A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy ...A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy produced by hydroelectric plants and coal-fired plants is divided into 4 components: potential energy, kinetic energy, water-deep pressure energy and reservoir energy. A new and important concept, reservoir energy, is proposed, based on which is divided into a number of water bodies, for example 3 water bodies, and a reservoir is analyzed in a new way. This paper presents an optimal scheduling solution of elec-tric energy production of hydro-thermal power systems based on multi-factors analytic method, in which some important factors, such as load demand, reservoir in-flow, water consumption volume increment rate of hydroelectric plants or converted from coal-fired plants, and so on are given to model the objective function and the constraints. A study example with three simulation cases is carried out to illustrate flexibility, adapta-bility, applicability of the proposed method.展开更多
In light of the increasing recognition of the necessity to evaluate and mitigate the environmental impact of human activities, the aim of this study is to assess the greenhouse gases emitted in 2022 by the Kossodo the...In light of the increasing recognition of the necessity to evaluate and mitigate the environmental impact of human activities, the aim of this study is to assess the greenhouse gases emitted in 2022 by the Kossodo thermal power plant as a consequence of its electricity production. The specific objective was to identify the emission sources and quantify the gases generated, with the purpose of proposing effective solutions for reducing the plant’s ecological footprint. In order to achieve the objectives set out in the study, the Bilan Carbone® method was employed. Following an analysis of the plant’s activities, seven emission items were identified as requiring further investigation. The data was gathered from the plant’s activity reports, along with measurements and questionnaires distributed to employees. The data collected was subjected to processing in order to produce the sought activity data. The Bilan Carbone® V7.1 spreadsheet was employed to convert the activity data into equivalent quantities of CO2. The full assessment indicates that the majority of the power plant’s emissions come from the combustion of HFO and DDO, accounting for 96.11% of the Kossodo power plant’s total GHG emissions in 2022. The plant produced 280,585,676 kilowatt-hours (kWh), resulting in emissions of 218,492.785 ± 10,924.639 tCO2e, which yielded an emission factor of 0.78 kgCO2e/kWh for the year 2022. In order to reduce this rate, recommendations for improved energy efficiency have been issued to management and all staff.展开更多
To promote energy conservation,emission reduction,and sustainable development in thermal power enterprises,this study conducted a detailed analysis of the problems existing in measurement management in these enterpris...To promote energy conservation,emission reduction,and sustainable development in thermal power enterprises,this study conducted a detailed analysis of the problems existing in measurement management in these enterprises and explored targeted solutions.The analysis found that,faced with increasingly stringent environmental protection requirements and urgent needs to improve energy efficiency,thermal power enterprises must address the current issues in energy measurement management.They should actively respond to the national call for energy conservation and emission reduction,continuously optimize energy measurement management processes,improve energy utilization efficiency,reduce unnecessary energy consumption and emissions,and lay a solid foundation for the green transformation and sustainable development of the industry.展开更多
In the energy industry landscape,thermal power generation stands as a critical energy supply method,and the safety of its construction and operation is paramount.Currently,all stages of the life cycle of construction ...In the energy industry landscape,thermal power generation stands as a critical energy supply method,and the safety of its construction and operation is paramount.Currently,all stages of the life cycle of construction projects have garnered widespread attention.Among these,the infrastructure construction and operation phases of thermal power generation enterprises pose numerous issues worthy of in-depth study in terms of safety production management.This article starts by examining safety production management during these two phases,analyzing characteristics such as management models,legal bases,and responsible entities.It explores the reasons behind these characteristics and elaborates on key management priorities,providing a comprehensive and insightful reference for safety production management in thermal power generation enterprises.展开更多
For thermal power enterprises,the traditional business model of scale expansion and a single product line restricts the development of electricity marketing.Therefore,to achieve the transformation and upgrading of the...For thermal power enterprises,the traditional business model of scale expansion and a single product line restricts the development of electricity marketing.Therefore,to achieve the transformation and upgrading of their electricity marketing,this study starts from the current situation of the electricity market and introduces in detail the market-oriented electricity marketing strategies of thermal power enterprises from four aspects:product strategy,price strategy,channel strategy,and promotion strategy.The analysis finds that a market-oriented electricity marketing strategy is not only an inevitable choice for thermal power enterprises to respond to current challenges but also an essential path for them to move toward high-quality development.Through continuous innovation and upgrading,thermal power enterprises will maintain a leading position in fierce market competition,achieve sustainable development,and make greater contributions to the prosperity and development of the energy industry.展开更多
