The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thru...The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.展开更多
Early Palaeozoic Cambrian A-type Kathalguri Granites in the Mikir Hills of northeastern (NE) India were studied to better understand the geodynamic settings in this region. This research presents new whole-rock geoche...Early Palaeozoic Cambrian A-type Kathalguri Granites in the Mikir Hills of northeastern (NE) India were studied to better understand the geodynamic settings in this region. This research presents new whole-rock geochemical and Sr, Nd, Pb isotopic data for the Cambrian granites in the Kathalguri Granite in Mikir Hills. The Kathalguri Granite shows geochemical characteristics of high SiO2, K2O and low FeOT, MgO, CaO, and P2O5 compositions. They belong to a high K Shoshonite to ultra-potassic series and display a weak metaluminous to peraluminous feature with A/CNK values of 0.83 to 1.02 with corundum and anorthite normative. FeOT/MgO varies from 2.93 - 7.49, is moderately oxidized and belongs to magnetite series. The rocks have a high ΣREE composition of 370.80 - 1353.23 ppm (average 568.55) and are enriched in LREE with flat HREE and (La/Yb)N values of 8.10 - 18.99, and display obvious strong negative Eu anomalies. Trace elements of the studied granites are characterized by enrichment in Rb, Th, U, Pb, Hf, and Sm, and depletion of Ba, Nb, Ta, and Sr. They display geochemical features of high Zr + Y + Nb + Ce values (241 - 934 ppm) and Ga/Al ratios 2.49 - 3.01 consistent with A-Type granites. Based on particular geochemical features, such as high Rb/Nb (3.10 - 19.53) and Low Y/Nb (0.09 - 2.28), Kathalguri Granite can be further classified as an A1-type subgroup. Granites display relatively low Sr (N ratio varying between 0.53 - 0.89 suggesting that the melts generated at greater depths (18 - 40 km), and fractionation at low pressures (−3 and total HGU 98.96 to 214.20. Kathalguri Granite dated by Rb-Sr isotopic isochrone as 489 ± 19 Ma with an initial 87Sr/86Sr 0.7199 ± 0.0017 and MSWD of 4.1, εSr(I) varied between 161.62 - 332.08 suggests that the Kathalguri Granite have originated from partial melting of ancient, evolved continental crustal material. The Sm-Nd Systematics has given a depleted mantle model (TDM) age ranging from 1733 - 2063 Ma with high negative εNd(t) values (−10.39 to −15.18) also hint at some heterogeneity or multiple source contributions in the melting process of the protolith. Xenoliths of older mafic rocks and Barapani arenites are seen within the Kathalguri Granite and are also supported by geochemical signatures of recycled crustal materials both mafic and sedimentary. It formed during the Cambrian reorganization of lithospheric plate motion related to the Pan-African-Braziliano event.展开更多
Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representat...Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representative of tungsten-bearing granite. The Xihuashan granite consists mainly of medium-grained porphyritic biotite granite, medium-grained biotite granite and fine-grained twomica granite, which correspond to LA-ICP-MS zircon U-Pb ages of 555.5±0.4 Ma, 553.0±0.6 Ma and 552.8±0.9 Ma, respectively. Rocks from the Xihuashan mining area displays high SlOe (73.85% to 76.49%) and NaeO+K20 contents (8.09% to 9.43%), belonging to high-K calc-alkaline series. They are metaluminous to weakly peraluminous with A/CNK values ranging from 0.96 to 5.06. All granites in this study area are rich in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti, Nb and Eu, especially depleted in medium-grained biotite granite and fine-grained two-mica granite. The medium-grained porphyritic biotite granites usually have high LREE concentrations, whereas medium-grained biotite granite and fine-grained two-mica granite displays high HREE contents. Our geochemical data reveal that the studied rocks are highly fractionated I-type granite. The magma underwent strong magma differentiation with decreasing temperature and increasing oxygen fugacity, which may explain the formation of three types of distinct granites. Variations of Rb, Sr and Ba concentrations in different type granites were controlled by fractional crystallization of biotite and feldspar. Fractional crystallization of monazite, allanite and apatite resulted in LREE changes in granite, and formation of garnet mainly caused HREE changes. Granites from the Xihuashan mining area have relatively high εd(t) values (-9.77 to -55.46), indicating that they were probably generated by partial melting of underlying Proterozoic metasedimentary rocks with minor addition of juvenile crust or mantlederived magmas.展开更多
The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1...The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1848 Ma. On the basis of geological and petrological characteristics, these granitoids can be classified into two groups: the earlier gneissic granodiorites and monzogranites, and the later massive leuco-monzogranites. Their geochemical and Nd isotopic features indicate that they could be derived from complicated partial melting of supracrustal rocks with an affinity of continental arc materials, such as sandy shale and pelite, and with garnet, pyroxene, hornblende and plagioclase as residual phases. Biotite, feldspar and other minerals were most likely fractionated during the magma evolution. Their source may have an affinity with continental arcs, and the granitoids could be derived from the main syn-collisional to late-orogenic tectonic environment, which may be related to the final amalgamation between the Eastern and Western continental blocks in the North China Craton.展开更多
