期刊文献+
共找到20,141篇文章
< 1 2 250 >
每页显示 20 50 100
Adaptive fault-tolerant controller design for airbreathing hypersonic vehicle with input saturation 被引量:12
1
作者 Haibin Sun Shihua Li Changyin Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期488-499,共12页
The problem of fault-tolerant control is discussed for the longitudinal model of an airbreathing hypersonic vehicle (AHV) with actuator faults and external disturbances. Firstly, a fault-tolerant control strategy is... The problem of fault-tolerant control is discussed for the longitudinal model of an airbreathing hypersonic vehicle (AHV) with actuator faults and external disturbances. Firstly, a fault-tolerant control strategy is presented for the longitudinal model of an AHV, which guarantees that velocity and altitude track their reference trajectories at an exponential convergence rate. However, this method needs to know the minimum value of the actuator efficiency factor and the upper bound of the external disturbances, which makes it not easy to implement. Then an improved adaptive fault-tolerant control scheme is proposed, where two adaptive laws are employed to estimate the upper bound of the external disturbances and the minimum value of the actuator efficiency factor, respectively. Secondly, the problem of designing a control scheme with control constraints is further considered, and a new adaptive fault-tolerant control strategy with input saturation is designed to guarantee that velocity and altitude track their reference trajectories. Finally, simulation results are given to show the effectiveness of the proposed methods. 展开更多
关键词 airbreathing hypersonic vehicle (AHV) fault-tolerant control (FTC) adaptive control input saturation.
在线阅读 下载PDF
Finite-time Adaptive Fault-tolerant Control for Nonlinear Systems With Multiple Faults 被引量:8
2
作者 Huanqing Wang Wen Bai Peter Xiaoping Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1417-1427,共11页
This paper focuses on the problem of adaptive finitetime fault-tolerant control for a class of non-lower-triangular nonlinear systems.The faults encountered in the control system include the actuator faults and the ab... This paper focuses on the problem of adaptive finitetime fault-tolerant control for a class of non-lower-triangular nonlinear systems.The faults encountered in the control system include the actuator faults and the abrupt system fault.By applying backstepping design and neural networks approximation,an adaptive finite-time fault-tolerant control scheme is developed.It is shown that the proposed controller ensures that all signals in the closed-loop system are semi-globally practically finite-time stable and the track-ing error converges to a small neighborhood around the origin within finite time.The simulation is carried out to explain the validity of the developed strategy. 展开更多
关键词 adaptive control BACKSTEPPING FAULTS FINITE TIME
在线阅读 下载PDF
Adaptive fault-tolerant control of linear time-invariant systems in the presence of actuator saturation 被引量:2
3
作者 Wei GUAN Guanghong YANG 《控制理论与应用(英文版)》 EI 2009年第3期321-327,共7页
This paper studies the problem of designing adaptive fault-tolerant controllers for linear tirne-invariant systems with actuator saturation. New methods for designing indirect adaptive fault-tolerant controllers via s... This paper studies the problem of designing adaptive fault-tolerant controllers for linear tirne-invariant systems with actuator saturation. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updating automatically to compensate the fault effects on systems. The designs are developed in the framework of linear matrix inequality (LMI) approach, which can enlarge the domain of attraction of closed-loop systems in the cases of actuator saturation and actuator failures. Two examples are given to illustrate the effectiveness of the design method. 展开更多
关键词 Actuator saturation Linear systems adaptive control fault-tolerant control Domain of attraction LMIS
在线阅读 下载PDF
Adaptive fault-tolerant control based on boundary estimation for space robot under joint actuator faults and uncertain parameters 被引量:4
4
作者 Rong-Hua Lei Li Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期964-971,共8页
Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant co... Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme. 展开更多
关键词 Space robot Actuator faults Uncertain parameters Effectiveness factor fault-tolerant control
在线阅读 下载PDF
Adaptive fault-tolerant control of linear systems with actuator saturation and L_2-disturbances 被引量:1
5
作者 Wei GUAN Guanghong YANG 《控制理论与应用(英文版)》 EI 2009年第2期119-126,共8页