In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the ...In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings.展开更多
This paper presents an architecture of Computer Integrated Production System in Thermal Power Plant(TPP-CIPS). This architecture is a successful model with a three-dimensional space based on hierarchial dimension,view...This paper presents an architecture of Computer Integrated Production System in Thermal Power Plant(TPP-CIPS). This architecture is a successful model with a three-dimensional space based on hierarchial dimension,view dimension and life period dimension. Hierarchial view includes Management Information System (MIS), SupervisoryInformation System (SIS) and process automation systems such as Distributed Control System (DCS). View dimensionincludes function view, resource view, organization view and information view. Life period view includes system analyses,system design, system implementation, operation maintenance and system optimization.[展开更多
A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is t...A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.展开更多
With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectiv...With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.展开更多
With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,...With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.展开更多
With the rapid development of electronic information technology,the Internet of Things(IoT),Internet technology,and modern communication technology,people are demanding higher standards for the building environment.Es...With the rapid development of electronic information technology,the Internet of Things(IoT),Internet technology,and modern communication technology,people are demanding higher standards for the building environment.Especially in modern large-scale buildings with high levels of industrialization,lighting systems should also be optimized accordingly.This article explores the application path of intelligent lighting in thermal power plants for reference.展开更多
The continuous development of the power industry has had a positive impact on thermal power plants,helping them maintain a good production form.In the use of steam turbine equipment in thermal power plants,to prolong ...The continuous development of the power industry has had a positive impact on thermal power plants,helping them maintain a good production form.In the use of steam turbine equipment in thermal power plants,to prolong its lifespan and avoid safety hazards,it is necessary to pay attention to strengthening maintenance and construction organization,better implementing effective organizational work,and effectively applying steam turbine equipment to ensure the sustainable development of thermal power plants.This article discusses the concept of equipment maintenance from the perspective of steam turbine equipment in thermal power plants,analyzes the current situation of equipment maintenance,and proposes a specific construction organization to provide a reference for steam turbine equipment maintenance.展开更多
To ensure that the daily production activities of thermal power plants can produce their due effect in the production and business activities,it is necessary to carry out efficient and orderly maintenance work on the ...To ensure that the daily production activities of thermal power plants can produce their due effect in the production and business activities,it is necessary to carry out efficient and orderly maintenance work on the professional equipment of steam engines.However,the maintenance work of steam engine professional equipment in thermal power plants usually uses high-cost expenditures.Therefore,how to take effective measures to reduce the cost of professional equipment maintenance in thermal power plants has become a problem that needs to be solved before such maintenance can proceed.Among them,through the application of economic maintenance equipment in thermal power plants,the actual production and operation costs can be effectively reduced.Based on this,the author will analyze the application of the model of economic maintenance of steam engine professional equipment in thermal power plants.展开更多
Thermal power plants are present in the Brazilian electrical matrix (8% in 2022) and worldwide (61.5% in 2021). Combustion engines are used to drive generators in most thermal power plants, serving as the main sources...Thermal power plants are present in the Brazilian electrical matrix (8% in 2022) and worldwide (61.5% in 2021). Combustion engines are used to drive generators in most thermal power plants, serving as the main sources of atmospheric emissions. This study aims to present a model that allows for the pre-selection of these engines, identifying those most suitable to the recommended standards for obtaining environmental licenses. Data from twelve engine models were used to evaluate the studied alternatives. Computational resources were utilized through the R program for statistical analysis of the data. Simulations with the Screen View software enabled the investigation of atmospheric dispersion scenarios. The study showed that dispersion presented significant correlations with the following variables: emission rate, with a significance of 0.60, and chimney height, with a significance of −0.57. It was possible to conclude that for wind speeds equal to or greater than the local annual average of 2.1 m/s, a distance of 1800 meters to the community (location of the thermal power plant), a flue gas exit speed of 35 m/s, and the analyzed engine standards and design, engines with a NOx emission rate of up to 3.0 g/kWh showed good dispersion values, below 200 mg/Nm3 of NOx, the standard required by Brazilian environmental legislation. Thus, only four engine models meet this condition.展开更多
This paper analyzes 9 essentials in trial collecting SO2 emission charges based on the relevant legislative policies, summarizes and analyzes the actual practices of collecting and using SO2 emission charges in power ...This paper analyzes 9 essentials in trial collecting SO2 emission charges based on the relevant legislative policies, summarizes and analyzes the actual practices of collecting and using SO2 emission charges in power industry, and combining the status of power system reform, puts forward some recommendations about reasonably collecting and using SO2 emission charges and prompting power plants to take measures of desulfurization.展开更多
