Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe...Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.展开更多
For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SF...For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.展开更多
Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely us...Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely used for artificial spiking synapses due to their relatively poor memrisitve performance.Here,for the first time,we present an organic memristor based on an electropolymerized dopamine-based memristive layer.This polydopamine-based memristor demonstrates the improve-ments in key performance,including a low threshold voltage of 0.3 V,a thin thickness of 16 nm,and a high parasitic capaci-tance of about 1μF·mm^(-2).By leveraging these properties in combination with its stable threshold switching behavior,we con-struct a capacitor-free and low-power artificial spiking neuron capable of outputting the oscillation voltage,whose spiking fre-quency increases with the increase of current stimulation analogous to a biological neuron.The experimental results indicate that our artificial spiking neuron holds potential for applications in neuromorphic computing and systems.展开更多
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
This paper considers the leader-following consensus for a class of nonlinear switched multi-agent systems(MASs)with non-strict feedback forms and input saturations under unknown switching mechanisms.First,in virtue of...This paper considers the leader-following consensus for a class of nonlinear switched multi-agent systems(MASs)with non-strict feedback forms and input saturations under unknown switching mechanisms.First,in virtue of Gaussian error functions,the saturation nonlinearities are represented by asymmetric saturation models.Second,neural networks are utilized to approximate some unknown packaged functions,and the structural property of Gaussian basis functions is introduced to handle the non-strict feedback terms.Third,by using the backstepping process,a common Lyapunov function is constructed for all the subsystems of the followers.At last,we propose an adaptive consensus protocol,under which the tracking error under arbitrary switching converges to a small neighborhood of the origin.The effectiveness of the proposed protocol is illustrated by a simulation example.展开更多
In this paper, observer-based static output feedback control problem for discrete-time uncertain switched systems is investigated under an arbitrary switching rule. The main method used in this note is combining switc...In this paper, observer-based static output feedback control problem for discrete-time uncertain switched systems is investigated under an arbitrary switching rule. The main method used in this note is combining switched Lyapunov function (SLF) method with Finsler's Lemma. Based on linear matrix inequality (LMI) a less conservative stability condition is established and this condition allows extra degree of freedom for stability analysis. Finally, a simulation example is given to illustrate the efficiency of the result.展开更多
A fractional frequency divider based on phase switching and negative feedback delta-sigma modulator(NF-DSM) is presented. The phase switching circuit, realized by switching 8 signals generated by a divider-by-4 circui...A fractional frequency divider based on phase switching and negative feedback delta-sigma modulator(NF-DSM) is presented. The phase switching circuit, realized by switching 8 signals generated by a divider-by-4 circuit, is adopted to reduce the frequency division step. The NF-DSM, which can obtain smooth output spectra, is proposed to generate the fractional part of the division ratio, moreover, the integer part of the division ratio is realized by a divider-by-2/3 circuit chain. Fabricated in TSMC 0.18 μm RF CMOS technology, the fractional frequency divider achieves a measured operation frequency from 0.5 GHz to 8 GHz. With a 1.8 V supply voltage, the maximum current consumption of the whole divider is 17.5 mA, and the chip area is 0.58 mm^2, including the pads.展开更多
Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/...Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.展开更多
We propose a novel scheme of simultaneous polarization separation and switching, based on the orthogonallypolarized four-wave mixing(FWM) effect, for ultra-high-speed polarization multiplexing(Pol-MUX) fiber networks ...We propose a novel scheme of simultaneous polarization separation and switching, based on the orthogonallypolarized four-wave mixing(FWM) effect, for ultra-high-speed polarization multiplexing(Pol-MUX) fiber networks such as 100-Gbps and 400-Gbps backbone networks. We use theoretical and experimental analysis of the vector theory of FWM to successfully achieve polarization separation and all-optical switching by utilizing a 100-Gbps dual polarizationquadrature phase shift keying(DP-QPSK) signal and two orthogonally-polarized pumps. Both of the polarization-separated QPSK signals have clear constellation diagrams, with root mean square(RMS) error vector magnitudes(EVMs) of 14.32%and 14.11% respectively. The wavelengths of idlers can be created at 30 different wavelengths, which are consistent with International Telecommunication Union-Telecommunication(ITU-T) wavelengths, by flexibly changing the wavelength of the pump light. Moreover, the idlers that have distinct wavelengths have power distributed in a range from-10 dBm to-15 dBm, which can support error-free transmission. The power penaltyis 5 d B lower than that of back-to-back(BTB)signal for both the X-and Y-polarization components measured at a bit error ratio(BER) of 3.8×10^(-3). Our experimental results indicate that this scheme has promising applications in future backbone networks.展开更多