This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is meas... This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is measured by an optimal index. The notion of an adaptive H-infinity performance index is proposed to describe the disturbance attenuation performances of closed-loop systems. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updated automatically to compensate for the fault effects on systems. The designs are developed in the framework of the linear matrix inequality (LMI) approach, which can guarantee the disturbance tolerance ability and adaptive H-infinity performances of closed-loop systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method. 展开更多
关键词 Actuator saturation Linear systems adaptive control fault-tolerant control Disturbance tolerance LMIS H-infinity control
在线阅读 下载PDF
Adaptive fault-tolerant control of heavy lift launch vehicle via differential algebraic observer 被引量:2
6
作者 ZHAO Dang-jun JIANG Bing-yan 《Journal of Central South University》 SCIE EI CAS 2013年第8期2142-2150,共9页
A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decou... A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults. 展开更多
关键词 fault-tolerant control heavy lifting launch vehicle uniformly ultimately bounded attitude control differential algebra numerical differentiation
在线阅读 下载PDF
Distributed adaptive fault-tolerant control against actuator faults and lossy interconnection links
7
作者 Xiaozheng JIN Guanghong YANG 《控制理论与应用(英文版)》 EI 2009年第4期411-418,共8页
This paper presents an adaptive method to solve the robust fault-tolerant control (FTC) problem for a class of large scale systems against actuator failures and lossy interconnection links. In terms of the special d... This paper presents an adaptive method to solve the robust fault-tolerant control (FTC) problem for a class of large scale systems against actuator failures and lossy interconnection links. In terms of the special distributed architectures, the adaptation laws are proposed to estimate the unknown eventual faults of actuators and interconnections, constant external disturbances, and controller parameters on-line. Then a class of distributed state feedback controllers are constructed for automatically compensating the fault and disturbance effects on systems based on the information from adaptive schemes. On the basis of Lyapunov stability theory, it shows that the resulting adaptive closed-loop large-scale system can be guaranteed to be asymptotically stable in the presence of uncertain faults of actuators and interconnections, and constant disturbances. The proposed design technique is finally evaluated in the light of a simulation example. 展开更多
关键词 fault-tolerant control Distributed state feedback adaptive control Asymptotic stability
在线阅读 下载PDF
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems 被引量:1
8
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME Fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
在线阅读 下载PDF
Adaptive fault-tolerant control for non-minimum phase hypersonic vehicles based on adaptive dynamic programming 被引量:1
9
作者 Le WANG Ruiyun QI Bin JIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期290-311,共22页
In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on t... In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on the output redefinition method and Adaptive Dynamic Programming(ADP).The intelligent FTC scheme consists of two main parts:a basic fault-tolerant and stable controller and an ADP-based supplementary controller.In the basic FTC part,an output redefinition approach is designed to make zero-dynamics stable with respect to the new output.Then,Ideal Internal Dynamic(IID)is obtained using an optimal bounded inversion approach,and a tracking controller is designed for the new output to realize output tracking of the nonminimum phase HSV system.For the ADP-based compensation control part,an ActionDependent Heuristic Dynamic Programming(ADHDP)adopting an actor-critic learning structure is utilized to further optimize the tracking performance of the HSV control system.Finally,simulation results are provided to verify the effectiveness and efficiency of the proposed FTC algorithm. 展开更多
关键词 Hypersonic vehicle fault-tolerant control Non-minimum phase system adaptive control Nonlinear control adaptive dynamic programming
原文传递
Observed-based adaptive neural tracking control for nonlinear systems with unknown control directions and input delay
10
作者 DENG Yuxuan WANG Qingling 《Journal of Systems Engineering and Electronics》 2025年第1期269-279,共11页
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta... Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach. 展开更多
关键词 adaptive neural network dynamic surface control unknown control direction input delay
在线阅读 下载PDF
Adaptive fault-tolerant control of high-speed maglev train suspension system with partial actuator failure: design and experiments
11
作者 Yougang SUN Fengxing LI +2 位作者 Guobin LIN Junqi XU Zhenyu HE 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第3期272-283,共12页
