期刊文献+
共找到90,878篇文章
< 1 2 250 >
每页显示 20 50 100
Reconstruction of lithofacies using a supervised Self-Organizing Map:Application in pseudo-wells based on a synthetic geologic cross-section
1
作者 Carreira V.R. Bijani R. Ponte-Neto C.F. 《Artificial Intelligence in Geosciences》 2024年第1期14-26,共13页
Recently,machine learning(ML)has been considered a powerful technological element of different society areas.To transform the computer into a decision maker,several sophisticated methods and algorithms are constantly ... Recently,machine learning(ML)has been considered a powerful technological element of different society areas.To transform the computer into a decision maker,several sophisticated methods and algorithms are constantly created and analyzed.In geophysics,both supervised and unsupervised ML methods have dramatically contributed to the development of seismic and well-log data interpretation.In well-logging,ML algorithms are well-suited for lithologic reconstruction problems,once there is no analytical expressions for computing well-log data produced by a particular rock unit.Additionally,supervised ML methods are strongly dependent on a accurate-labeled training data-set,which is not a simple task to achieve,due to data absences or corruption.Once an adequate supervision is performed,the classification outputs tend to be more accurate than unsupervised methods.This work presents a supervised version of a Self-Organizing Map,named as SSOM,to solve a lithologic reconstruction problem from well-log data.Firstly,we go for a more controlled problem and simulate well-log data directly from an interpreted geologic cross-section.We then define two specific training data-sets composed by density(RHOB),sonic(DT),spontaneous potential(SP)and gamma-ray(GR)logs,all simulated through a Gaussian distribution function per lithology.Once the training data-set is created,we simulate a particular pseudo-well,referred to as classification well,for defining controlled tests.First one comprises a training data-set with no labeled log data of the simulated fault zone.In the second test,we intentionally improve the training data-set with the fault.To bespeak the obtained results for each test,we analyze confusion matrices,logplots,accuracy and precision.Apart from very thin layer misclassifications,the SSOM provides reasonable lithologic reconstructions,especially when the improved training data-set is considered for supervision.The set of numerical experiments shows that our SSOM is extremely well-suited for a supervised lithologic reconstruction,especially to recover lithotypes that are weakly-sampled in the training log-data.On the other hand,some misclassifications are also observed when the cortex could not group the slightly different lithologies. 展开更多
关键词 self-organizing maps Supervised machine learning Synthetic well-log data Classification of lithofacies
在线阅读 下载PDF
Fault Diagnosis in Chemical Process Based on Self-organizing Map Integrated with Fisher Discriminant Analysis 被引量:16
2
作者 陈心怡 颜学峰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期382-387,共6页
Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In ord... Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process. 展开更多
关键词 self-organizing maps Fisher discriminant analysis fault diagnosis MONITORING Tennessee Eastman process
在线阅读 下载PDF
Patterns of upper layer circulation variability in the South China Sea from satellite altimetry using the self-organizing map 被引量:6
3
作者 WEISBERG Robert H 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第z1期129-144,共16页
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal... Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years. 展开更多
关键词 circulation patterns self-organizing map satellite altimetry annual cycle inter-annual variation South China Sea
在线阅读 下载PDF
Hydrogeochemical characterization and quality assessment of groundwater using self-organizing maps in the Hangjinqi gasfield area,Ordos Basin,NW China 被引量:4
4
作者 Chu Wu Chen Fang +2 位作者 Xiong Wu Ge Zhu Yuzhe Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期781-790,共10页
Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sour... Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sources for water supply.A clear understanding of the groundwater hydrogeochemical characteristics and the groundwater quality and its seasonal cycle is invaluable and indispensable for groundwater protection and management.In this study,self-organizing maps were used in combination with the quantization and topographic errors and K-means clustering method to investigate groundwater chemistry datasets.The Piper and Gibbs diagrams and saturation index were systematically applied to investigate the hydrogeochemical characteristics of groundwater from both rainy and dry seasons.Further,the entropy-weighted theory was used to characterize groundwater quality and assess its seasonal variability and suitability for drinking purposes.Our hydrochemical groundwater dataset,consisting of 10 parameters measured during both dry and rainy seasons,was classified into 6 clusters,and the Piper diagram revealed three hydrochemical facies:Cl-Na type(clusters 1,2 and 3),mixed type(clusters 4 and 5),and HCO3-Ca type(cluster 6).The Gibbs diagram and saturation index suggested thatweathering of rock-forming mineralswere the primary process controlling groundwater chemical composition and validated the credibility and practicality of the clustering results.Two-thirds of 45 groundwater samples were categorized as excellent-or good-quality and were suitable as drinking water.Cluster changes within the same and different clusters from the dry season to the rainy season were detected in approximately 78%of the collected samples.The main factors affecting the groundwater quality were hydrogeochemical characteristics,and dry season groundwater quality was better than rainy season groundwater quality.Based on this work,such results can be used to investigate the seasonal variation of hydrogeochemical characteristics and assess water quality accurately in the others similar area. 展开更多
关键词 self-organizing maps Seasonal change Entropy-weighted theory Hydrogeochemical characteristics Groundwater quality
在线阅读 下载PDF
Waterlogging risk assessment based on self-organizing map(SOM)artificial neural networks:a case study of an urban storm in Beijing 被引量:3
5
作者 LAI Wen-li WANG Hong-rui +2 位作者 WANG Cheng ZHANG Jie ZHAO Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第5期898-905,共8页
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu... Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng. 展开更多
关键词 Waterlogging risk assessment self-organizing map(SOM) neural network Urban storm
在线阅读 下载PDF
Fault diagnosis and process monitoring using a statistical pattern framework based on a self-organizing map 被引量:2
6
作者 宋羽 姜庆超 颜学峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期601-609,共9页
A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a cla... A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a classifier to distinguish various states on the output map, which can visually monitor abnormal states. A case study of the Tennessee Eastman(TE) process is presented to demonstrate the fault diagnosis and process monitoring performance of the proposed method. Results show that the SP-based SOM method is a visual tool for real-time monitoring and fault diagnosis that can be used in complex chemical processes.Compared with other SOM-based methods, the proposed method can more efficiently monitor and diagnose faults. 展开更多
关键词 statistic pattern framework self-organizing map fault diagnosis process monitoring
在线阅读 下载PDF
Outlier Detection in Near Infra-Red Spectra with Self-Organizing Map 被引量:2
7
作者 李晓霞 李刚 +4 位作者 林凌 刘玉良 王焱 李健 杜江 《Transactions of Tianjin University》 EI CAS 2005年第2期129-132,共4页
A new method to detect multiple outliers in multivariate data is proposed. It is a combination of minimum subsets, resampling and self-organizing map (SOM) algorithm introduced by Kohonen,which provides a robust way w... A new method to detect multiple outliers in multivariate data is proposed. It is a combination of minimum subsets, resampling and self-organizing map (SOM) algorithm introduced by Kohonen,which provides a robust way with neural network. In this method, the number and organization of the neurons are selected by the characteristics of the spectra, e.g., the spectra data are often changed linearly with the concentration of the components and are often measured repeatedly, etc. So the spatial distribution of the neurons can be arranged by this characteristic. With this method, all the outliers in the spectra can be detected, which cannot be solved by the traditional method, and the speed of computation is higher than that of the traditional neural network method. The results of the simulation and the experiment show that this method is simple, effective, intuitionistic and all the outliers in the spectra can be detected in a short time. It is useful when associated with the regression model in the near infra-red research. 展开更多