To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this st...To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.展开更多
In this paper, we present a model of the Brownian motor in a feedback controlled ratchet, in which the application of the flashing potential depends on the state of the particle to be controlled. We derive an analytic...In this paper, we present a model of the Brownian motor in a feedback controlled ratchet, in which the application of the flashing potential depends on the state of the particle to be controlled. We derive an analytical expression for the velocity induced by the feedback ratchet, which is a function of several parameters, including the ratio of the two switching temperatures and the asymmetry parameter of the potential field. The motor shows a current inversion when either parameter is varied.展开更多
In this approach, three typical implementation schemes of self-healing function in VP switches are discussed and three corresponding queue models for backup-VP self-healing algorithm are established. Computer simulati...In this approach, three typical implementation schemes of self-healing function in VP switches are discussed and three corresponding queue models for backup-VP self-healing algorithm are established. Computer simulations are made to these queue models, and detailed analyses are presented to the effect of both the three implementation schemes of self-healing function and some architecture parameters in VP switches on self-healing performance.展开更多
This paper demonstrates the influence of external optical feedback on the polarization state of longitudinal modes in quasi-isotropic microchip Nd:YAG lasers. Under optical feedback, the polarization state of longitu...This paper demonstrates the influence of external optical feedback on the polarization state of longitudinal modes in quasi-isotropic microchip Nd:YAG lasers. Under optical feedback, the polarization state of longitudinal modes in quasi-isotropic lasers relies strongly on the intracavity anisotropy loss and mode competition. When the intracavity anisotropy loss is small, external optical feedback can cause polarization switching and strong mode competition between two orthogonal linearly polarized eigenstates of one laser longitudinal mode, which leads to the distortion of laser intensity modulation waveform. The polarization switching is independent of the initial external cavity length. By increasing the intracavity anisotropy loss, one polarization eigenstate can be suppressed and the laser works in single-polarization state. A theoretical analysis based on the compound cavity model is presented, which is in good agreement with the experimental results. The results offer guidance to the development of laser feedback interferometers.展开更多
This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller u...This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller under arbitrary switching signals,in which an H∞ performance is required. The condition is shown in the form of linear matrix inequalities (LMI). Finally,a numerical example shows the feasibility of the designed controller and illustrates that the new sufficient condition has lower conservation and more optimized H∞ tfperformance.展开更多
A novel switching-based backstepping sliding mode control(SBSMC) scheme is devised for the space manipulator exposed to different gravity.With a view to distinct differences in dynamics properties when the operating c...A novel switching-based backstepping sliding mode control(SBSMC) scheme is devised for the space manipulator exposed to different gravity.With a view to distinct differences in dynamics properties when the operating conclition of space manipulator changer,the space manipulator can be thought of as a system composed of two subsystems,the ground subsystem and the space subsystem.Two different types of backstepping sliding mode(BSM) controllers are designed,one is suited for the ground subsystem and the other is for the space one.The switching between two subsystems can be implemented automatically when the switching mechanism is triggered,and the controllers for their subsystems experience synchronous switching.In this way,the space manipulator always has good behaviors in trajectory tracking.Moreover,multi-Lyapunov functions are introduced to prove the stability of this switching approach.According to simulation results,the method constructed in this research has better performance in control precision and adaptability compared with proportional-derivative(PD) control.展开更多