This study presents zircon LA-ICP-MS U-Pb geochronology,trace elements characteristics,whole rock geochemistry composition and zircon Hf isotopic data of Shuimowan tonalites in Dengfeng City.The results show that zirc...This study presents zircon LA-ICP-MS U-Pb geochronology,trace elements characteristics,whole rock geochemistry composition and zircon Hf isotopic data of Shuimowan tonalites in Dengfeng City.The results show that zircons from Shuimowan tonalites have oscillatory growth zoning,relatively high Th/U ratios(0.8--1.7)and upturned zircon rare earth elements(REE),indicating that they are magmatic origin.Shuimowan tonalites yield a weighted mean 207 Pb/206 Pb age of 2522±9 Ma,indicating they were formed in the latest Neoarchean.The tonalites are characterized by relatively low SiO 2 contents,high MgO and Na 2O contents,high REE(∑REE=322×10-6-354×10-6),obvious fractionation of REE,enrichment in LREE and feeble negative Eu anomaly(Eu/Eu*=0.97--0.99).The samples are also enriched in large ion lithophile elements and depleted in high field strength elements,with negative Nb,Ta,P and Ti anomalies.TheεHf(t)values of zircon grains from Shuimowan tonalites range between 3.5 and 5.3.Combined with regional tectonic evolution,it is suggested that Shuimowan tonalites were derived from partial melting of mantle peridotite metasomatized by the slab-derived felsic melt and formed in the arc magma tectonic setting related to plate subduction.Research on the Neoarchean Shuimowan tonalites provides a constraint for the study of the Pre-Cambrian tectonic evolution in the southern margin of North China Craton.展开更多
The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact rel...The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and geochemical studies, coupled with previous studies, the authors suggest that the Wulong adakitic biotite granodiorite was probably generated by dehydration melting of the Yaolinghe Group-like thickened mafic crust, triggered by underplating of mafic magma at the boundary of the thickened mafic crust and hot lithospheric mantle, and that the Wulong adakitic biotite granodiorite may have resulted from thinning and delamination of the lower crust or breakoff of the subducting slab of the Mianlue ocean during the Indosinian post-collisional orogenic stage of the Qinling orogenic belt.展开更多
South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui g...South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui granitoid plutons at the northeast,Huayang-Wulong-Laocheng granitoid plutons at the central part,Xiba granitoid pluton at the northwest and Guangtoushan-Liuba granitoid plutons at the southwest.These Indonisian granitoids contain a mass of various scale mafic enclaves,which show sometimes clear boundaries and sometimes transitional boundaries with their host granitoids.These granitoids also exhibit metaluminous to peraluminous series,commonly higher Mg# and a wide range of petrochemistry from low-K tholeiite series,through mid-K and high-K calc-alkaline series to shoshonite series and predominated samples are attributed to mid-K and high-K calc-alkaline series.Detailed analyses in Sr-Nd isotopic systematics and petrochemistry reveal that there may be regionally initial granitoid magma of the Indonisian granitoid plutons,comprising Dongjiangkou-Zhashui,Huayang-Wulong-Laocheng,Xiba,and Guangtoushan-Liuba granitoid plutons,which were produced by hybrids of magmas in various degrees,and the initial magmas were derived from both the mantle and the lower continental crust(LCC)sources in the SQTB.The initial granitoid magma further did the magma hybrid with the magmas from the LCC,crystallization fractionation,and assimilation with upper crustal materials during their emplacement to produce these granitoid plutons in the SQTB.These magmatism processes are most likely to occur under continent marginal arc and syn-collision to post-collision tectonic backgrounds.展开更多
The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The...The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The sanukitoid–like rocks are characterized by quartz monzonites, which display higher Mg#(55.0–59.0), and enrichments in Na2 O+K2 O(7.28–8.94 %), Ni(21-2312 ppm), Cr(56-4167 ppm), Sr(553-923 ppm), Ba(912-1355 ppm) and LREE((La/Yb)N =9.47–15.3), from negative to slightly positive Eu anomalies(δEu=+0.61 to +1.10), but also depletion in Nb, Ta and Ti. The granodioritic-monzogranitic rocks diaplay various Mg#of 6.00-53.0, high Na2 O+K2 O(7.20– 8.30%), Sr(455–1081 ppm) and(La/Yb)N(27.6–47.8), with positive Eu anomalies(δEu=1.03–1.57) and depleted Nb, Ta and Ti. Laser ablation inductively coupled plasma mass spectrometry(LA-ICPMS) zircon U-Pb isotopic dating reveals that the sanukitoid-like rocks were emplaced at two episodes of magmatism at 457±3 Ma and 431±2 Ma, respectively. The monzogranites were emplaced at 445±7Ma. Sanukitoid–like rocks have their εHf(t) values ranging from +0.3 to +15.1 with Hf–depleted mantle model ages of 445 to 1056 Ma, and the monzogranite shows its εHf(t) values ranging from 21.6 to +10.8 with Hf–depleted mantle model ages of 635 to 3183 Ma. Petrological, geochemical and zircon Lu –Hf isotopic features indicate that the magmatic precursor of sanukitoid–like rocks was derived from partial melting of the depleted mantle wedge materials that were metasomatized by fluids and melts related to subduction of oceanic slab, subsequently the sanukitoid magma ascended to crust level. This emplaced mantle magma caused partial melting of crustally metamorphosed sedimentary rocks, and mixing with the crustal magma, and suffered fractional crystallization, which lead to formations of quartz monzonites. However, the magmatic precursor of the granodioritic-monzogranitic rocks were derived from partial melting of subducted oceanic slab basalts. Integrated previous investigation for the adackitic rocks in the south of the intrusion, the Sanchahe intrusion signed that the North Qinling tectonic zone was developed in an early Paleozoic transitionally tectonic background from an island arc to back–arc.展开更多