In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sint...In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using a-Al203, Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (W), bulk density (Db), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 ℃ and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100℃ by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption, the bulk density and the bending strength are 0.32%, 2.58 g·cm-3, and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material.展开更多
The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength ...The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.展开更多
文摘A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy produced by hydroelectric plants and coal-fired plants is divided into 4 components: potential energy, kinetic energy, water-deep pressure energy and reservoir energy. A new and important concept, reservoir energy, is proposed, based on which is divided into a number of water bodies, for example 3 water bodies, and a reservoir is analyzed in a new way. This paper presents an optimal scheduling solution of elec-tric energy production of hydro-thermal power systems based on multi-factors analytic method, in which some important factors, such as load demand, reservoir in-flow, water consumption volume increment rate of hydroelectric plants or converted from coal-fired plants, and so on are given to model the objective function and the constraints. A study example with three simulation cases is carried out to illustrate flexibility, adapta-bility, applicability of the proposed method.
文摘In light of the increasing recognition of the necessity to evaluate and mitigate the environmental impact of human activities, the aim of this study is to assess the greenhouse gases emitted in 2022 by the Kossodo thermal power plant as a consequence of its electricity production. The specific objective was to identify the emission sources and quantify the gases generated, with the purpose of proposing effective solutions for reducing the plant’s ecological footprint. In order to achieve the objectives set out in the study, the Bilan Carbone® method was employed. Following an analysis of the plant’s activities, seven emission items were identified as requiring further investigation. The data was gathered from the plant’s activity reports, along with measurements and questionnaires distributed to employees. The data collected was subjected to processing in order to produce the sought activity data. The Bilan Carbone® V7.1 spreadsheet was employed to convert the activity data into equivalent quantities of CO2. The full assessment indicates that the majority of the power plant’s emissions come from the combustion of HFO and DDO, accounting for 96.11% of the Kossodo power plant’s total GHG emissions in 2022. The plant produced 280,585,676 kilowatt-hours (kWh), resulting in emissions of 218,492.785 ± 10,924.639 tCO2e, which yielded an emission factor of 0.78 kgCO2e/kWh for the year 2022. In order to reduce this rate, recommendations for improved energy efficiency have been issued to management and all staff.
文摘To promote energy conservation,emission reduction,and sustainable development in thermal power enterprises,this study conducted a detailed analysis of the problems existing in measurement management in these enterprises and explored targeted solutions.The analysis found that,faced with increasingly stringent environmental protection requirements and urgent needs to improve energy efficiency,thermal power enterprises must address the current issues in energy measurement management.They should actively respond to the national call for energy conservation and emission reduction,continuously optimize energy measurement management processes,improve energy utilization efficiency,reduce unnecessary energy consumption and emissions,and lay a solid foundation for the green transformation and sustainable development of the industry.
文摘In the energy industry landscape,thermal power generation stands as a critical energy supply method,and the safety of its construction and operation is paramount.Currently,all stages of the life cycle of construction projects have garnered widespread attention.Among these,the infrastructure construction and operation phases of thermal power generation enterprises pose numerous issues worthy of in-depth study in terms of safety production management.This article starts by examining safety production management during these two phases,analyzing characteristics such as management models,legal bases,and responsible entities.It explores the reasons behind these characteristics and elaborates on key management priorities,providing a comprehensive and insightful reference for safety production management in thermal power generation enterprises.
文摘For thermal power enterprises,the traditional business model of scale expansion and a single product line restricts the development of electricity marketing.Therefore,to achieve the transformation and upgrading of their electricity marketing,this study starts from the current situation of the electricity market and introduces in detail the market-oriented electricity marketing strategies of thermal power enterprises from four aspects:product strategy,price strategy,channel strategy,and promotion strategy.The analysis finds that a market-oriented electricity marketing strategy is not only an inevitable choice for thermal power enterprises to respond to current challenges but also an essential path for them to move toward high-quality development.Through continuous innovation and upgrading,thermal power enterprises will maintain a leading position in fierce market competition,achieve sustainable development,and make greater contributions to the prosperity and development of the energy industry.
