This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductiv...This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductive GNS-CNT networks. As a result, the NiS/GNS/CNT electrode showed a high specific capacitance of 2 377 F.g^-1 at 2 mV.s^-1 and good cycling stability compared with the pure NiS (1 599F.g^-1). The enhanced electrochemical performances are attributed to the synergetic effect between the conductive carbon and the pseudo-capacitive NiS. The high performance supercapacitor may provide application in the sea flashing signal system.展开更多
Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these rout...Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these routes do not have sufficien<span style="font-family:Verdana;">t sensing or communication equipment to obtain infrastructure-based tra</span><span style="font-family:Verdana;">ffic signal performance measures, so other data sources are required to identify locations being significantly affected by diversions. This paper examines the network impact caused by the start of an 18-month closure of the I-65/70 interchange (North Split), which usually serves approximately 214,000 vehicles per day in Indianapolis, IN. In anticipation of some proportion of the public diverting from official detour routes to local streets, a connected vehicle monitoring program was established to provide daily performances measures for over 100 intersections in the area without the need for vehicle sensing equipment. This study reports on 13 of the most impacted signals on an alternative arterial to identify locations and time of day where operations are most degraded, so that decision makers have quantitative information to make informed adjustments to the system. Individual vehicle movements at the studied locations are analyzed to estimate changes in volume, split failures, downstream blockage, arrivals on green, and travel times. Over 130,000 trajectories were analyzed in an 11-week period. Weekly afternoon peak period volumes increased by approximately 455%, split failures increased 3%, downstream blockage increased 10%, arrivals on green decreased 16%, and travel time increase 74%. The analysis performed in this paper will serve as a framework for any agency that wants to assess traffic signal performance at hundreds of locations with little or no existing sensing or communication infrastructure to prioritize tactical retiming and/or longer-term infrastructure investments.</span>展开更多
Bus rapid transit (BRT) systems have been implemented in many cities over the past two decades. Widespread adoption of General Transit Feed Specification (GTFS), the deployment of high-fidelity bus GPS data tracking, ...Bus rapid transit (BRT) systems have been implemented in many cities over the past two decades. Widespread adoption of General Transit Feed Specification (GTFS), the deployment of high-fidelity bus GPS data tracking, and anonymized high-fidelity connected vehicle data from private vehicles have provided new opportunities for performance measures that can be used by both transit agencies and traffic signal system operators. This paper describes the use of trajectory-based data to develop performance measures for a BRT system in Indianapolis, Indiana. Over 3 million data records during the 3-month period between March and May 2022 are analyzed to develop visualizations and performance metrics. A methodology to estimate the average delay and schedule adherence is presented along a route comprised of 74 signals and 28 bus stations. Additionally, this research demonstrates how these performance measures can be used to evaluate dedicated and non-dedicated bus lanes with general traffic. Travel times and reliability of buses are compared with nearly 30 million private vehicle trips. Results show that median travel time for buses on dedicated bi-directional lanes is within one minute of general traffic and during peak periods the buses are often faster. Schedule adherence was observed to be more challenging, with approximately 3% of buses arriving within 1 minute on average during the 5AM hour and 5% of buses arriving 6 - 9 minutes late during the 5PM hour. The framework and performance measures presented in this research provide agencies and transportation professionals with tools to identify opportunities for adjustments and to justify investment decisions.展开更多
The principle of Accurately Controlled Routinely Operated Signal System (ACROSS) is introduced in this paper. A sample machine is made and tested. The experiment shows that the signal stacking technique is effective i...The principle of Accurately Controlled Routinely Operated Signal System (ACROSS) is introduced in this paper. A sample machine is made and tested. The experiment shows that the signal stacking technique is effective in improving signal to noise ratio and the sompi cepstrum method is applicable to deconvolute a set of travel times of wave elements from accurate transfer function data in frequency domain.展开更多