Whole-rock geochemical, zircon U-Pb geochronological and Sr-Nd-Hf isotopic data are presented for the Early Cretaceous volcanic rocks from the northern Da Hinggan Mountains. The volcanic rocks generally display high S...Whole-rock geochemical, zircon U-Pb geochronological and Sr-Nd-Hf isotopic data are presented for the Early Cretaceous volcanic rocks from the northern Da Hinggan Mountains. The volcanic rocks generally display high SiO2 (73.19-77.68 wt%) and Na20+K20 (6.53-8.98 wt%) contents, with enrichment in Rb, Th, U, Pb and LREE, and depletion in Nb, Ta, P and Ti. Three rhyolite samples, one rhyolite porphyry sample, and one volcanic breccia sample yield weighted mean 206pb/23SU ages of 135.1±1.2 Ma, 116.5±1.1 Ma, 121.9±1.0 Ma, 118.1±0.9 Ma and 116.9±1.4 Ma, respectively. All these rocks have moderate (STSr/S6Sr)i values of 0.704912 to 0.705896, slightly negative eNd(t) values of -1.4 to -0.1, and positive Cur(t) values of 3.7 to 8. Their zircon Hf and whole-rock Nd isotopic model ages range from 594 to 1024 Ma. These results suggest that the Early Cretaceous volcanic rocks were originated from melting of subducted oceanic crust and associated sediments during the closure of the Mongol-Okhotsk Ocean.展开更多
Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, ...Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, monzonitic granite and light alkali feldspar granite. As a part of the Yidun arc, the Geza arc has common structure and temporal- spatial evolution with the ~idun arc, which has experienced three stages of oceanic crust subduction, collision orogeny and intracontinent convergence stages. The molybdenite ores in the area are mainly hosted in monzonitic granite-porphyry and structural fracture zone, and the ore bodies are strictly controlled by faults. In recent years, great geological prospecting results have been achieved in Xiuwacu, and the deposit has reached a medium scale. However, there are few researches on the metallogenic porphyry. Based on the previous research, we determined the rock-forming and ore-forming age of the porphyry, and found that there were two stages of magmatism intrusion in Xiuwacu: Indosinian and Yanshanian. We also discussed the geochemical characteristics and source area of the rocks in the area.展开更多
The Wulonggou area located in the Eastern Kunlun Orogen in NW China is characterized by extensive granitoid magmatism,ductile faulting and orogenic gold mineralization.The Huanglonggou granodiorite is cut by an orogen...The Wulonggou area located in the Eastern Kunlun Orogen in NW China is characterized by extensive granitoid magmatism,ductile faulting and orogenic gold mineralization.The Huanglonggou granodiorite is cut by an orogenic gold-bearing fault.This study investigated the major and trace-element compositions,zircon U-Pb dates and zircon Hf isotopic compositions of the Huanglonggou granodiorite.One Huanglonggou granodiorite sample yielded a weighted mean U-Pb zircon age of^221 Ma(Carnian).The Carnian granodiorite is metaluminous,with high alkalis contents of 6.37%--8.86%,high Al_2O_3contents of 15.41%--16.19%,high Sr contents of(426--475)×10^(-6),relatively high Sr/Y ratios,high(La/Yb)_Nvalues and low HREE,suggesting an adakite type high-Si O_2granite.The Huanglonggou granodiorite sample has zirconε_(Hf)(t)values ranging from-4.4 to+1.1.These Hf isotopic data suggest that the Carnian granodiorite was likely derived from the partial melting of subducted Paleo-Tethys oceanic slab.It is suggested that the Late Triassic granodiorite was emplaced during the northward subduction of Paleo-Tethys oceanic slab.Orogenic gold mineralization in the Wulonggou area formed after the emplacement of the Late Triassic intrusive rocks.展开更多
Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHR...Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U-Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb) N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of 8.79 to 5.38, depleted mantle Nd model ages (T DM ) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios ( 87 Sr/ 86 Sr) i from 0.7061 to 0.7082, indicating a possible Meso-to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher ( 87 Sr/ 86 Sr) i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting.展开更多
Mount Cameroon volcano has erupted several times in the 20 th Century with documented eruptions in 1909,1922,1954,1959,1982,1999 and 2000.Evidence of historic volcanism is represented by several older lava flows and l...Mount Cameroon volcano has erupted several times in the 20 th Century with documented eruptions in 1909,1922,1954,1959,1982,1999 and 2000.Evidence of historic volcanism is represented by several older lava flows and lahar deposits around the flanks of the volcano.This study aims to assess the evolution of Mount Cameroon volcanism through its eruptive history via interpretation of mineralogical,whole rock geochemical and Pb,Sr,Nd isotope data generated from historic and recent lava flows.In this study,samples were collected from the 1959,1982,1999 and 2000 eruptions and from several historic eruption sites with unknown eruption dates.Evaluation of major and trace element data demonstrates that Mount Cameroon is geotectonically associated with within-plate Ocean Island Basalt Settings.More than 90%of the studied historic lavas(n=29)classify as tephrites and basanites whereas the modern lavas(n=38)are predominantly trachybasalts,demonstrating evolution from primitive to evolved lavas over time typically in response to fractional crystallization.Petrographically,the lavas are porphyritic with main mineral phases being olivine,clinopyroxene,plagioclase feldspars and Fe-Ti-Cr oxides.The 1982 lavas are predominantly aphyric and dominated by lath-shaped flow-aligned plagioclase in the groundmass.Olivine chemistry shows variable forsterite compositions from Fo60-89.Clinopyroxenes vary from diopside through augite to titanaugite with chemical composition ranges from Wo45En32Fs7 to Wo51En47Fs17.Plagioclase feldspars vary from labradorite(An567 O)to bytownite(An80-87).For the Fe-Ti-Cr oxides,calculated ulvospinel component shows a wide variation from ulv38-87.CIPW-normative classification on the Di-Ol-Hy-Qz-Ne system shows that all Mount Cameroon lavas are nepheline-normative(Ne ranges from4.20 wt.