文摘In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings.
文摘This paper presents an architecture of Computer Integrated Production System in Thermal Power Plant(TPP-CIPS). This architecture is a successful model with a three-dimensional space based on hierarchial dimension,view dimension and life period dimension. Hierarchial view includes Management Information System (MIS), SupervisoryInformation System (SIS) and process automation systems such as Distributed Control System (DCS). View dimensionincludes function view, resource view, organization view and information view. Life period view includes system analyses,system design, system implementation, operation maintenance and system optimization.[
基金Project(217/s/458)supported by Azarbaijan Shahid Madani University,Iran
文摘A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.
基金supported by the National Natural Science Foundation of China(62033008,61873143)。
文摘With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.
基金supported by Science and Technology Project of State Grid Anhui Electric Power Co.,Ltd. (No.B6120922000A).
文摘With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.
文摘With the rapid development of electronic information technology,the Internet of Things(IoT),Internet technology,and modern communication technology,people are demanding higher standards for the building environment.Especially in modern large-scale buildings with high levels of industrialization,lighting systems should also be optimized accordingly.This article explores the application path of intelligent lighting in thermal power plants for reference.
文摘The continuous development of the power industry has had a positive impact on thermal power plants,helping them maintain a good production form.In the use of steam turbine equipment in thermal power plants,to prolong its lifespan and avoid safety hazards,it is necessary to pay attention to strengthening maintenance and construction organization,better implementing effective organizational work,and effectively applying steam turbine equipment to ensure the sustainable development of thermal power plants.This article discusses the concept of equipment maintenance from the perspective of steam turbine equipment in thermal power plants,analyzes the current situation of equipment maintenance,and proposes a specific construction organization to provide a reference for steam turbine equipment maintenance.
文摘To ensure that the daily production activities of thermal power plants can produce their due effect in the production and business activities,it is necessary to carry out efficient and orderly maintenance work on the professional equipment of steam engines.However,the maintenance work of steam engine professional equipment in thermal power plants usually uses high-cost expenditures.Therefore,how to take effective measures to reduce the cost of professional equipment maintenance in thermal power plants has become a problem that needs to be solved before such maintenance can proceed.Among them,through the application of economic maintenance equipment in thermal power plants,the actual production and operation costs can be effectively reduced.Based on this,the author will analyze the application of the model of economic maintenance of steam engine professional equipment in thermal power plants.
文摘Thermal power plants are present in the Brazilian electrical matrix (8% in 2022) and worldwide (61.5% in 2021). Combustion engines are used to drive generators in most thermal power plants, serving as the main sources of atmospheric emissions. This study aims to present a model that allows for the pre-selection of these engines, identifying those most suitable to the recommended standards for obtaining environmental licenses. Data from twelve engine models were used to evaluate the studied alternatives. Computational resources were utilized through the R program for statistical analysis of the data. Simulations with the Screen View software enabled the investigation of atmospheric dispersion scenarios. The study showed that dispersion presented significant correlations with the following variables: emission rate, with a significance of 0.60, and chimney height, with a significance of −0.57. It was possible to conclude that for wind speeds equal to or greater than the local annual average of 2.1 m/s, a distance of 1800 meters to the community (location of the thermal power plant), a flue gas exit speed of 35 m/s, and the analyzed engine standards and design, engines with a NOx emission rate of up to 3.0 g/kWh showed good dispersion values, below 200 mg/Nm3 of NOx, the standard required by Brazilian environmental legislation. Thus, only four engine models meet this condition.
文摘This paper analyzes 9 essentials in trial collecting SO2 emission charges based on the relevant legislative policies, summarizes and analyzes the actual practices of collecting and using SO2 emission charges in power industry, and combining the status of power system reform, puts forward some recommendations about reasonably collecting and using SO2 emission charges and prompting power plants to take measures of desulfurization.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2010CB227105)
文摘In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using a-Al203, Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (W), bulk density (Db), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 ℃ and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100℃ by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption, the bulk density and the bending strength are 0.32%, 2.58 g·cm-3, and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material.
文摘The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.