度神经网络的应用使颜色恒常性精度显著提高,但大多数深度学习算法训练时间长、计算复杂度高,且需要大量的训练样本。针对此问题,提出了一种结合自适应神经模糊推理系统(ANFIS)和最小二乘支持向量机(LSSVM)的简单有效的方法。该方法分为训练和预测两个阶段:在训练阶段,首先提取图像特征分别训练ANFIS、LSSVM两种初始光源估计模型,接着利用核函数变换将两种模型融合,然后利用预留训练样本进一步训练得到多元线性回归光源估计模型;在预测阶段,提取测试图像特征后,直接由训练所得模型预测得到该测试图像最终的场景光源颜色值。实验结果表明,与深度学习方法相比,本文所提方法计算复杂度较低,即使在小训练样本中也能有很好的光源估计性能。 展开更多
关键词 计算颜色恒常性 光源估计 自适应神经模糊推理系统(anfis) 最小二乘支持向量机(LSSVM)
在线阅读 下载PDF
改进ANFIS对静压箱热误差建模研究
9
作者 钱雨鲲 李岩舟 +3 位作者 杨正昊 秦承斌 王佳宁 吴媚 《机械科学与技术》 CSCD 北大核心 2024年第10期1778-1785,共8页
为了减小静压箱排气孔温度不均匀对薄膜拉伸加工时的影响,通过建立热误差模型,来分析静压箱在不同输入参数下排气孔的温场情况。采用SOM-GRA相结合的综合算法得出最优测温点,以保证输入模型的数据具有代表性,将测温点数量由20降至3。利... 为了减小静压箱排气孔温度不均匀对薄膜拉伸加工时的影响,通过建立热误差模型,来分析静压箱在不同输入参数下排气孔的温场情况。采用SOM-GRA相结合的综合算法得出最优测温点,以保证输入模型的数据具有代表性,将测温点数量由20降至3。利用ANFIS模型建立静压箱的热误差模型,并通过RF算法优化ANFIS中隶属度函数数量参数,将实验验证过的数值模拟数据作为输入的训练数据。预测结果表明较原ANFIS模型、BP模型和RBF模型MAE值分别下降了22.43%、59.97%和49.87%,该优化预测模型具有更高的精度。 展开更多
关键词 热误差模型 自组织映射网络 灰色关联分析 随机森林 自适应神经模糊推理系统
在线阅读 下载PDF
基于SSA-ANFIS模型的BDS-3卫星钟差短期预报
10
作者 蔡成林 吴明杰 吕开慧 《大地测量与地球动力学》 CSCD 北大核心 2024年第9期926-931,共6页
针对卫星钟差时间序列具有非线性和非平稳的特性,以及趋势分量与随机分量相互干扰可能会影响预报精度的问题,提出一种以奇异谱分析(singular spectrum analysis, SSA)为基础,融合自适应模糊神经网络(adaptive neuro-fuzzy inference sys... 针对卫星钟差时间序列具有非线性和非平稳的特性,以及趋势分量与随机分量相互干扰可能会影响预报精度的问题,提出一种以奇异谱分析(singular spectrum analysis, SSA)为基础,融合自适应模糊神经网络(adaptive neuro-fuzzy inference system, ANFIS)的卫星钟差预报模型SSA-ANFIS。首先利用SSA对钟差一次差序列进行分解和重构,从而得到趋势项和残差项;然后,使用ANFIS对重构分量进行预报,并将预报结果叠加还原,得到最终预报钟差值;最后,通过实验对比SSA-ANFIS与GM、QP、LSTM和ANFIS模型的预报效果。结果表明,相较于LSTM和ANFIS模型,该模型预报精度分别提高25.7%~40.7%和39.4%~45.7%。 展开更多
关键词 卫星钟差 奇异谱分析 自适应模糊神经网络模型 钟差预报
在线阅读 下载PDF
Diagnosis of Neem Leaf Diseases Using Fuzzy-HOBINM and ANFIS Algorithms
11
作者 K.K.Thyagharajan I.Kiruba Raji 《Computers, Materials & Continua》 SCIE EI 2021年第11期2061-2076,共16页
This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model(F-HOBINM)and adaptive neuro classifier(ANFIS).India exports USD 0.28-million worth o... This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model(F-HOBINM)and adaptive neuro classifier(ANFIS).India exports USD 0.28-million worth of neem leaf to the UK,USA,UAE,and