%to 11.45 wt.%).Radiogenic isotope data demonstrate that Mount Cameroon lavas are HIMU(or high μ=238U/204Pb),characterized by 206Pb/204Pb=20.19-20.46,207Pb/204Pb=15.63-15.69,208Pb/204Pb=40.01-40.30,87Sr/86Sr=0.70322-0.70339(εsr=-21.37 to-18.96)and 143 Nd/144 Nd=0.51276-0.51285(εNd=+2.29 to+4.05).The historic lavas show stronger HIMU signature relative to the modern lavas,suggesting evolution towards less HIMU signatures over time.This study has revealed that Mount Cameroon volcanism has evolved from primitive magmas characterized by stronger HIMU signatures with high 206/204Pb and 208/204Pb isotopes,low SiO2 and high Mg,Ni,Cr content towards lower HIMU signatures with relatively higher SiO2,lower Mg,Cr and Ni compositions.The geochemical and isotopic changes,which account for the evolution of magmatism on Mount Cameroon occur over long periods of time because all the modern lavas erupted within the last 100 years are isotopically homogeneous,with very limited variation in SiO2 compositions.展开更多
The Cretaceous granitoids in the middle and northern Gangdese, Tibet are generally interpreted as the products of anatexis of thickened deep crust genetically associated with the Lhasa-Qiangtang collision. This paper ...The Cretaceous granitoids in the middle and northern Gangdese, Tibet are generally interpreted as the products of anatexis of thickened deep crust genetically associated with the Lhasa-Qiangtang collision. This paper reports bulk-rock major element, trace element and Sr-Nd isotopic data, zircon U-Pb age data, and zircon Hf isotopic data on the Zayu pluton in eastern Gangdese, Tibet. These data shed new light on the petrogenesis of the pluton. Our SHRIMP zircon U-Pb age dates, along with LA-ICPMS zircon U-Pb age dates recently reported in the literature, indicate that the Zayu pluton was emplaced at about 130 Ma, coeval with Early Cretaceous magmatic rocks in other areas of eastern Gangdese (e.g., Rawu, Baxoi areas) and the Middle Gangdese. The Zayu pluton samples lack amphibole and muscovite, and are compositionally characterized by high SiO2 (69.9%–76.8%), K2O (4.4%–5.7%), and low P2O5 (0.05%–0.12%). These samples also have A/CNK values of 1.00–1.05, and are enriched in Rb, Th, U, and Pb, and depleted in Ba, Nb, Ta, Sr, P, Ti, and Eu. These geochemical features suggest that the Zayu pluton samples are metaluminous to slightly peraluminous and are of highly fractionated I-type granite. The Zayu pluton samples have high ? Nd(t) values (?10.9–?7.6) and low initial 87Sr/86Sr ratios (0.7120–0.7179) relative to melts derived from mature continental crust in the Gangdese (e.g., Ningzhong Early Jurassic strongly peraluminous granite). The Zayu pluton samples are heterogeneous in zircon ? Hf(t) values (?12.8–?2.9), yielding ancient zircon Hf crustal model ages of 1.4–2.0 Ga. The data obtained in this study together with the data in the recent literature suggest that the Early Cretaceous granitoids in eastern Gangdese represent the eastward extension of the Early Cretaceous magmatism in the middle Gangdese, and that the Lhasa micro-continent block with ancient basement may extend for ~2000 km from east to west. Zircon Hf isotopic data and bulk-rock zircon saturation temperature (789–821 °C) indicate that mantle-derived materials likely played a role in the generation of the Zayu pluton. We propose that the Zayu pluton was most likely generated in a setting associated with southward subduction of the Bangong-Nujiang ocean floor, where mantle wedge-derived magmas may have provided the heat and material for the anatexis of ancient crust of the Lhasa micro-continent, resulted in hybrid melts (i.e., mantle-derived basaltic magmas + crust-derived felsic magmas). Such hybrid melts with subsequent fractional crystallization are responsible for the highly evolved Zayu pluton (crust thickening is not a prerequisite).展开更多
The Weining Beishan area of Ningxia Hui Autonomous Region is located at on the western edge of the Helanshan tectonic belt,which is a tectonic joint among Alxa Block,Ordos Block,and North Qilian orogenic belt.However,...The Weining Beishan area of Ningxia Hui Autonomous Region is located at on the western edge of the Helanshan tectonic belt,which is a tectonic joint among Alxa Block,Ordos Block,and North Qilian orogenic belt.However,the tectonic evolution of this area remains unclear due to the lack of magmatic information.This paper conducted researches on geochronology,geochemistry,and Sr-Nd-Hf isotopes of the diorite porphyrites exposed in the Weining Beishan area.The zircon U-Pb dating yields two ages of 145.0±1.1 and 146.2±1.5 Ma,and the whole-rock geochemical data indicate that the diorite porphyrites are metaluminous to weakly peraluminous and high-K calc-alkaline series.The characteristics of highly initial^(87)Sr/^(86)Sr ratios(0.70816 to 0.71047),negativeε_(Nd)(t)(−8.9 to−8.4),and negativeε_(Hf)(t)(−13.8 to−21.2)indicate that the diorite porphyrites originated from partial melting of the middle-lower ancient crust related to the North China Craton.Combined with the regional geology,we suggested that partial melting was triggered by a tectonic activity of deep faults cutting through the crust under the regional stress transformation from compressing to extension during the Late Jurassic–Early Cretaceous,which is probably related to the westward subduction of the Paleo-Pacific Plate.展开更多
The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zir...The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.展开更多
基金funded by the National Natural Science Foundation of China(41872232)the Beijing Geological Survey Project(PXM 2016-158203-000008,PXM 2018-158203-000014)the Beijing Innovation Studio(Urban Geology,Active Structure,and Monitoring).