The two-dimensional(2-D)system has a wide range of applications in different fields,including satellite meteorological maps,process control,and digital filtering.Therefore,the research on the stability of 2-D systems ...The two-dimensional(2-D)system has a wide range of applications in different fields,including satellite meteorological maps,process control,and digital filtering.Therefore,the research on the stability of 2-D systems is of great significance.Considering that multiple systems exist in switching and alternating work in the actual production process,but the system itself often has external perturbation and interference.To solve the above problems,this paper investigates the output feedback robust H_(∞)stabilization for a class of discrete-time 2-D switched systems,which the Roesser model with uncertainties represents.First,sufficient conditions for exponential stability are derived via the average dwell time method,when the system’s interference and external input are zero.Furthermore,in the case of introducing the external interference,the weighted robust H_(∞)disturbance attenuation performance of the underlying system is further analyzed.An output feedback controller is then proposed to guarantee that the resulting closed-loop system is exponentially stable and has a prescribed disturbance attenuation levelγ.All theorems mentioned in the article will also be given in the form of linear matrix inequalities(LMI).Finally,a numerical example is given,which takes two uncertain values respectively and solves the output feedback controller’s parameters by the theorem proposed in the paper.According to the required controller parameter values,the validity of the theorem proposed in the article is compared and verified by simulation.展开更多
This paper is concerned with the problems of robust admissibility and static output feedback( SOF)stabilization for a class of discrete-time switched singular systems with norm-bounded parametric uncertainties.The obj...This paper is concerned with the problems of robust admissibility and static output feedback( SOF)stabilization for a class of discrete-time switched singular systems with norm-bounded parametric uncertainties.The objective is to design a suitable robust SOF controller guaranteeing the regularity,causality and asymptotic stability of the resulting closed-loop system under arbitrary switching laws. Based on the basic matrix inequality sufficient condition for checking the admissibility of switched singular systems,together with some matrix inequality convexifying techniques,the SOF controller synthesis is developed for the underlying systems. It is shown that the controller gains can be obtained by solving a set of strict linear matrix inequalities( LMIs). A simulation example is given to show the effectiveness of the proposed method.展开更多
To miniaturize a very low level dc current amplifier and to improve its output response speed, the switched capacitor negative feedback circuit (SCNF), instead of the conventionally used high-ohmage resistor, is prese...To miniaturize a very low level dc current amplifier and to improve its output response speed, the switched capacitor negative feedback circuit (SCNF), instead of the conventionally used high-ohmage resistor, is presented in this paper. In our system, a switched capacitor filter (SCF) and an offset controller are also used to decrease vibrations and offset voltage at the output of the amplifier using SCNF. The theoretical output voltage of the very low level dc current amplifier using SCNF is obtained. The experimental results show that the unnecessary components of the amplifier’s output are much decreased, and that the response speed of the amplifier with both the SCNF and SCF is faster than that using high-ohmage resistor.展开更多
For a class of switched nonlinear systems, the BIBO stable domain is introduced in this paper. The robust H - infinity control problem for switched nonlinear systems with parameter uncertainty is investigated using th...For a class of switched nonlinear systems, the BIBO stable domain is introduced in this paper. The robust H - infinity control problem for switched nonlinear systems with parameter uncertainty is investigated using the BIBO stable domain.Aiming at the effect of parameter uncertainties,a switching strategy and each state feedback sub - controller design are stated to guarantee the H - infinity performance of the whole switched system based on La Salle invariant principle.展开更多
This paper proposes third order tunable bandwidth active Switched-Capacitor filter. The circuit consists of only op-amps and switched capacitors. The circuit is designed for circuit merit factor Q = 10. The proposed c...This paper proposes third order tunable bandwidth active Switched-Capacitor filter. The circuit consists of only op-amps and switched capacitors. The circuit is designed for circuit merit factor Q = 10. The proposed circuit implements three filter functions low pass, band pass and high pass simultaneously in single circuit. The filter circuit can be used for both narrow as well as for wide bandwidth. For various values of cut-off frequencies the behaviour of circuit is studied. The circuit works properly only for higher central frequencies, when f0 > 10 kHz.展开更多
基金National Key R&D Program of China(2021YFA0716304)Shanghai Science and Technology Programs(22511100300,23DZ2201500)。
文摘Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.