Europe in the form of dried leaves and powder,both of which help reduce diabetesrelated issues,cardiovascular problems,and eye disorders.Diagnosing neem leaf disease is difficult through visual interpretation,owing to similarity in their color and texture patterns.The most common diseases include bacterial blight,Colletotrichum and Alternaria leaf spot,blight,damping-off,powdery mildew,Pseudocercospora leaf spot,leaf web blight,and seedling wilt.However,traditional color and texture algorithms fail to identify leaf diseases due to irregular lumps and surfaces,and rough ridges,as the classification time involved takes as long as a week.The proposed F-HOBINM algorithm recognizes the leaf intensity through the leaky capacitor,and uses subjective intensity and physical stimulus to interpret the diagnosis.Further,the processed leaf images from the HOBINM algorithm are applied to the ANFIS classifier to identify neem leaf diseases.The experimental results show 92.18%accuracy from a database of 1,462 neem leaves. 展开更多
关键词 Higher-order neural network fuzzy c-means clustering Mamdani fuzzy inference system adaptive neuro-fuzzy classifier
在线阅读 下载PDF
Identification and novel adaptive fuzzy control of nonlinear system for PEMFC stack
12
作者 卫东 许宏 朱新坚 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第2期186-192,共7页
The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are t... The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are too complicated to be effectively applied to on-line control. In this paper, input-output data and operating experiences will be used to establish PEMFC stack model and operating temperature control system. An adaptive learning algorithm and a nearest-neighbor clustering algorithm are applied to regulate the parameters and fuzzy rules so that the model and the control system are able to obtain higher accuracy. In the end, the simulation and the experimental results are presented and compared with traditional PID and fuzzy control algorithms. 展开更多