High-speed maglev trains will play an important role in the high-speed transportation system in the near future.However,under the conditions of strong magnetic fields and continuous operation,the actuators of the high... High-speed maglev trains will play an important role in the high-speed transportation system in the near future.However,under the conditions of strong magnetic fields and continuous operation,the actuators of the high-speed maglev train suspension system are prone to lose partial effectiveness,which makes the suspension control problem challenging.In addition,most existing fault-tolerant control(FTC)methods for suspension systems require linearization around the equilibrium points during the controller design or stability analysis.Therefore,from a practical perspective,this study presents a novel nonlinear FTC strategy with adaptive compensation for high-speed maglev train suspension systems.First,a nonlinear dynamic model of the suspension system based on join-structure is established and the actuator failures are described.Then,a nonlinear fault-tolerant suspension control law with an adaptive update law is designed to achieve stable suspension against partial actuator failure.The Lyapunov theory and extended Barbalat lemma are utilized to rigorously prove the closed-loop asymptotic stability even if there is partial actuator failure,without any approximation to the original nonlinear dynamics.Finally,hardware experimental results are included to demonstrate the effectiveness of the proposed approach. 展开更多
关键词 High-speed maglev transportation Suspension control system adaptive fault-tolerant control(FTC) Partial actuator failure MECHATRONICS
原文传递
Robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft with actuator saturation 被引量:15
12
作者 Xiaoliang WANG Changle XIANG +1 位作者 Homayoun NAJJARAN Bin XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第6期1298-1310,共13页
This paper is concerned with the robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft under system uncertainty, mismatched disturbance, and actuator saturation.For the proposed aircraft, comp... This paper is concerned with the robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft under system uncertainty, mismatched disturbance, and actuator saturation.For the proposed aircraft, comprehensive controllability analysis is performed to evaluate the controllability of each state as well as the margin to reject mismatched disturbance without any knowledge of the controller. Mismatched disturbance attenuation is ensured through a structured Hinfinity controller tuned by a non-smooth optimization algorithm. Embedded with the H-infinity controller, an adaptive control law is proposed in order to mitigate matched system uncertainty and actuator fault. Input saturation is also considered by the modified reference model. Numerical simulation of the novel ducted fan aircraft is provided to illustrate the effectiveness of the proposed method. The simulation results reveal that the proposed adaptive controller achieves better transient response and more robust performance than classic Model Reference Adaptive Control(MRAC) method, even with serious actuator saturation. 展开更多
关键词 Comprehensive controllability Ducted fan aircraft fault-tolerant Input saturation Robust adaptive control
原文传递
Output feedback based adaptive robust fault-tolerant control for a class of uncertain nonlinear systems 被引量:6
13
作者 Shreekant Gayaka Bin Yao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期38-51,共14页
An adaptive robust approach for actuator fault-tolerant control of a class of uncertain nonlinear systems is proposed.The two chief ways in which the system performance can degrade following an actuator-fault are unde... An adaptive robust approach for actuator fault-tolerant control of a class of uncertain nonlinear systems is proposed.The two chief ways in which the system performance can degrade following an actuator-fault are undesirable transients and unacceptably large steady-state tracking errors.Adaptive control based schemes can achieve good final tracking accuracy in spite of change in system parameters following an actuator fault,and robust control based designs can achieve guaranteed transient response.However,neither adaptive control nor robust control based fault-tolerant designs can address both the issues associated with actuator faults.In the present work,an adaptive robust fault-tolerant control scheme is claimed to solve both the problems,as it seamlessly integrates adaptive and robust control design techniques.Comparative simulation studies are performed using a nonlinear hypersonic aircraft model to show the effectiveness of the proposed scheme over a robust adaptive control based faulttolerant scheme. 展开更多
关键词 fault-tolerant system actuator fault adaptive control robust control.