文摘The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.
文摘Early Palaeozoic Cambrian A-type Kathalguri Granites in the Mikir Hills of northeastern (NE) India were studied to better understand the geodynamic settings in this region. This research presents new whole-rock geochemical and Sr, Nd, Pb isotopic data for the Cambrian granites in the Kathalguri Granite in Mikir Hills. The Kathalguri Granite shows geochemical characteristics of high SiO2, K2O and low FeOT, MgO, CaO, and P2O5 compositions. They belong to a high K Shoshonite to ultra-potassic series and display a weak metaluminous to peraluminous feature with A/CNK values of 0.83 to 1.02 with corundum and anorthite normative. FeOT/MgO varies from 2.93 - 7.49, is moderately oxidized and belongs to magnetite series. The rocks have a high ΣREE composition of 370.80 - 1353.23 ppm (average 568.55) and are enriched in LREE with flat HREE and (La/Yb)N values of 8.10 - 18.99, and display obvious strong negative Eu anomalies. Trace elements of the studied granites are characterized by enrichment in Rb, Th, U, Pb, Hf, and Sm, and depletion of Ba, Nb, Ta, and Sr. They display geochemical features of high Zr + Y + Nb + Ce values (241 - 934 ppm) and Ga/Al ratios 2.49 - 3.01 consistent with A-Type granites. Based on particular geochemical features, such as high Rb/Nb (3.10 - 19.53) and Low Y/Nb (0.09 - 2.28), Kathalguri Granite can be further classified as an A1-type subgroup. Granites display relatively low Sr (N ratio varying between 0.53 - 0.89 suggesting that the melts generated at greater depths (18 - 40 km), and fractionation at low pressures (−3 and total HGU 98.96 to 214.20. Kathalguri Granite dated by Rb-Sr isotopic isochrone as 489 ± 19 Ma with an initial 87Sr/86Sr 0.7199 ± 0.0017 and MSWD of 4.1, εSr(I) varied between 161.62 - 332.08 suggests that the Kathalguri Granite have originated from partial melting of ancient, evolved continental crustal material. The Sm-Nd Systematics has given a depleted mantle model (TDM) age ranging from 1733 - 2063 Ma with high negative εNd(t) values (−10.39 to −15.18) also hint at some heterogeneity or multiple source contributions in the melting process of the protolith. Xenoliths of older mafic rocks and Barapani arenites are seen within the Kathalguri Granite and are also supported by geochemical signatures of recycled crustal materials both mafic and sedimentary. It formed during the Cambrian reorganization of lithospheric plate motion related to the Pan-African-Braziliano event.
基金supported by the National Key Basic Research Program(2012CB416700,2007CB411408),a special fund managed by the State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,and the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences in Wuhan
文摘Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representative of tungsten-bearing granite. The Xihuashan granite consists mainly of medium-grained porphyritic biotite granite, medium-grained biotite granite and fine-grained twomica granite, which correspond to LA-ICP-MS zircon U-Pb ages of 555.5±0.4 Ma, 553.0±0.6 Ma and 552.8±0.9 Ma, respectively. Rocks from the Xihuashan mining area displays high SlOe (73.85% to 76.49%) and NaeO+K20 contents (8.09% to 9.43%), belonging to high-K calc-alkaline series. They are metaluminous to weakly peraluminous with A/CNK values ranging from 0.96 to 5.06. All granites in this study area are rich in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti, Nb and Eu, especially depleted in medium-grained biotite granite and fine-grained two-mica granite. The medium-grained porphyritic biotite granites usually have high LREE concentrations, whereas medium-grained biotite granite and fine-grained two-mica granite displays high HREE contents. Our geochemical data reveal that the studied rocks are highly fractionated I-type granite. The magma underwent strong magma differentiation with decreasing temperature and increasing oxygen fugacity, which may explain the formation of three types of distinct granites. Variations of Rb, Sr and Ba concentrations in different type granites were controlled by fractional crystallization of biotite and feldspar. Fractional crystallization of monazite, allanite and apatite resulted in LREE changes in granite, and formation of garnet mainly caused HREE changes. Granites from the Xihuashan mining area have relatively high εd(t) values (-9.77 to -55.46), indicating that they were probably generated by partial melting of underlying Proterozoic metasedimentary rocks with minor addition of juvenile crust or mantlederived magmas.
基金This study is financially supported by the National Natural Science Foundation of China (Grant Nos. 40412012035, 40511140503, 40472096, 40502009 and 40472118).
文摘The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1848 Ma. On the basis of geological and petrological characteristics, these granitoids can be classified into two groups: the earlier gneissic granodiorites and monzogranites, and the later massive leuco-monzogranites. Their geochemical and Nd isotopic features indicate that they could be derived from complicated partial melting of supracrustal rocks with an affinity of continental arc materials, such as sandy shale and pelite, and with garnet, pyroxene, hornblende and plagioclase as residual phases. Biotite, feldspar and other minerals were most likely fractionated during the magma evolution. Their source may have an affinity with continental arcs, and the granitoids could be derived from the main syn-collisional to late-orogenic tectonic environment, which may be related to the final amalgamation between the Eastern and Western continental blocks in the North China Craton.
基金projects of the Natural Science Foundation of China(41722204)Basic Scientific Research Foundation of Central Universities of China(Jilin University).