In this paper the authors consider the operational problem of optimal signalling and control,called control-coding capacity(with feedback),C_(FB) in bits/second,of discrete-time nonlinear partially observable stochast...In this paper the authors consider the operational problem of optimal signalling and control,called control-coding capacity(with feedback),C_(FB) in bits/second,of discrete-time nonlinear partially observable stochastic systems in state space form,subject to an average cost constraint.C_(FB) is the maximum rate of encoding signals or messages into randomized controller-encoder strategies with feedback,which control the state of the system,and reproducing the messages at the output of the system using a decoder or estimator with arbitrary small asymptotic error probability.In the first part of the paper,the authors characterize C_(FB) by an information theoretic optimization problem of maximizing directed information from the inputs to the outputs of the system,over randomized strategies(controller-encoders).The authors derive equivalent characterizations of C_(FB),using randomized strategies generated by either uniform or arbitrary distributed random variables(RVs),sufficient statistics,and a posteriori distributions of nonlinear filtering theory.In the second part of the paper,the authors analyze C_(FB) for linear-quadratic Gaussian partially observable stochastic systems(LQG-POSSs).The authors show that randomized strategies consist of control,estimation and signalling parts,and the sufficient statistics are,two Kalman-filters and an orthogonal innovations process.The authors prove a semi-separation principle which states,the optimal control strategy is determined explicitly from the solution of a control matrix difference Riccati equation(DRE),independently of the estimation and signalling strategies.Finally,the authors express the optimization problem of C_(FB) in terms of two filtering matrix DREs,a control matrix DRE,and the covariance of the innovations process.Throughout the paper,the authors illustrate that the expression of C_(FB) includes as degenerate cases,problems of stochastic optimal control and channel capacity of information transmission.展开更多
A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)paramet...A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)parametrization was developed to adapt to different experimental sizes.A user-friendly interface was implemented,which allows converting script language expressions into FPGA internal control parameters.The proposed digital system can be combined with a conventional analog data acquisition system to provide more flexibility.The performance of the combined system was veri-fied using experimental data.展开更多
Alzheimer's disease is a common neurodegenerative disorder in older adults.Despite its prevalence,its pathogenesis remains unclea r.In addition to the most widely accepted causes,which in clude excessive amyloid-b...Alzheimer's disease is a common neurodegenerative disorder in older adults.Despite its prevalence,its pathogenesis remains unclea r.In addition to the most widely accepted causes,which in clude excessive amyloid-beta aggregation,tau hyperphosphorylation,and deficiency of the neurotransmitter acetylcholine,numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition.Dopamine is a crucial catecholaminergic neurotransmitter in the human body.Dopamine-associated treatments,such as drugs that target dopamine receptor D and dopamine analogs,can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations.Howeve r,therapeutics targeting the dopaminergic system are associated with various adverse reactions,such as addiction and exacerbation of cognitive impairment.This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease,focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs.The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease,thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.展开更多
To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interfere...To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interference cancellation with optimal power allocation is proposed.Given that power allocation has a significant impact on BER performance,the optimal power allocation is obtained by minimizing the average BER of NOMA users.According to the allocated powers,successive interference cancellation(SIC)between NOMA users is performed in descending power order.For each user,an iterative soft interference cancellation is performed,and soft symbol probabilities are calculated for soft decision.To improve detection accuracy and without increasing the complexity,the aforementioned algorithm is optimized by adding minimum mean square error(MMSE)signal estimation before detection,and in each iteration soft symbol probabilities are utilized for soft-decision of the current user and also for the update of soft interference of the previous user.Simulation results illustrate that the optimized algorithm i.e.MMSE-IDBSIC significantly outperforms joint multi-user detection and SIC detection by 7.57dB and 8.03dB in terms of BER performance.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
Artificial intelligence(AI)plays a critical role in signal recognition of distributed sensor systems(DSS),boosting its applications in multiple monitoring fields.Due to the domain differences between massive sensors i...Artificial intelligence(AI)plays a critical role in signal recognition of distributed sensor systems(DSS),boosting its applications in multiple monitoring fields.Due to the domain differences between massive sensors in signal acquisition conditions,such as manufacturing process,deployment,and environments,current AI schemes for signal recognition of DSS frequently encounter poor generalization performance.In this paper,an adaptive decentralized artificial intelligence(ADAI)method for signal recognition of DSS is proposed,to improve the entire generalization performance.By fine-tuning pre-trained model with the unlabeled data in each domain,the ADAI scheme can train a series of adaptive AI models for all target domains,significantly reducing the false alarm rate(FAR)and missing alarm rate(MAR)induced by domain differences.The field tests about intrusion signal recognition with distributed optical fiber sensors system demonstrate the efficacy of the ADAI scheme,showcasing a FAR of merely 4.3%and 0%,along with a MAR of only 1.4%and 2.7%within two specific target domains.The ADAI scheme is expected to offer a practical paradigm for signal recognition of DSS in multiple application fields.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an impo...The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.展开更多
