We present a parallel hybrid algorithm based on pseudospectral method (PSM) and finite difference method (FDM) for two-dimensional (2-D) global SH- wavefield simulation. The whole-Earth model is taken as a cross...We present a parallel hybrid algorithm based on pseudospectral method (PSM) and finite difference method (FDM) for two-dimensional (2-D) global SH- wavefield simulation. The whole-Earth model is taken as a cross section of spherical Earth, and corresponding wave equations are defined in 2-D cylindrical coordinates. Spatial derivatives in the wave equations are approximated with efficient and high accuracy PSM in the lateral and high-order FDM in the radial direction on staggered grids. This algorithm allows us to divide the whole-Earth into sub-domains in radial direction and implement efficient parallel computing on PC cluster, while retains high accuracy and efficiency of PSM in lateral direction. A transformation of moment tensor between 3-D spherical Earth and our 2-D model was proposed to give corre- sponding moment tensor components used in 2-D modeling. Comparison of modeling results with those obtained by direct solution method shows very good accuracy of our algorithm. We also demonstrate its feasibility with a lateral heterogeneous whole-Earth model with localized velocity perturbation.展开更多
基金supported by the National Natural Science Foundation of China (Granted Nos.41174034 and 40874020)
文摘We present a parallel hybrid algorithm based on pseudospectral method (PSM) and finite difference method (FDM) for two-dimensional (2-D) global SH- wavefield simulation. The whole-Earth model is taken as a cross section of spherical Earth, and corresponding wave equations are defined in 2-D cylindrical coordinates. Spatial derivatives in the wave equations are approximated with efficient and high accuracy PSM in the lateral and high-order FDM in the radial direction on staggered grids. This algorithm allows us to divide the whole-Earth into sub-domains in radial direction and implement efficient parallel computing on PC cluster, while retains high accuracy and efficiency of PSM in lateral direction. A transformation of moment tensor between 3-D spherical Earth and our 2-D model was proposed to give corre- sponding moment tensor components used in 2-D modeling. Comparison of modeling results with those obtained by direct solution method shows very good accuracy of our algorithm. We also demonstrate its feasibility with a lateral heterogeneous whole-Earth model with localized velocity perturbation.