关键词 OUTLIER near infra-red spectra minimum subsets RESAMPLING self-organizing map
在线阅读 下载PDF
Intrusion Detection Method Based on Improved Growing Hierarchical Self-Organizing Map 被引量:2
8
作者 张亚平 布文秀 +2 位作者 苏畅 王璐瑶 许涵 《Transactions of Tianjin University》 EI CAS 2016年第4期334-338,共5页
Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower,... Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower, an improved GHSOM method combined with mutual information is proposed. After theoretical analysis, experiments are conducted to illustrate the effectiveness of the proposed method by accurately clustering the input data. Based on different clusters, the complex relationship within the data can be revealed effectively. 展开更多
关键词 growing hierarchical self-organizing map(GHSOM) hierarchical structure mutual information intrusion detection network security
在线阅读 下载PDF
Analysis of morphological characteristics of gravels based on digital image processing technology and self-organizing map 被引量:1
9
作者 XU Tao YU Huan +4 位作者 QIU Xia KONG Bo XIANG Qing XU Xiaoyu FU Hao 《Journal of Arid Land》 SCIE CSCD 2023年第3期310-326,共17页
A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-effi... A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-efficiency and have many errors.This study researched the spatial distribution and cluster characteristics of gravels based on digital image processing technology combined with a self-organizing map(SOM)and multivariate statistical methods in the grassland of northern Tibetan Plateau.Moreover,the correlation of morphological parameters of gravels between different cluster groups and the environmental factors affecting gravel distribution were analyzed.The results showed that the morphological characteristics of gravels in northern region(cluster C)and southern region(cluster B)of the Tibetan Plateau were similar,with a low gravel coverage,small gravel diameter,and elongated shape.These regions were mainly distributed in high mountainous areas with large topographic relief.The central region(cluster A)has high coverage of gravels with a larger diameter,mainly distributed in high-altitude plains with smaller undulation.Principal component analysis(PCA)results showed that the gravel distribution of cluster A may be mainly affected by vegetation,while those in clusters B and C could be mainly affected by topography,climate,and soil.The study confirmed that the combination of digital image processing technology and SOM could effectively analyzed the spatial distribution characteristics of gravels,providing a new mode for gravel research. 展开更多
关键词 self-organizing map digital image processing morphological characteristics multivariate statistical method environmental monitoring
在线阅读 下载PDF
Seasonal variability of Kuroshio intrusion northeast of Taiwan Island as revealed by self-organizing map 被引量:1
10
作者 殷玉齐 林霄沛 +1 位作者 李宜振 曾相明 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第6期1435-1442,共8页
The self-organizing map method is applied to satellite-derived sea-level anomaly fields of1993-2012 to study variations of the Kuroshio intrusion northeast of Taiwan Island.Four major features are revealed,showing sig... The self-organizing map method is applied to satellite-derived sea-level anomaly fields of1993-2012 to study variations of the Kuroshio intrusion northeast of Taiwan Island.Four major features are revealed,showing significant seasonal variability of the intrusion.In general,the intrusion increases(decreases) with a high(low) sea-level anomaly at the edge of the East China Sea shelf in winter(summer).Open-ocean mesoscale eddies play an additional role in modulating the seasonal variation of the intrusion.Further analyses are needed to study eddy-Kuroshio interaction dynamics. 展开更多
关键词 Kuroshio intrusion self-organizing map mesoscale eddies
在线阅读 下载PDF
Spatiotemporal characteristics of the sea level anomaly in the Kuroshio Extension using a self-organizing map 被引量:1
11
作者 MA Fang DIAO Yi-Na LUO De-Hai 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第6期471-478,共8页