文摘This study presents zircon LA-ICP-MS U-Pb geochronology,trace elements characteristics,whole rock geochemistry composition and zircon Hf isotopic data of Shuimowan tonalites in Dengfeng City.The results show that zircons from Shuimowan tonalites have oscillatory growth zoning,relatively high Th/U ratios(0.8--1.7)and upturned zircon rare earth elements(REE),indicating that they are magmatic origin.Shuimowan tonalites yield a weighted mean 207 Pb/206 Pb age of 2522±9 Ma,indicating they were formed in the latest Neoarchean.The tonalites are characterized by relatively low SiO 2 contents,high MgO and Na 2O contents,high REE(∑REE=322×10-6-354×10-6),obvious fractionation of REE,enrichment in LREE and feeble negative Eu anomaly(Eu/Eu*=0.97--0.99).The samples are also enriched in large ion lithophile elements and depleted in high field strength elements,with negative Nb,Ta,P and Ti anomalies.TheεHf(t)values of zircon grains from Shuimowan tonalites range between 3.5 and 5.3.Combined with regional tectonic evolution,it is suggested that Shuimowan tonalites were derived from partial melting of mantle peridotite metasomatized by the slab-derived felsic melt and formed in the arc magma tectonic setting related to plate subduction.Research on the Neoarchean Shuimowan tonalites provides a constraint for the study of the Pre-Cambrian tectonic evolution in the southern margin of North China Craton.
文摘The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and geochemical studies, coupled with previous studies, the authors suggest that the Wulong adakitic biotite granodiorite was probably generated by dehydration melting of the Yaolinghe Group-like thickened mafic crust, triggered by underplating of mafic magma at the boundary of the thickened mafic crust and hot lithospheric mantle, and that the Wulong adakitic biotite granodiorite may have resulted from thinning and delamination of the lower crust or breakoff of the subducting slab of the Mianlue ocean during the Indosinian post-collisional orogenic stage of the Qinling orogenic belt.
基金provided by the National Scientific and Tecnological Support Program of China(Grant No:2006BAB01A11)
文摘South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui granitoid plutons at the northeast,Huayang-Wulong-Laocheng granitoid plutons at the central part,Xiba granitoid pluton at the northwest and Guangtoushan-Liuba granitoid plutons at the southwest.These Indonisian granitoids contain a mass of various scale mafic enclaves,which show sometimes clear boundaries and sometimes transitional boundaries with their host granitoids.These granitoids also exhibit metaluminous to peraluminous series,commonly higher Mg# and a wide range of petrochemistry from low-K tholeiite series,through mid-K and high-K calc-alkaline series to shoshonite series and predominated samples are attributed to mid-K and high-K calc-alkaline series.Detailed analyses in Sr-Nd isotopic systematics and petrochemistry reveal that there may be regionally initial granitoid magma of the Indonisian granitoid plutons,comprising Dongjiangkou-Zhashui,Huayang-Wulong-Laocheng,Xiba,and Guangtoushan-Liuba granitoid plutons,which were produced by hybrids of magmas in various degrees,and the initial magmas were derived from both the mantle and the lower continental crust(LCC)sources in the SQTB.The initial granitoid magma further did the magma hybrid with the magmas from the LCC,crystallization fractionation,and assimilation with upper crustal materials during their emplacement to produce these granitoid plutons in the SQTB.These magmatism processes are most likely to occur under continent marginal arc and syn-collision to post-collision tectonic backgrounds.
基金financially supported by the National Geological Survey Project and National Scientific and Technological Support Project (Grant Nos. 1212011085534 and 2011BAB04B05)
文摘The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The sanukitoid–like rocks are characterized by quartz monzonites, which display higher Mg#(55.0–59.0), and enrichments in Na2 O+K2 O(7.28–8.94 %), Ni(21-2312 ppm), Cr(56-4167 ppm), Sr(553-923 ppm), Ba(912-1355 ppm) and LREE((La/Yb)N =9.47–15.3), from negative to slightly positive Eu anomalies(δEu=+0.61 to +1.10), but also depletion in Nb, Ta and Ti. The granodioritic-monzogranitic rocks diaplay various Mg#of 6.00-53.0, high Na2 O+K2 O(7.20– 8.30%), Sr(455–1081 ppm) and(La/Yb)N(27.6–47.8), with positive Eu anomalies(δEu=1.03–1.57) and depleted Nb, Ta and Ti. Laser ablation inductively coupled plasma mass spectrometry(LA-ICPMS) zircon U-Pb isotopic dating reveals that the sanukitoid-like rocks were emplaced at two episodes of magmatism at 457±3 Ma and 431±2 Ma, respectively. The monzogranites were emplaced at 445±7Ma. Sanukitoid–like rocks have their εHf(t) values ranging from +0.3 to +15.1 with Hf–depleted mantle model ages of 445 to 1056 Ma, and the monzogranite shows its εHf(t) values ranging from 21.6 to +10.8 with Hf–depleted mantle model ages of 635 to 3183 Ma. Petrological, geochemical and zircon Lu –Hf isotopic features indicate that the magmatic precursor of sanukitoid–like rocks was derived from partial melting of the depleted mantle wedge materials that were metasomatized by fluids and melts related to subduction of oceanic slab, subsequently the sanukitoid magma ascended to crust level. This emplaced mantle magma caused partial melting of crustally metamorphosed sedimentary rocks, and mixing with the crustal magma, and suffered fractional crystallization, which lead to formations of quartz monzonites. However, the magmatic precursor of the granodioritic-monzogranitic rocks were derived from partial melting of subducted oceanic slab basalts. Integrated previous investigation for the adackitic rocks in the south of the intrusion, the Sanchahe intrusion signed that the North Qinling tectonic zone was developed in an early Paleozoic transitionally tectonic background from an island arc to back–arc.