The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh...The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.展开更多
Helicobacter pylori-associated gastritis(HPAG)is a common condition of the gastrointestinal tract.However,extensive and long-term antibiotic use has resulted in numerous adverse effects,including increased resistance,...Helicobacter pylori-associated gastritis(HPAG)is a common condition of the gastrointestinal tract.However,extensive and long-term antibiotic use has resulted in numerous adverse effects,including increased resistance,gastrointestinal dysfunction,and increased recurrence rates.When these concerns develop,traditional Chinese medicine(TCM)may have advantages.TCM is based on the concept of completeness and aims to eliminate pathogens and strengthen the body.It has the potential to prevent this condition while also boosting the rate of Helicobacter pylori eradication.This review elaborates on the mechanism of TCM treatment for HPAG based on cellular signalling pathways,which reflects the flexibility of TCM in treating diseases and the advantages of multi-level,multipathway,and multi-target treatments for HPAG.展开更多
BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling p...BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells.Moreover,intestinal flora can also affect the regulation of SCF/c-kit signaling pathway,thus affecting the expression of Cajal stromal cells.Cajal cells are the pacemakers of gastrointestinal motility.AIM To investigate the effects of Bifidobacterium lactis(B.lactis)BLa80 on the intestinal flora of rats in simulated microgravity and on the gastrointestinal motility-related SCF/c-kit pathway.METHODS The internationally recognized tail suspension animal model was used to simulate the microgravity environment,and 30 rats were randomly divided into control group,tail suspension group and drug administration tail suspension group with 10 rats in each group for a total of 28 days.The tail group was given B.lactis BLa80 by intragastric administration,and the other two groups were given water intragastric administration,the concentration of intragastric administration was 0.1 g/mL,and each rat was 1 mL/day.Hematoxylin&eosin staining was used to observe the histopathological changes in each segment of the intestine of each group,and the expression levels of SCF,c-kit,extracellular signal-regulated kinase(ERK)and p-ERK in the gastric antrum of each group were detected by Western blotting and PCR.The fecal flora and mucosal flora of rats in each group were detected by 16S rRNA.RESULTS Simulated microgravity resulted in severe exfoliation of villi of duodenum,jejunum and ileum in rats,marked damage,increased space between villi,loose arrangement,shortened columnar epithelium of colon,less folds,narrower mucosal thickness,reduced goblet cell number and crypts,and significant improvement after probiotic intervention.Simulated microgravity reduced the expressions of SCF and c-kit,and increased the expressions of ERK and P-ERK in the gastric antrum of rats.However,after probiotic intervention,the expressions of SCF and ckit were increased,while the expressions of ERK and P-ERK were decreased,with statistical significance(P<0.05).In addition,simulated microgravity can reduce the operational taxonomic unit(OTU)of the overall intestinal flora of rats,B.lactis BLa80 can increase the OTU of rats,simulated microgravity can reduce the overall richness and diversity of stool flora of rats,increase the abundance of firmicutes in stool flora of rats,and reduce the abundance of Bacteroides in stool flora of rats,most of which are mainly beneficial bacteria.Simulated microgravity can increase the overall richness and diversity of mucosal flora,increase the abundance of Bacteroides and Desulphurides in the rat mucosal flora,and decrease the abundance of firmicutes,most of which are proteobacteria.After probiotics intervention,the overall Bacteroidetes trend in simulated microgravity rats was increased.CONCLUSION B.lactis BLa80 can ameliorate intestinal mucosal injury,regulate intestinal flora,inhibit ERK expression,and activate the SCF/c-kit signaling pathway,which may have a facilitating effect on gastrointestinal motility in simulated microgravity rats.展开更多
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode...Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.展开更多
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur...Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China (Nos. 51077014, 21003028 and 51202043): the Fundamental Research funds for the Central Universities, the Program for New Century Excellent Talents in University (NCET-10-0050), and the Excellent Youth Foundation of Heilongjiang Province of China.
文摘This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductive GNS-CNT networks. As a result, the NiS/GNS/CNT electrode showed a high specific capacitance of 2 377 F.g^-1 at 2 mV.s^-1 and good cycling stability compared with the pure NiS (1 599F.g^-1). The enhanced electrochemical performances are attributed to the synergetic effect between the conductive carbon and the pseudo-capacitive NiS. The high performance supercapacitor may provide application in the sea flashing signal system.