Satellite altimeter SSH data in the Kuroshio Extension (KE) region gathered during the period January 1993 to December 2014 are analyzed using self-organizing map (SOM) analysis. Four spatial patterns (SOM1, SOM2... Satellite altimeter SSH data in the Kuroshio Extension (KE) region gathered during the period January 1993 to December 2014 are analyzed using self-organizing map (SOM) analysis. Four spatial patterns (SOM1, SOM2, SOM3, and SOM4) are extracted, and the corresponding time series are used to characterize the variation of the sea level anomaly. Except in some individual months, SOM1 and SOM2 with single-branch jet structures appear alternately during the periods 1993-1998 and 2002-2011. However, during 1999-2001 and 2012-2014, SOM3 and SOM4 with double-branch jet structures are dominant.The sea level anomalies exhibit interannual variations, while the KE stream demonstrates decadal variation. For SOM1, the change in the KE path is less evident, although the KE jet is strong and narrow. For SOM2, the KE jet is weakened and widened and its jet axis moves towards the southwest. Compared with the SOM3, for SOM4 the trough and ridge in the upstream KE region are deeper in the northeast-southwest direction, and accompanied by a jet weakening and splitting.This study shows that SOM analysis is a useful approach for characterizing KE variability. 展开更多
关键词 Sea level anomaly selforganizing map analysis self-organizing map patterns jet variability
在线阅读 下载PDF
Fault diagnosis of rocket engine ground testing bed with self-organizing maps(SOMs) 被引量:1
12
作者 朱宁 冯志刚 王祁 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期204-208,共5页
To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing b... To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing bed data into a two-dimensional map.Visualization of the SOM is used to cluster the ground testing bed data.The out map of the SOM is divided to several regions.Each region is represented for one fault mode.The fault mode of testing data is determined according to the region of their labels belonged to.The method is evaluated using the testing data of a liquid-propellant rocket engine ground testing bed with sixteen fault states.The results show that it is a reliable and effective method for fault diagnosis with good visualization property. 展开更多
关键词 fault diagnosis self-organizing map (SOM) U-matrix VISUALIZATION
在线阅读 下载PDF
Distinguishing volcanic lithology using Self-Organizing Map 被引量:2
13
作者 Ping ZHANG Baozhi PAN 《Global Geology》 2007年第1期74-77,共4页
Self-Organizing Map is an unsupervised learning algorithm.It has the ability of self-organization,self-learning and side associative thinking.Based on the principle it can identified the complex volcanic lithology.Acc... Self-Organizing Map is an unsupervised learning algorithm.It has the ability of self-organization,self-learning and side associative thinking.Based on the principle it can identified the complex volcanic lithology.According to the logging data of the volcanic rock samples,the SOM will be trained,The SOM training results were analyzed in order to choose optimally parameters of the network.Through identifying the logging data of volcanic formations,the result shows that the map can achieve good application effects. 展开更多
关键词 self-organizing map volcanic rock lithology recognition logging data
在线阅读 下载PDF
Weighted Particle Swarm Clustering Algorithm for Self-Organizing Maps 被引量:1
14
作者 Guorong Cui Hao Li +4 位作者 Yachuan Zhang Rongjing Bu Yan Kang Jinyuan Li Yang Hu 《Journal of Quantum Computing》 2020年第2期85-95,共11页
The traditional K-means clustering algorithm is difficult to determine the cluster number,which is sensitive to the initialization of the clustering center and easy to fall into local optimum.This paper proposes a clu... The traditional K-means clustering algorithm is difficult to determine the cluster number,which is sensitive to the initialization of the clustering center and easy to fall into local optimum.This paper proposes a clustering algorithm based on self-organizing mapping network and weight particle swarm optimization SOM&WPSO(Self-Organization Map and Weight Particle Swarm Optimization).Firstly,the algorithm takes the competitive learning mechanism of a self-organizing mapping network to divide the data samples into coarse clusters and obtain the clustering center.Then,the obtained clustering center is used as the initialization parameter of the weight particle swarm optimization algorithm.The particle position of the WPSO algorithm is determined by the traditional clustering center is improved to the sample weight,and the cluster center is the“food”of the particle group.Each particle moves toward the nearest cluster center.Each iteration optimizes the particle position and velocity and uses K-means and K-medoids recalculates cluster centers and cluster partitions until the end of the algorithm convergence iteration.After a lot of experimental analysis on the commonly used UCI data set,this paper not only solves the shortcomings of K-means clustering algorithm,the problem of dependence of the initial clustering center,and improves the accuracy of clustering,but also avoids falling into the local optimum.The algorithm has good global convergence. 展开更多