基金supported by the resource compensation of Heilongjiang Province(Grant Nos.SDK2010-25)the Special Scientific Research Fund of Public Welfare Profession of China(Grant Nos.201211008)
文摘Whole-rock geochemical, zircon U-Pb geochronological and Sr-Nd-Hf isotopic data are presented for the Early Cretaceous volcanic rocks from the northern Da Hinggan Mountains. The volcanic rocks generally display high SiO2 (73.19-77.68 wt%) and Na20+K20 (6.53-8.98 wt%) contents, with enrichment in Rb, Th, U, Pb and LREE, and depletion in Nb, Ta, P and Ti. Three rhyolite samples, one rhyolite porphyry sample, and one volcanic breccia sample yield weighted mean 206pb/23SU ages of 135.1±1.2 Ma, 116.5±1.1 Ma, 121.9±1.0 Ma, 118.1±0.9 Ma and 116.9±1.4 Ma, respectively. All these rocks have moderate (STSr/S6Sr)i values of 0.704912 to 0.705896, slightly negative eNd(t) values of -1.4 to -0.1, and positive Cur(t) values of 3.7 to 8. Their zircon Hf and whole-rock Nd isotopic model ages range from 594 to 1024 Ma. These results suggest that the Early Cretaceous volcanic rocks were originated from melting of subducted oceanic crust and associated sediments during the closure of the Mongol-Okhotsk Ocean.
基金financially supported by the National Natural Science Foundation of China(grant No.41502076)the Science Research Fund of Yunnan Provincial Education Department(grant No.2015Y066)+1 种基金the Provincial People Training Program of Kunming University of Science and Technology(grant No.KKSY201421042)the Project of China Geological Survey(grant No.12120114013701)
文摘Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, monzonitic granite and light alkali feldspar granite. As a part of the Yidun arc, the Geza arc has common structure and temporal- spatial evolution with the ~idun arc, which has experienced three stages of oceanic crust subduction, collision orogeny and intracontinent convergence stages. The molybdenite ores in the area are mainly hosted in monzonitic granite-porphyry and structural fracture zone, and the ore bodies are strictly controlled by faults. In recent years, great geological prospecting results have been achieved in Xiuwacu, and the deposit has reached a medium scale. However, there are few researches on the metallogenic porphyry. Based on the previous research, we determined the rock-forming and ore-forming age of the porphyry, and found that there were two stages of magmatism intrusion in Xiuwacu: Indosinian and Yanshanian. We also discussed the geochemical characteristics and source area of the rocks in the area.
基金Supported by Project of National Natural Science Foundation of China(No.41572056)
文摘The Wulonggou area located in the Eastern Kunlun Orogen in NW China is characterized by extensive granitoid magmatism,ductile faulting and orogenic gold mineralization.The Huanglonggou granodiorite is cut by an orogenic gold-bearing fault.This study investigated the major and trace-element compositions,zircon U-Pb dates and zircon Hf isotopic compositions of the Huanglonggou granodiorite.One Huanglonggou granodiorite sample yielded a weighted mean U-Pb zircon age of^221 Ma(Carnian).The Carnian granodiorite is metaluminous,with high alkalis contents of 6.37%--8.86%,high Al_2O_3contents of 15.41%--16.19%,high Sr contents of(426--475)×10^(-6),relatively high Sr/Y ratios,high(La/Yb)_Nvalues and low HREE,suggesting an adakite type high-Si O_2granite.The Huanglonggou granodiorite sample has zirconε_(Hf)(t)values ranging from-4.4 to+1.1.These Hf isotopic data suggest that the Carnian granodiorite was likely derived from the partial melting of subducted Paleo-Tethys oceanic slab.It is suggested that the Late Triassic granodiorite was emplaced during the northward subduction of Paleo-Tethys oceanic slab.Orogenic gold mineralization in the Wulonggou area formed after the emplacement of the Late Triassic intrusive rocks.
基金supported by the National projects of Scientific and Technological Support (Grant Nos.2011BAB04B05 and 2006BAB01A11)National Natural Science Foundation of China (Grant Nos.41072143 and 41072169)
文摘Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U-Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb) N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of 8.79 to 5.38, depleted mantle Nd model ages (T DM ) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios ( 87 Sr/ 86 Sr) i from 0.7061 to 0.7082, indicating a possible Meso-to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher ( 87 Sr/ 86 Sr) i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting.
文摘Mount Cameroon volcano has erupted several times in the 20 th Century with documented eruptions in 1909,1922,1954,1959,1982,1999 and 2000.Evidence of historic volcanism is represented by several older lava flows and lahar deposits around the flanks of the volcano.This study aims to assess the evolution of Mount Cameroon volcanism through its eruptive history via interpretation of mineralogical,whole rock geochemical and Pb,Sr,Nd isotope data generated from historic and recent lava flows.In this study,samples were collected from the 1959,1982,1999 and 2000 eruptions and from several historic eruption sites with unknown eruption dates.Evaluation of major and trace element data demonstrates that Mount Cameroon is geotectonically associated with within-plate Ocean Island Basalt Settings.More than 90%of the studied historic lavas(n=29)classify as tephrites and basanites whereas the modern lavas(n=38)are predominantly trachybasalts,demonstrating evolution from primitive to evolved lavas over time typically in response to fractional crystallization.Petrographically,the lavas are porphyritic with main mineral phases being olivine,clinopyroxene,plagioclase feldspars and Fe-Ti-Cr oxides.The 1982 lavas are predominantly aphyric and dominated by lath-shaped flow-aligned plagioclase in the groundmass.Olivine chemistry shows variable forsterite compositions from Fo60-89.Clinopyroxenes vary from diopside through augite to titanaugite with chemical composition ranges from Wo45En32Fs7 to Wo51En47Fs17.Plagioclase feldspars vary from labradorite(An567 O)to bytownite(An80-87).For the Fe-Ti-Cr oxides,calculated ulvospinel component shows a wide variation from ulv38-87.CIPW-normative classification on the Di-Ol-Hy-Qz-Ne system shows that all Mount Cameroon lavas are nepheline-normative(Ne ranges from4.20 wt.%to 11.45 wt.%).Radiogenic isotope data demonstrate that Mount Cameroon lavas are HIMU(or high μ=238U/204Pb),characterized by 206Pb/204Pb=20.19-20.46,207Pb/204Pb=15.63-15.69,208Pb/204Pb=40.01-40.30,87Sr/86Sr=0.70322-0.70339(εsr=-21.37 to-18.96)and 143 Nd/144 Nd=0.51276-0.51285(εNd=+2.29 to+4.05).The historic lavas show stronger HIMU signature relative to the modern lavas,suggesting evolution towards less HIMU signatures over time.This study has revealed that Mount Cameroon volcanism has evolved from primitive magmas characterized by stronger HIMU signatures with high 206/204Pb and 208/204Pb isotopes,low SiO2 and high Mg,Ni,Cr content towards lower HIMU signatures with relatively higher SiO2,lower Mg,Cr and Ni compositions.The geochemical and isotopic changes,which account for the evolution of magmatism on Mount Cameroon occur over long periods of time because all the modern lavas erupted within the last 100 years are isotopically homogeneous,with very limited variation in SiO2 compositions.