关键词 proton exchange membrane fuel cell (PEMFC) adaptive neural-networks fuzzy infer system anfis) adaptive neural-network learning algorithm (ANA) nearest-neighbor clustering algorithm (NCA)
在线阅读 下载PDF
应用自适应神经模糊推理系统(ANFIS)的ET_0预测 被引量:18
13
作者 蔡甲冰 刘钰 +1 位作者 雷廷武 许迪 《农业工程学报》 EI CAS CSCD 北大核心 2004年第4期13-16,共4页
参照作物腾发量是计算作物需水量和进行灌溉预报的基础要素。该文利用自适应神经模糊推理系统(ANFIS)所具有的直接通过模糊推理实现输入层与输出层之间非线性映射能力,和神经网络的信息存储和学习能力,将其应用于参照作物腾发量预测中... 参照作物腾发量是计算作物需水量和进行灌溉预报的基础要素。该文利用自适应神经模糊推理系统(ANFIS)所具有的直接通过模糊推理实现输入层与输出层之间非线性映射能力,和神经网络的信息存储和学习能力,将其应用于参照作物腾发量预测中。根据相关分析,输入变量选择日照时数和日最高气温;用5年共1827个数据组对系统进行训练,建立了参照作物腾发量预测系统。利用该系统对近年213个数据组进行了实际预测,与Penman-Monteith方法计算结果进行比较,结果相关性良好。 展开更多
关键词 ET0 预测 anfis 模糊推理 神经网络
在线阅读 下载PDF
减法聚类-ANFIS在网络故障诊断的应用研究 被引量:14
14
作者 蒋静芝 孟相如 +1 位作者 李欢 庄绪春 《计算机工程与应用》 CSCD 北大核心 2011年第8期76-78,86,共4页
提出了一种基于减法聚类-自适应模糊神经网络(ANFIS)的网络故障诊断建模方法。减法聚类算法生成初始模糊推理系统,ANFIS建立网络故障诊断原始模型,应用混合算法对模糊规则的参数进行训练并建立最终的模型。仿真实验表明基于减法聚类-AN... 提出了一种基于减法聚类-自适应模糊神经网络(ANFIS)的网络故障诊断建模方法。减法聚类算法生成初始模糊推理系统,ANFIS建立网络故障诊断原始模型,应用混合算法对模糊规则的参数进行训练并建立最终的模型。仿真实验表明基于减法聚类-ANFIS的建模方法是有效的;通过仿真结果比较,减法聚类-ANFIS的网络故障诊断能力及收敛速度均优于BP神经网络,更适合作为网络故障诊断模型。 展开更多
关键词 网络故障诊断 减法聚类 自适应模糊神经网络 模糊逻辑 神经网络
在线阅读 下载PDF
ANFIS及其在控制系统中的应用 被引量:13
15
作者 刘怀国 孙建华 +1 位作者 张冰 张尤赛 《华东船舶工业学院学报》 EI 2001年第5期27-31,共5页
详细介绍了模糊推理系统FIS(FuzzyInferenceSystem)和自适应神经元模糊推理系统ANFIS(AdeptiveNeuro fuzzyInferenceSystem)的基本概念 ,并着重论述了ANFIS在控制领域中的应用。最后举了一组通过样本数据对ANFIS进行训练的例子。实验结... 详细介绍了模糊推理系统FIS(FuzzyInferenceSystem)和自适应神经元模糊推理系统ANFIS(AdeptiveNeuro fuzzyInferenceSystem)的基本概念 ,并着重论述了ANFIS在控制领域中的应用。最后举了一组通过样本数据对ANFIS进行训练的例子。实验结果表明 ,训练后的ANFIS能很好的控制实际的对象。 展开更多
关键词 模糊推理系统 神经网络 模糊控制 anfis 控制系统 应用
在线阅读 下载PDF
基于ANFIS的高速列车制动控制仿真研究 被引量:12
16
作者 王卓 王艳辉 +1 位作者 贾利民 李平 《铁道学报》 EI CAS CSCD 北大核心 2005年第3期113-117,共5页
将自适应神经模糊推理系统应用到高速列车制动控制当中,实现了高速列车制动过程的智能控制,具有控制安全性好,停车误差小,同时在模拟人操作方面有很好的效果。并且在MATLAB环境中进行了仿真研究,将ANFIS与SIMULINK有机地结合在一起,充... 将自适应神经模糊推理系统应用到高速列车制动控制当中,实现了高速列车制动过程的智能控制,具有控制安全性好,停车误差小,同时在模拟人操作方面有很好的效果。并且在MATLAB环境中进行了仿真研究,将ANFIS与SIMULINK有机地结合在一起,充分地发挥了各自的优势,简化了仿真过程。仿真结果表明了该方法的有效性与正确性。 展开更多
关键词 高速列车 自适应神经模糊推理系统(anfis) 制动控制 仿真
在线阅读 下载PDF
基于ANFIS-GM的心墙堆石坝变形预测 被引量:10
17