在线阅读 下载PDF
Robust fault-tolerant controller design for linear time-invariant systems with actuator failures:an indirect adaptive method 被引量:7
14
作者 Xiaozheng JIN Guanghong YANG Yanping LI 《控制理论与应用(英文版)》 EI 2010年第4期471-478,共8页
In this paper,indirect adaptive state feedback control schemes are developed to solve the robust fault-tolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant... In this paper,indirect adaptive state feedback control schemes are developed to solve the robust fault-tolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant systems.A more general and practical model of actuator faults is presented.While both eventual faults on actuators and perturbations are unknown,the adaptive schemes are addressed to estimate the lower and upper bounds of actuator-stuck faults and perturbations online,as well as to estimate control effectiveness on actuators.Thus,on the basis of the information from adaptive schemes,an adaptive robust state feed-back controller is designed to compensate the effects of faults and perturbations automatically.According to Lyapunov stability theory,it is shown that the robust adaptive closed-loop systems can be ensured to be asymptotically stable under the influence of actuator faults and bounded perturbations.An example is provided to further illustrate the fault compensation effectiveness. 展开更多
关键词 fault-tolerant control Actuator failures adaptive robust control Asymptotic stability
在线阅读 下载PDF
Adaptive Fault-Tolerant Control During the Mode Switching for Electric Vehicle Dual-Mode Coupling Drive System
15
作者 Bingnan Qi Liuquan Yang +1 位作者 Lipeng Zhang Runsheng Zhang 《Automotive Innovation》 CSCD 2021年第1期56-69,共14页
As a new drive system for electric vehicles,the dual-mode coupling drive system can automatically switch between centralized and distributed drive modes and realize two-speed gear shifting.Because the actuator’s disp... As a new drive system for electric vehicles,the dual-mode coupling drive system can automatically switch between centralized and distributed drive modes and realize two-speed gear shifting.Because the actuator’s displacement signal affects the mode-switching control,when failure occurs at the angle-displacement sensor,the mode-shifting quality is likely to drop greatly,even possibly leading to shift failure.To address the angle-displacement sensor failure and improve the reliability of the shift control,an adaptive fault-tolerant control method is proposed and verified.First,the effect of the output signal of the angle-displacement sensor in the mode-switching control process is analyzed.Then,an adaptive mode-switching fault-tolerant control method is designed based on the Kalman filter and fuzzy theory.Finally,the feasibility of the control effect is verified through simulations and vehicle experiments.The results indicate that the proposed method can effectively eliminate the signal noise of the angle-displacement sensor and successfully switch the modes when the sensor fails.It provides a reference for ensuring the working quality of similar electric drive systems under sensor failures. 展开更多
关键词 Electric vehicle Dual-mode coupling drive system Mode-switching control Kalman filtering Sensor fault-tolerant control
原文传递
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:7
16
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
在线阅读 下载PDF
Adaptive Robust Servo Control for Vertical Electric Stabilization System of Tank and Experimental Validation 被引量:1
17
作者 Darui Lin Xiuye Wang +1 位作者 Yimin Wang Guolai Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期326-342,共17页
A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin... A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time. 展开更多
关键词 adaptive robust servo control Experimental validation Nonlinearity compensation System uncertainty Vertical electric stabilization system
在线阅读 下载PDF
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach 被引量:1
18
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
在线阅读 下载PDF
Quaternion-Based Adaptive Trajectory Tracking Control of a Rotor-Missile with Unknown Parameters Identification
19
作者 Jie Zhao Zhongjiao Shi +1 位作者 Yuchen Wang Wei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期375-386,共12页
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta... This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations. 展开更多
关键词 Rotor-missile adaptive control Parameter identification Quaternion control
在线阅读 下载PDF
Nonlinear robust adaptive control for bidirectional stabilization system of all-electric tank with unknown actuator backlash compensation and disturbance estimation
20
作者 Shusen Yuan Wenxiang Deng +1 位作者 Jianyong Yao Guolai Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期144-158,共15页
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin... Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach. 展开更多
关键词 Bidirectional stabilization system Robust control adaptive control Backlash inverse Disturbance estimation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部