基金supported by the National Natural Science Foundation of China(62473354).
文摘For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.
基金support from the Beijing Natural Science Foundation-Xiaomi Innovation Joint Fund(No.L233009)National Natural Science Foundation of China(NSFC Nos.62422409,62174152,and 62374159)from the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2020115).
文摘Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely used for artificial spiking synapses due to their relatively poor memrisitve performance.Here,for the first time,we present an organic memristor based on an electropolymerized dopamine-based memristive layer.This polydopamine-based memristor demonstrates the improve-ments in key performance,including a low threshold voltage of 0.3 V,a thin thickness of 16 nm,and a high parasitic capaci-tance of about 1μF·mm^(-2).By leveraging these properties in combination with its stable threshold switching behavior,we con-struct a capacitor-free and low-power artificial spiking neuron capable of outputting the oscillation voltage,whose spiking fre-quency increases with the increase of current stimulation analogous to a biological neuron.The experimental results indicate that our artificial spiking neuron holds potential for applications in neuromorphic computing and systems.
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
基金supported in part by the National Key Research and Development Program(2018YFA0702202)in part by the Leadingedge Technology Program of Jiangsu National Science Foundation(BK20202011)in part by the Research Grants of the Nanjing University of Posts and Telecommunications(NY220158,NY220177)。
文摘This paper considers the leader-following consensus for a class of nonlinear switched multi-agent systems(MASs)with non-strict feedback forms and input saturations under unknown switching mechanisms.First,in virtue of Gaussian error functions,the saturation nonlinearities are represented by asymmetric saturation models.Second,neural networks are utilized to approximate some unknown packaged functions,and the structural property of Gaussian basis functions is introduced to handle the non-strict feedback terms.Third,by using the backstepping process,a common Lyapunov function is constructed for all the subsystems of the followers.At last,we propose an adaptive consensus protocol,under which the tracking error under arbitrary switching converges to a small neighborhood of the origin.The effectiveness of the proposed protocol is illustrated by a simulation example.
基金This work was supported by Doctorate Foundation of Shenyang Normal University of China (No. 054-554405-01)
文摘In this paper, observer-based static output feedback control problem for discrete-time uncertain switched systems is investigated under an arbitrary switching rule. The main method used in this note is combining switched Lyapunov function (SLF) method with Finsler's Lemma. Based on linear matrix inequality (LMI) a less conservative stability condition is established and this condition allows extra degree of freedom for stability analysis. Finally, a simulation example is given to illustrate the efficiency of the result.
基金Supported by the National Natural Science Foundation of China(No.61674037)National Key Research and Development Program of China(No.2016YFC0800400)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A fractional frequency divider based on phase switching and negative feedback delta-sigma modulator(NF-DSM) is presented. The phase switching circuit, realized by switching 8 signals generated by a divider-by-4 circuit, is adopted to reduce the frequency division step. The NF-DSM, which can obtain smooth output spectra, is proposed to generate the fractional part of the division ratio, moreover, the integer part of the division ratio is realized by a divider-by-2/3 circuit chain. Fabricated in TSMC 0.18 μm RF CMOS technology, the fractional frequency divider achieves a measured operation frequency from 0.5 GHz to 8 GHz. With a 1.8 V supply voltage, the maximum current consumption of the whole divider is 17.5 mA, and the chip area is 0.58 mm^2, including the pads.