文摘Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these routes do not have sufficien<span style="font-family:Verdana;">t sensing or communication equipment to obtain infrastructure-based tra</span><span style="font-family:Verdana;">ffic signal performance measures, so other data sources are required to identify locations being significantly affected by diversions. This paper examines the network impact caused by the start of an 18-month closure of the I-65/70 interchange (North Split), which usually serves approximately 214,000 vehicles per day in Indianapolis, IN. In anticipation of some proportion of the public diverting from official detour routes to local streets, a connected vehicle monitoring program was established to provide daily performances measures for over 100 intersections in the area without the need for vehicle sensing equipment. This study reports on 13 of the most impacted signals on an alternative arterial to identify locations and time of day where operations are most degraded, so that decision makers have quantitative information to make informed adjustments to the system. Individual vehicle movements at the studied locations are analyzed to estimate changes in volume, split failures, downstream blockage, arrivals on green, and travel times. Over 130,000 trajectories were analyzed in an 11-week period. Weekly afternoon peak period volumes increased by approximately 455%, split failures increased 3%, downstream blockage increased 10%, arrivals on green decreased 16%, and travel time increase 74%. The analysis performed in this paper will serve as a framework for any agency that wants to assess traffic signal performance at hundreds of locations with little or no existing sensing or communication infrastructure to prioritize tactical retiming and/or longer-term infrastructure investments.</span>
文摘Bus rapid transit (BRT) systems have been implemented in many cities over the past two decades. Widespread adoption of General Transit Feed Specification (GTFS), the deployment of high-fidelity bus GPS data tracking, and anonymized high-fidelity connected vehicle data from private vehicles have provided new opportunities for performance measures that can be used by both transit agencies and traffic signal system operators. This paper describes the use of trajectory-based data to develop performance measures for a BRT system in Indianapolis, Indiana. Over 3 million data records during the 3-month period between March and May 2022 are analyzed to develop visualizations and performance metrics. A methodology to estimate the average delay and schedule adherence is presented along a route comprised of 74 signals and 28 bus stations. Additionally, this research demonstrates how these performance measures can be used to evaluate dedicated and non-dedicated bus lanes with general traffic. Travel times and reliability of buses are compared with nearly 30 million private vehicle trips. Results show that median travel time for buses on dedicated bi-directional lanes is within one minute of general traffic and during peak periods the buses are often faster. Schedule adherence was observed to be more challenging, with approximately 3% of buses arriving within 1 minute on average during the 5AM hour and 5% of buses arriving 6 - 9 minutes late during the 5PM hour. The framework and performance measures presented in this research provide agencies and transportation professionals with tools to identify opportunities for adjustments and to justify investment decisions.
文摘The principle of Accurately Controlled Routinely Operated Signal System (ACROSS) is introduced in this paper. A sample machine is made and tested. The experiment shows that the signal stacking technique is effective in improving signal to noise ratio and the sompi cepstrum method is applicable to deconvolute a set of travel times of wave elements from accurate transfer function data in frequency domain.
文摘In this paper the authors consider the operational problem of optimal signalling and control,called control-coding capacity(with feedback),C_(FB) in bits/second,of discrete-time nonlinear partially observable stochastic systems in state space form,subject to an average cost constraint.C_(FB) is the maximum rate of encoding signals or messages into randomized controller-encoder strategies with feedback,which control the state of the system,and reproducing the messages at the output of the system using a decoder or estimator with arbitrary small asymptotic error probability.In the first part of the paper,the authors characterize C_(FB) by an information theoretic optimization problem of maximizing directed information from the inputs to the outputs of the system,over randomized strategies(controller-encoders).The authors derive equivalent characterizations of C_(FB),using randomized strategies generated by either uniform or arbitrary distributed random variables(RVs),sufficient statistics,and a posteriori distributions of nonlinear filtering theory.In the second part of the paper,the authors analyze C_(FB) for linear-quadratic Gaussian partially observable stochastic systems(LQG-POSSs).The authors show that randomized strategies consist of control,estimation and signalling parts,and the sufficient statistics are,two Kalman-filters and an orthogonal innovations process.The authors prove a semi-separation principle which states,the optimal control strategy is determined explicitly from the solution of a control matrix difference Riccati equation(DRE),independently of the estimation and signalling strategies.Finally,the authors express the optimization problem of C_(FB) in terms of two filtering matrix DREs,a control matrix DRE,and the covariance of the innovations process.Throughout the paper,the authors illustrate that the expression of C_(FB) includes as degenerate cases,problems of stochastic optimal control and channel capacity of information transmission.