基金Supported by National Natural Science Foundation of China (Grant Nos. 40572051, 40830317, 40873023, 40672044)National Basic Research Program of China (Grant No. 2009CB421002), Chinese "111" Project (Grant No. B07011)Programme of the Integrated Study of Basic Geology of Qinghai-Tibetan Plateau of the China Geological Survey
文摘The Cretaceous granitoids in the middle and northern Gangdese, Tibet are generally interpreted as the products of anatexis of thickened deep crust genetically associated with the Lhasa-Qiangtang collision. This paper reports bulk-rock major element, trace element and Sr-Nd isotopic data, zircon U-Pb age data, and zircon Hf isotopic data on the Zayu pluton in eastern Gangdese, Tibet. These data shed new light on the petrogenesis of the pluton. Our SHRIMP zircon U-Pb age dates, along with LA-ICPMS zircon U-Pb age dates recently reported in the literature, indicate that the Zayu pluton was emplaced at about 130 Ma, coeval with Early Cretaceous magmatic rocks in other areas of eastern Gangdese (e.g., Rawu, Baxoi areas) and the Middle Gangdese. The Zayu pluton samples lack amphibole and muscovite, and are compositionally characterized by high SiO2 (69.9%–76.8%), K2O (4.4%–5.7%), and low P2O5 (0.05%–0.12%). These samples also have A/CNK values of 1.00–1.05, and are enriched in Rb, Th, U, and Pb, and depleted in Ba, Nb, Ta, Sr, P, Ti, and Eu. These geochemical features suggest that the Zayu pluton samples are metaluminous to slightly peraluminous and are of highly fractionated I-type granite. The Zayu pluton samples have high ? Nd(t) values (?10.9–?7.6) and low initial 87Sr/86Sr ratios (0.7120–0.7179) relative to melts derived from mature continental crust in the Gangdese (e.g., Ningzhong Early Jurassic strongly peraluminous granite). The Zayu pluton samples are heterogeneous in zircon ? Hf(t) values (?12.8–?2.9), yielding ancient zircon Hf crustal model ages of 1.4–2.0 Ga. The data obtained in this study together with the data in the recent literature suggest that the Early Cretaceous granitoids in eastern Gangdese represent the eastward extension of the Early Cretaceous magmatism in the middle Gangdese, and that the Lhasa micro-continent block with ancient basement may extend for ~2000 km from east to west. Zircon Hf isotopic data and bulk-rock zircon saturation temperature (789–821 °C) indicate that mantle-derived materials likely played a role in the generation of the Zayu pluton. We propose that the Zayu pluton was most likely generated in a setting associated with southward subduction of the Bangong-Nujiang ocean floor, where mantle wedge-derived magmas may have provided the heat and material for the anatexis of ancient crust of the Lhasa micro-continent, resulted in hybrid melts (i.e., mantle-derived basaltic magmas + crust-derived felsic magmas). Such hybrid melts with subsequent fractional crystallization are responsible for the highly evolved Zayu pluton (crust thickening is not a prerequisite).
文摘The Weining Beishan area of Ningxia Hui Autonomous Region is located at on the western edge of the Helanshan tectonic belt,which is a tectonic joint among Alxa Block,Ordos Block,and North Qilian orogenic belt.However,the tectonic evolution of this area remains unclear due to the lack of magmatic information.This paper conducted researches on geochronology,geochemistry,and Sr-Nd-Hf isotopes of the diorite porphyrites exposed in the Weining Beishan area.The zircon U-Pb dating yields two ages of 145.0±1.1 and 146.2±1.5 Ma,and the whole-rock geochemical data indicate that the diorite porphyrites are metaluminous to weakly peraluminous and high-K calc-alkaline series.The characteristics of highly initial^(87)Sr/^(86)Sr ratios(0.70816 to 0.71047),negativeε_(Nd)(t)(−8.9 to−8.4),and negativeε_(Hf)(t)(−13.8 to−21.2)indicate that the diorite porphyrites originated from partial melting of the middle-lower ancient crust related to the North China Craton.Combined with the regional geology,we suggested that partial melting was triggered by a tectonic activity of deep faults cutting through the crust under the regional stress transformation from compressing to extension during the Late Jurassic–Early Cretaceous,which is probably related to the westward subduction of the Paleo-Pacific Plate.
基金financially supported by the National Project of Scientific and Technological Support(Grant No:2006BAB01A11)
文摘The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.