基金Project supported by the National Natural Science Foundation of China (Grant No.12274108)the Natural Science Foundation of Zhejiang Province,China (Grant Nos.LY23A040008 and LY23A040008)the Basic Scientific Research Project of Wenzhou,China (Grant No.G20220025)。
文摘Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFC0803900)the National Natural Science Foundation of China(Grant No.9163801)
文摘We propose a novel scheme of simultaneous polarization separation and switching, based on the orthogonallypolarized four-wave mixing(FWM) effect, for ultra-high-speed polarization multiplexing(Pol-MUX) fiber networks such as 100-Gbps and 400-Gbps backbone networks. We use theoretical and experimental analysis of the vector theory of FWM to successfully achieve polarization separation and all-optical switching by utilizing a 100-Gbps dual polarizationquadrature phase shift keying(DP-QPSK) signal and two orthogonally-polarized pumps. Both of the polarization-separated QPSK signals have clear constellation diagrams, with root mean square(RMS) error vector magnitudes(EVMs) of 14.32%and 14.11% respectively. The wavelengths of idlers can be created at 30 different wavelengths, which are consistent with International Telecommunication Union-Telecommunication(ITU-T) wavelengths, by flexibly changing the wavelength of the pump light. Moreover, the idlers that have distinct wavelengths have power distributed in a range from-10 dBm to-15 dBm, which can support error-free transmission. The power penaltyis 5 d B lower than that of back-to-back(BTB)signal for both the X-and Y-polarization components measured at a bit error ratio(BER) of 3.8×10^(-3). Our experimental results indicate that this scheme has promising applications in future backbone networks.
基金the Natural Science Foundation of Fujian,China(No.2021J01633).
文摘To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.
基金Project supported by the Educational Commission of Henan Province, China (Grant No. 2006140015)the Science and Technology Planning Project of Henan Province, China (Grant No. 092300410142)
文摘In this paper, we present a model of the Brownian motor in a feedback controlled ratchet, in which the application of the flashing potential depends on the state of the particle to be controlled. We derive an analytical expression for the velocity induced by the feedback ratchet, which is a function of several parameters, including the ratio of the two switching temperatures and the asymmetry parameter of the potential field. The motor shows a current inversion when either parameter is varied.
基金Supported by the National Natural Science Foundation of China
文摘In this approach, three typical implementation schemes of self-healing function in VP switches are discussed and three corresponding queue models for backup-VP self-healing algorithm are established. Computer simulations are made to these queue models, and detailed analyses are presented to the effect of both the three implementation schemes of self-healing function and some architecture parameters in VP switches on self-healing performance.
基金supported by the National Natural Science Foundation of China (Grant No. 30870662)
文摘This paper demonstrates the influence of external optical feedback on the polarization state of longitudinal modes in quasi-isotropic microchip Nd:YAG lasers. Under optical feedback, the polarization state of longitudinal modes in quasi-isotropic lasers relies strongly on the intracavity anisotropy loss and mode competition. When the intracavity anisotropy loss is small, external optical feedback can cause polarization switching and strong mode competition between two orthogonal linearly polarized eigenstates of one laser longitudinal mode, which leads to the distortion of laser intensity modulation waveform. The polarization switching is independent of the initial external cavity length. By increasing the intracavity anisotropy loss, one polarization eigenstate can be suppressed and the laser works in single-polarization state. A theoretical analysis based on the compound cavity model is presented, which is in good agreement with the experimental results. The results offer guidance to the development of laser feedback interferometers.
文摘This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller under arbitrary switching signals,in which an H∞ performance is required. The condition is shown in the form of linear matrix inequalities (LMI). Finally,a numerical example shows the feasibility of the designed controller and illustrates that the new sufficient condition has lower conservation and more optimized H∞ tfperformance.
基金Manned Space Preresearch Project(No.2016040301)the Natural Science Foundation of Hebei Province(No.F2019203505).
文摘A novel switching-based backstepping sliding mode control(SBSMC) scheme is devised for the space manipulator exposed to different gravity.With a view to distinct differences in dynamics properties when the operating conclition of space manipulator changer,the space manipulator can be thought of as a system composed of two subsystems,the ground subsystem and the space subsystem.Two different types of backstepping sliding mode(BSM) controllers are designed,one is suited for the ground subsystem and the other is for the space one.The switching between two subsystems can be implemented automatically when the switching mechanism is triggered,and the controllers for their subsystems experience synchronous switching.In this way,the space manipulator always has good behaviors in trajectory tracking.Moreover,multi-Lyapunov functions are introduced to prove the stability of this switching approach.According to simulation results,the method constructed in this research has better performance in control precision and adaptability compared with proportional-derivative(PD) control.