关键词 self-organizing map weight particle swarm K-MEANS K-medoids global convergence
在线阅读 下载PDF
Extending self-organizing maps for supervised classification of remotely sensed data 被引量:1
15
作者 CHEN Yongliang 《Global Geology》 2009年第1期46-56,共11页
An extended self-organizing map for supervised classification is proposed in this paper. Unlike other traditional SOMs, the model has an input layer, a Kohonen layer, and an output layer. The number of neurons in the ... An extended self-organizing map for supervised classification is proposed in this paper. Unlike other traditional SOMs, the model has an input layer, a Kohonen layer, and an output layer. The number of neurons in the input layer depends on the dimensionality of input patterns. The number of neurons in the output layer equals the number of the desired classes. The number of neurons in the Kohonen layer may be a few to several thousands, which depends on the complexity of classification problems and the classification precision. Each training sample is expressed by a pair of vectors : an input vector and a class codebook vector. When a training sample is input into the model, Kohonen's competitive learning rule is applied to selecting the winning neuron from the Kohouen layer and the weight coefficients connecting all the neurons in the input layer with both the winning neuron and its neighbors in the Kohonen layer are modified to be closer to the input vector, and those connecting all the neurons around the winning neuron within a certain diameter in the Kohonen layer with all the neurons in the output layer are adjusted to be closer to the class codebook vector. If the number of training sam- ples is sufficiently large and the learning epochs iterate enough times, the model will be able to serve as a supervised classifier. The model has been tentatively applied to the supervised classification of multispectral remotely sensed data. The author compared the performances of the extended SOM and BPN in remotely sensed data classification. The investigation manifests that the extended SOM is feasible for supervised classification. 展开更多
关键词 self-organizing map modified competitive learning supervised classification remotely sensed data
在线阅读 下载PDF
Intraseasonal variability of the equatorial Pacific Ocean and its relationship with ENSO based on Self-Organizing Maps analysis
16
作者 FENG Junqiao WANG Fujun +1 位作者 WANG Qingye HU Dunxin 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第4期1108-1122,共15页
We investigated the intraseasonal variability of equatorial Pacific subsurface temperature and its relationship with El Nino-Southern Oscillation(ENSO) using Self-Organizing Maps(SOM) analysis.Variation in intraseason... We investigated the intraseasonal variability of equatorial Pacific subsurface temperature and its relationship with El Nino-Southern Oscillation(ENSO) using Self-Organizing Maps(SOM) analysis.Variation in intraseasonal subsurface temperature is mainly found along the thermocline.The SOM patterns concentrate in basin-wide seesaw or sandwich structures along an east-west axis.Both the seesaw and sandwich SOM patterns oscillate with periods of 55 to 90 days,with the sequence of them showing features of equatorial intraseasonal Kelvin wave,and have marked interannual variations in their occurrence frequencies.Further examination shows that the interannual variability of the SOM patterns is closely related to ENSO;and maxima in composite interannual variability of the SOM patterns are located in the central Pacific during CP El Nino and in the eastern Pacific during EP El Nino.The se results imply that some of the ENSO forcing is manife sted through changes in the occurrence frequency of intraseasonal patterns,in which the change of the intraseasonal Kelvin wave plays an important role. 展开更多
关键词 intraseasonal variability equatorial Pacific El Niño-Southern Oscillation(ENSO) self-organizing maps(SOM)
在线阅读 下载PDF
Coastal Water Quality Assessment by Self-Organizing Map
17
作者 牛志广 张宏伟 张颖 《Transactions of Tianjin University》 EI CAS 2005年第6期446-451,共6页