基金This work was supported by the National Key R&D Program of China(Nos.2023YFA1606403 and 2023YFE0101600)the National Natural Science Foundation of China(Nos.12027809,11961141003,U1967201,11875073 and 11875074).
文摘A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)parametrization was developed to adapt to different experimental sizes.A user-friendly interface was implemented,which allows converting script language expressions into FPGA internal control parameters.The proposed digital system can be combined with a conventional analog data acquisition system to provide more flexibility.The performance of the combined system was veri-fied using experimental data.
文摘Alzheimer's disease is a common neurodegenerative disorder in older adults.Despite its prevalence,its pathogenesis remains unclea r.In addition to the most widely accepted causes,which in clude excessive amyloid-beta aggregation,tau hyperphosphorylation,and deficiency of the neurotransmitter acetylcholine,numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition.Dopamine is a crucial catecholaminergic neurotransmitter in the human body.Dopamine-associated treatments,such as drugs that target dopamine receptor D and dopamine analogs,can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations.Howeve r,therapeutics targeting the dopaminergic system are associated with various adverse reactions,such as addiction and exacerbation of cognitive impairment.This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease,focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs.The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease,thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.
基金supported by the National Key Research and Development Program of China(No.2021YFB2900602)the National Natural Science Foundation of China(No.61875230).
文摘To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interference cancellation with optimal power allocation is proposed.Given that power allocation has a significant impact on BER performance,the optimal power allocation is obtained by minimizing the average BER of NOMA users.According to the allocated powers,successive interference cancellation(SIC)between NOMA users is performed in descending power order.For each user,an iterative soft interference cancellation is performed,and soft symbol probabilities are calculated for soft decision.To improve detection accuracy and without increasing the complexity,the aforementioned algorithm is optimized by adding minimum mean square error(MMSE)signal estimation before detection,and in each iteration soft symbol probabilities are utilized for soft-decision of the current user and also for the update of soft interference of the previous user.Simulation results illustrate that the optimized algorithm i.e.MMSE-IDBSIC significantly outperforms joint multi-user detection and SIC detection by 7.57dB and 8.03dB in terms of BER performance.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
基金financial supports from the National Natural Science Foundation of China(NSFC)(No.61922033&U22A20206)Zhejiang Provincial Market Supervision Bureau Young Eagle Plan project under Grant CY2022228.
文摘Artificial intelligence(AI)plays a critical role in signal recognition of distributed sensor systems(DSS),boosting its applications in multiple monitoring fields.Due to the domain differences between massive sensors in signal acquisition conditions,such as manufacturing process,deployment,and environments,current AI schemes for signal recognition of DSS frequently encounter poor generalization performance.In this paper,an adaptive decentralized artificial intelligence(ADAI)method for signal recognition of DSS is proposed,to improve the entire generalization performance.By fine-tuning pre-trained model with the unlabeled data in each domain,the ADAI scheme can train a series of adaptive AI models for all target domains,significantly reducing the false alarm rate(FAR)and missing alarm rate(MAR)induced by domain differences.The field tests about intrusion signal recognition with distributed optical fiber sensors system demonstrate the efficacy of the ADAI scheme,showcasing a FAR of merely 4.3%and 0%,along with a MAR of only 1.4%and 2.7%within two specific target domains.The ADAI scheme is expected to offer a practical paradigm for signal recognition of DSS in multiple application fields.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金supported by the National Natural Science Foundation of China,No.82371444(to YZ)the Natural Science Foundation of Hubei Province,No.2022CFB216(to XC)the Key Research Project of Ministry of Science and Technology of China,No.2022ZD021160(to YZ)。
文摘The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.