基金Research supported by the Science and Technology Development Program of Jilin Province,the project named:Research on Key Technologies of Intelligent Virtual Interactive 3D Display System(20180201090GX).
文摘The two-dimensional(2-D)system has a wide range of applications in different fields,including satellite meteorological maps,process control,and digital filtering.Therefore,the research on the stability of 2-D systems is of great significance.Considering that multiple systems exist in switching and alternating work in the actual production process,but the system itself often has external perturbation and interference.To solve the above problems,this paper investigates the output feedback robust H_(∞)stabilization for a class of discrete-time 2-D switched systems,which the Roesser model with uncertainties represents.First,sufficient conditions for exponential stability are derived via the average dwell time method,when the system’s interference and external input are zero.Furthermore,in the case of introducing the external interference,the weighted robust H_(∞)disturbance attenuation performance of the underlying system is further analyzed.An output feedback controller is then proposed to guarantee that the resulting closed-loop system is exponentially stable and has a prescribed disturbance attenuation levelγ.All theorems mentioned in the article will also be given in the form of linear matrix inequalities(LMI).Finally,a numerical example is given,which takes two uncertain values respectively and solves the output feedback controller’s parameters by the theorem proposed in the paper.According to the required controller parameter values,the validity of the theorem proposed in the article is compared and verified by simulation.
基金Sponsored by the National Natural Science Foundation of China Grant No.61004038
文摘This paper is concerned with the problems of robust admissibility and static output feedback( SOF)stabilization for a class of discrete-time switched singular systems with norm-bounded parametric uncertainties.The objective is to design a suitable robust SOF controller guaranteeing the regularity,causality and asymptotic stability of the resulting closed-loop system under arbitrary switching laws. Based on the basic matrix inequality sufficient condition for checking the admissibility of switched singular systems,together with some matrix inequality convexifying techniques,the SOF controller synthesis is developed for the underlying systems. It is shown that the controller gains can be obtained by solving a set of strict linear matrix inequalities( LMIs). A simulation example is given to show the effectiveness of the proposed method.
文摘To miniaturize a very low level dc current amplifier and to improve its output response speed, the switched capacitor negative feedback circuit (SCNF), instead of the conventionally used high-ohmage resistor, is presented in this paper. In our system, a switched capacitor filter (SCF) and an offset controller are also used to decrease vibrations and offset voltage at the output of the amplifier using SCNF. The theoretical output voltage of the very low level dc current amplifier using SCNF is obtained. The experimental results show that the unnecessary components of the amplifier’s output are much decreased, and that the response speed of the amplifier with both the SCNF and SCF is faster than that using high-ohmage resistor.
基金partially supported by the Natural Science Foundation of China under Grant No. 60764001the West Light Talent Project of The Chinese Academy of Sciences(2007414)the Indraught Talents Foundation of Guizhou University(2007)
文摘For a class of switched nonlinear systems, the BIBO stable domain is introduced in this paper. The robust H - infinity control problem for switched nonlinear systems with parameter uncertainty is investigated using the BIBO stable domain.Aiming at the effect of parameter uncertainties,a switching strategy and each state feedback sub - controller design are stated to guarantee the H - infinity performance of the whole switched system based on La Salle invariant principle.
文摘This paper proposes third order tunable bandwidth active Switched-Capacitor filter. The circuit consists of only op-amps and switched capacitors. The circuit is designed for circuit merit factor Q = 10. The proposed circuit implements three filter functions low pass, band pass and high pass simultaneously in single circuit. The filter circuit can be used for both narrow as well as for wide bandwidth. For various values of cut-off frequencies the behaviour of circuit is studied. The circuit works properly only for higher central frequencies, when f0 > 10 kHz.