作者 钟登华 刘昊元 +3 位作者 佟大威 刘玉玺 吴斌平 刘肖军 《水利水电技术》 CSCD 北大核心 2015年第3期1-6,16,共7页
本文提出采用自适应网络模糊推理系统(adaptive neuro-fuzzy inference system,ANFIS)优化灰色理论模型(Grey Model,GM)的建模方法来研究预测大坝变形。ANFIS-GM模型综合考虑了由于资料不完备、考虑因素不全面而产生的灰色特性和各影响... 本文提出采用自适应网络模糊推理系统(adaptive neuro-fuzzy inference system,ANFIS)优化灰色理论模型(Grey Model,GM)的建模方法来研究预测大坝变形。ANFIS-GM模型综合考虑了由于资料不完备、考虑因素不全面而产生的灰色特性和各影响因素与大坝变形之间存在的模糊特性。该模型相比于GM模型不仅考虑了大坝变形的灰色特性,而且还考虑了水位变化速率、填筑速率与大坝变形的模糊关系。通过心墙堆石坝沉降变形的实例分析,表明该模型比GM模型误差更小。同时,该模型具有处理小样本,自组织、自学习、自适应,模糊推理的综合能力。 展开更多
关键词 心墙堆石坝 大坝变形 灰色理论 自适应网络模糊推理系统 anfis-GM模型
在线阅读 下载PDF
开关磁阻电机自适应模糊神经网络系统(ANFIS)无位置传感器控制 被引量:11
18
作者 吴江潦 易灵芝 +2 位作者 彭寒梅 刘香 邓文浪 《煤炭学报》 EI CAS CSCD 北大核心 2010年第8期1401-1405,共5页
提出一种基于有限元模型的开关磁阻电机自适应模糊神经网络系统(ANFIS)无位置传感器控制的新方法。自适应模糊神经网络系统以相绕组的电流和磁链为输入,以转子位置角度为输出,从而建立起电流、磁链和转子位置角度的非线性映射关系。网... 提出一种基于有限元模型的开关磁阻电机自适应模糊神经网络系统(ANFIS)无位置传感器控制的新方法。自适应模糊神经网络系统以相绕组的电流和磁链为输入,以转子位置角度为输出,从而建立起电流、磁链和转子位置角度的非线性映射关系。网络训练的样本数据来自于有限元模型分析,它具有足够的精度,且不需要测量仪器和线路布置,不受环境干扰因素影响,能够大幅减少试验成本,缩短试验周期。仿真和实验结果表明,由自适应模糊神经网络获得的角度信号和由位置传感器获得的角度信号相比误差较小,电机能够准确换相,且输出转矩波动小,转速曲线平滑,电机在无位置传感器下运行良好。 展开更多
关键词 开关磁阻电机 自适应模糊神经网络系统 无位置传感器 有限元模型
在线阅读 下载PDF
基于ANFIS的铝合金铣削加工表面粗糙度预测模型研究 被引量:17
19
作者 苏宇 何宁 +1 位作者 武凯 李亮 《中国机械工程》 EI CAS CSCD 北大核心 2005年第6期475-479,共5页
分析以往建立表面粗糙度预测模型方法的不足,采用自适应神经模糊推理系统(ANFIS)建立了铝合金铣削加工表面粗糙度预测模型。经检验,该模型预测精度高,泛化能力强,且可简便预测铣削参数对已加工表面的表面粗糙度的影响,有助于准确认识已... 分析以往建立表面粗糙度预测模型方法的不足,采用自适应神经模糊推理系统(ANFIS)建立了铝合金铣削加工表面粗糙度预测模型。经检验,该模型预测精度高,泛化能力强,且可简便预测铣削参数对已加工表面的表面粗糙度的影响,有助于准确认识已加工表面质量随铣削参数的变化规律,为切削参数的优选和表面质量的控制提供了依据。 展开更多
关键词 自适应神经模糊推理系统(anfis) 表面粗糙度 预测 铣削
在线阅读 下载PDF
基于ABAQUS-ANFIS的露天矿边坡可靠度分析 被引量:8
20
作者 曾晟 杨仕教 +2 位作者 孙冰 戴剑勇 黄伟 《煤炭学报》 EI CAS CSCD 北大核心 2006年第4期437-441,共5页
借助ABAQUS的强大非线性功能和丰富的单元库,建立了平面破坏型边坡有限元分析模型.并用该模型进行了边坡稳定状态的数值实验研究,以获得进行ANFIS分析的数据.同时建立了基于自适应模糊神经网络模型的抗滑力和下滑力的求解方法模型,并用M... 借助ABAQUS的强大非线性功能和丰富的单元库,建立了平面破坏型边坡有限元分析模型.并用该模型进行了边坡稳定状态的数值实验研究,以获得进行ANFIS分析的数据.同时建立了基于自适应模糊神经网络模型的抗滑力和下滑力的求解方法模型,并用Matlab语言编写了实现可靠度的计算程序,对湖南雪峰水泥原料矿山的露天边坡进行可靠度分析.研究表明:该方法具有避免编写冗长的有限元计算程序,同时具有节省机时,计算精度高的优点. 展开更多
关键词 边坡稳定性 可靠性 非线性有限元 自适应神经模糊推理系统
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部