A new approach to coastal water quality assessment was put forward through study on self-organizing map ( SOM ). Firstly, the water quality data of Bohai Bay from 1999 to 2002 were prepared. Then, a set of software ... A new approach to coastal water quality assessment was put forward through study on self-organizing map ( SOM ). Firstly, the water quality data of Bohai Bay from 1999 to 2002 were prepared. Then, a set of software for coastal water quality assessment was developed based on the batch version algorithm of SOM and SOM toolbox in MATLAB environment. Furthermore. the training results of SOM could be analyzed with single water quality indexes, the value of N : PC atomic ratio) and the eutrophication index E so that the data were clustered into five different pollution types using k-means clustering method. Finally, it was realized that the monitoring data serial trajectory could be tracked and the new data be classified and assessed automatically. Through application it is found that this study helps to analyze and assess the coastal water quality by several kinds of graphics, which offers an easy decision support for recognizing pollution status and taking corresponding measures. 展开更多
关键词 self-organizing map SOM coastal marine water quality assessment pollution types
在线阅读 下载PDF
Study of TSP based on self-organizing map
18
作者 宋锦娟 白艳萍 胡红萍 《Journal of Measurement Science and Instrumentation》 CAS 2013年第4期353-360,共8页
Self-organizing map(SOM) proposed by Kohonen has obtained certain achievements in solving the traveling salesman problem(TSP).To improve Kohonen SOM,an effective initialization and parameter modification method is dis... Self-organizing map(SOM) proposed by Kohonen has obtained certain achievements in solving the traveling salesman problem(TSP).To improve Kohonen SOM,an effective initialization and parameter modification method is discussed to obtain a faster convergence rate and better solution.Therefore,a new improved self-organizing map(ISOM)algorithm is introduced and applied to four traveling salesman problem instances for experimental simulation,and then the result of ISOM is compared with those of four SOM algorithms:AVL,KL,KG and MSTSP.Using ISOM,the average error of four travelingsalesman problem instances is only 2.895 0%,which is greatly better than the other four algorithms:8.51%(AVL),6.147 5%(KL),6.555%(KG) and 3.420 9%(MSTSP).Finally,ISOM is applied to two practical problems:the Chinese 100 cities-TSP and102 counties-TSP in Shanxi Province,and the two optimal touring routes are provided to the tourists. 展开更多
关键词 self-organizing maps (SOM) traveling salesman problem (TSP) neural networkDocument code:AArticle ID:1674-8042(2013)04-0353-08
在线阅读 下载PDF
Self-Organizing Maps in Seismic Image Segmentation
19
作者 Carlos Ramirez Miguel Argaez +1 位作者 Pablo Guiilen Gladys Gonzalez 《Computer Technology and Application》 2012年第9期624-629,共6页
Unsupervised neural networks such as the Kohonen Self-Organizing Maps (SOM) have been widely used for searching natural clusters in multidimensional and massive data. One example where the data available for analysi... Unsupervised neural networks such as the Kohonen Self-Organizing Maps (SOM) have been widely used for searching natural clusters in multidimensional and massive data. One example where the data available for analysis can be extremely large is seismic interpretation for hydrocarbon exploration. In order to assist the interpreter in identifying characteristics of interest confined in the seismic data, the authors present a set of data attributes that can be used to train a SOM in such a way that zones of interest can be automatically identified or segmented, reducing time in the interpretation process. The authors show how to associate SOM to 2D color maps to visually identify the clustering structure of the input seismic data, and apply the proposed technique to a 2D synthetic seismic dataset of salt structures. 展开更多
关键词 self-organizing maps image segmentation seismic attributes.
在线阅读 下载PDF
Alertness Staging Based on Improved Self-Organizing Map
20
作者 王学民 张翼 +5 位作者 李向新 刘雅婷 曹红宝 周鹏 王晓璐 高翔 《Transactions of Tianjin University》 EI CAS 2013年第6期459-462,共4页
In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency d... In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an improved self-organizing map(ISOM) neuron network was proposed, which successfully identify three different brain status of the subjects: awareness, drowsiness and sleep. Compared with traditional SOM, the experiment results show that the ISOM generates much better classification accuracy, reaching as high as 89.59%. 展开更多
关键词 electroencephalogram(EEG) improved self-organizing map(ISOM) alertness staging
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部