基金supported by the National Natural Science Foundation of China,No.82003965the Science and Technology Research Project of Sichuan Provincial Administration of Traditional Chinese Medicine,No.2024MS167(to LH)+2 种基金the Xinglin Scholar Program of Chengdu University of Traditional Chinese Medicine,No.QJRC2022033(to LH)the Improvement Plan for the'Xinglin Scholar'Scientific Research Talent Program at Chengdu University of Traditional Chinese Medicine,No.XKTD2023002(to LH)the 2023 National Project of the College Students'Innovation and Entrepreneurship Training Program at Chengdu University of Traditional Chinese Medicine,No.202310633028(to FD)。
文摘The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
基金Supported by National Natural Science Foundation of China,No.82374323and Hunan Graduate Research Innovation Project,No.2023CX15.
文摘Helicobacter pylori-associated gastritis(HPAG)is a common condition of the gastrointestinal tract.However,extensive and long-term antibiotic use has resulted in numerous adverse effects,including increased resistance,gastrointestinal dysfunction,and increased recurrence rates.When these concerns develop,traditional Chinese medicine(TCM)may have advantages.TCM is based on the concept of completeness and aims to eliminate pathogens and strengthen the body.It has the potential to prevent this condition while also boosting the rate of Helicobacter pylori eradication.This review elaborates on the mechanism of TCM treatment for HPAG based on cellular signalling pathways,which reflects the flexibility of TCM in treating diseases and the advantages of multi-level,multipathway,and multi-target treatments for HPAG.
文摘BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells.Moreover,intestinal flora can also affect the regulation of SCF/c-kit signaling pathway,thus affecting the expression of Cajal stromal cells.Cajal cells are the pacemakers of gastrointestinal motility.AIM To investigate the effects of Bifidobacterium lactis(B.lactis)BLa80 on the intestinal flora of rats in simulated microgravity and on the gastrointestinal motility-related SCF/c-kit pathway.METHODS The internationally recognized tail suspension animal model was used to simulate the microgravity environment,and 30 rats were randomly divided into control group,tail suspension group and drug administration tail suspension group with 10 rats in each group for a total of 28 days.The tail group was given B.lactis BLa80 by intragastric administration,and the other two groups were given water intragastric administration,the concentration of intragastric administration was 0.1 g/mL,and each rat was 1 mL/day.Hematoxylin&eosin staining was used to observe the histopathological changes in each segment of the intestine of each group,and the expression levels of SCF,c-kit,extracellular signal-regulated kinase(ERK)and p-ERK in the gastric antrum of each group were detected by Western blotting and PCR.The fecal flora and mucosal flora of rats in each group were detected by 16S rRNA.RESULTS Simulated microgravity resulted in severe exfoliation of villi of duodenum,jejunum and ileum in rats,marked damage,increased space between villi,loose arrangement,shortened columnar epithelium of colon,less folds,narrower mucosal thickness,reduced goblet cell number and crypts,and significant improvement after probiotic intervention.Simulated microgravity reduced the expressions of SCF and c-kit,and increased the expressions of ERK and P-ERK in the gastric antrum of rats.However,after probiotic intervention,the expressions of SCF and ckit were increased,while the expressions of ERK and P-ERK were decreased,with statistical significance(P<0.05).In addition,simulated microgravity can reduce the operational taxonomic unit(OTU)of the overall intestinal flora of rats,B.lactis BLa80 can increase the OTU of rats,simulated microgravity can reduce the overall richness and diversity of stool flora of rats,increase the abundance of firmicutes in stool flora of rats,and reduce the abundance of Bacteroides in stool flora of rats,most of which are mainly beneficial bacteria.Simulated microgravity can increase the overall richness and diversity of mucosal flora,increase the abundance of Bacteroides and Desulphurides in the rat mucosal flora,and decrease the abundance of firmicutes,most of which are proteobacteria.After probiotics intervention,the overall Bacteroidetes trend in simulated microgravity rats was increased.CONCLUSION B.lactis BLa80 can ameliorate intestinal mucosal injury,regulate intestinal flora,inhibit ERK expression,and activate the SCF/c-kit signaling pathway,which may have a facilitating effect on gastrointestinal motility in simulated microgravity rats.
基金supported by the National Institutes of Health,Nos.AA025919,AA025919-03S1,and AA025919-05S1(all to RAF).
文摘Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.
基金supported by the National Natural Science Foundation of China(Youth Science Fund Project),No.81901292(to GC)the National Key Research and Development Program of China,No.2021YFC2502100(to GC)the National Natural Science Foundation of China,No.82071183(to ZZ).
文摘Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.