To reduce the uncertainty and reworks in complex projects,a novel mechanism is systematically developed in this paper based on two classical design structure matrix(DSM)clustering methods:Loop searching method(LSM)and...To reduce the uncertainty and reworks in complex projects,a novel mechanism is systematically developed in this paper based on two classical design structure matrix(DSM)clustering methods:Loop searching method(LSM)and function searching method(FSM).Specifically,the optimal working areas for the two clustering methods are first obtained quantitatively in terms of non-zero fraction(NZF)and singular value modularity index(SMI),in which the whole working area is divided into six sub-zones.Then,a judgement procedure is proposed for conveniently choosing the optimal DSM clustering method,which makes it easy to determine which DSM clustering method performs better for a given case.Subsequently,a conceptual model is constructed to assist project managers in effectively analyzing the network of projects and greatly reducing reworks in complex projects by defining preventive actions.Finally,the aircraft design process is presented to show how the proposed judgement mechanism can be utilized to reduce the reworks in actual projects.展开更多
The infaunal polychaete Perinereis aibuhitensis Grube, distributes widelyalong Asian coasts and estuaries. In this research the particle reworking function of P.aibuhitensis was investigated in Beitang Estuary, Tianji...The infaunal polychaete Perinereis aibuhitensis Grube, distributes widelyalong Asian coasts and estuaries. In this research the particle reworking function of P.aibuhitensis was investigated in Beitang Estuary, Tianjin. The result showed that P.aibuhitensis displayed significant particle mixing function, in which small grain sizesediment particles were mixed more than the large size ones. Some small grain sizesediment particles could be ingested by P. aibuhitensis and egested with fecal pellets.展开更多
Intensive mid-Neoproterozoic magmatism is the salient feature of the Yangtze Block,preserving abundant information about crustal reworking and growth.Zircon U-Pb-Lu-Hf isotope analysis was performed on material from t...Intensive mid-Neoproterozoic magmatism is the salient feature of the Yangtze Block,preserving abundant information about crustal reworking and growth.Zircon U-Pb-Lu-Hf isotope analysis was performed on material from the Feidong Complex(FDC)and Zhangbaling Group(ZBLG)of the Zhangbaling Uplift,in order to determine the age and magmatic source of the Neoproterozoic igneous rocks as well as the detrital provenance for the sedimentary rocks,to further provide important data for understanding the mid-Neoproterozoic crustal evolution of the Northeast Yangtze Block.The amphibolite and gneissic granites in the Feidong Complex(FDC)gave similar protolith ages of 782-776 Ma.The synmagmatic zircons exhibited variable negativeεHf(t)values of-26.9 to-8.3.Early(ca.2.4 Ga)to late Paleoproterozoic(ca.2.0-1.9 Ga)inherited zircons were found in the gneissic monzogranite,with negativeεHf(t)values of-11.2 to-7.2,indicating strong reworking of the ancient crustal materials of the Northeast Yangtze Block.Whereas the amphibolites represent minor crustal growth through emplacement of continental rifting-related mafic magmas.The quartz-keratophyres in the Xileng Formation of the ZBLG in contrast systematically yield young protolith crystallization ages of 754-727 Ma with highεHf(t)values of-2.0 to+5.6,indicating their derivation from the reworking of juvenile crustal materials.The detrital zircons from the metasiltstone in the Beijiangjun Formation yield variable^(206)Pb/^(238)U ages(871-644 Ma)with a peak age at 741±11 Ma andεHf(t)values of-4.3 to+5.3,which is consistent with those of the Xileng Formation,but distinct from the FDC,indicating that the provenance of the metasiltstone is primarily the underlying Xileng Formation.The mid-Neoproterozoic igneous and sedimentary rocks of the Zhangbaling Uplift were products from continental rifting zones along the northern margin of the Yangtze Block,situated in different positions from the Susong Complex and the Haizhou Group.The transition from ancient to juvenile crustal sources for felsic magmatic rocks is attributed to gradually increased crustal extension during continental rifting.展开更多
Iron formations are valuable archives of sedimentary conditions and post-depositional events.However,geochemical proxies commonly used to determine genetic characteristics can be variably modified during metamorphism ...Iron formations are valuable archives of sedimentary conditions and post-depositional events.However,geochemical proxies commonly used to determine genetic characteristics can be variably modified during metamorphism and deformation,hampering their use as records of regional geological events.This work focuses on strongly reworked magnetite-quartz-rich rocks from the São Josédo Campestre Massif,one of the oldest fragments of preserved crust in South America.The genetic classification of these magnetite-quartz-rich rocks is not straightforward because primary assemblages and textures were variably modified by granulite facies metamorphism during a regional Paleoproterozoic migmatization event.To address genetic ambiguities,we analyzed their magnetite and pyroxene chemistry,wholerock geochemistry,and Sm-Nd isotopes.Magnetite chemistry indicates that pyroxene-poor iron formations(Type B)are low in trace elements such as Ti,Al,V,and Mn,suggesting a chemical similarity to iron formations elsewhere.In contrast,magnetites from pyroxene-enriched Type A iron formations are rich in trace elements and more akin to magnetite crystallized from higher temperature systems,such as skarn and IOCG.The^(147)Sm/^(144)Nd of these rocks show substantial variation even at the outcrop scale,indicating a locally-controlled,highly heterogeneous mixture of Archean,Paleoproterozoic,and Neoproterozoic sources.Therefore,our geochemical tools point out to heterogenous signatures of these magnetitequartz rocks and proxies compatible with both low and high-temperature conditions and age of deposition spanning sources from the Archean to the Neoproterozoic.We interpret that the studied São Josédo Campestre magnetite-quartz rocks represent Archean iron formations with original magnetite chemistry and isotopic signatures variably modified by metamorphism and by at least one deformation-related hydrothermal event.These results contrast with similar examples from China and Greenland where iron formations either preserved the magnetite chemistry or the primary isotopic signatures.Our study indicates that metamorphism can selectively affect chemical proxies used to study iron formations and undermine the genetic classification of iron ores.Thus,these proxies should be carefully applied in the interpretation of syn-depositional environments of polydeformed belts.展开更多
There has been a wealth of research that has examined the nature of rework in construction.Progress toward addressing the rework problem has been limited-it still plagues practice,adversely impacting a project’s perf...There has been a wealth of research that has examined the nature of rework in construction.Progress toward addressing the rework problem has been limited-it still plagues practice,adversely impacting a project’s performance.Almost all rework studies have focused on determining its proximal or root causes and therefore have overlooked the conditions that result from its manifestation.In filling this void,this paper draws upon our previous empirical studies,amongst others,to provide a much-needed theoretical framing to understand better why rework occurs,what its consequences are,and how it can be mitigated during construction.The theoretical framing we derive from our review provides construction organizations and their projects with a realization that the journey to mitigating rework begins with creating an error-mastery culture comprising authentic leadership,psychological safety,an errormanagement orientation,and resilience.We suggest that,once an error-mastery culture is established within construction organizations and their projects,they will be better positioned to realize the benefits of the techniques,tools,and technologies espoused to address rework,such as the Last Planner® and building information modeling.We also provide directions for future research and identify implications for practice so that strides toward rework mitigation in construction can be made.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 71471087, 71071076, 61673209)the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics (No. BCXJ17-11)the Research and Innovation Program for Graduate Education of Jiangsu Province (No. KYZZ160145)
文摘To reduce the uncertainty and reworks in complex projects,a novel mechanism is systematically developed in this paper based on two classical design structure matrix(DSM)clustering methods:Loop searching method(LSM)and function searching method(FSM).Specifically,the optimal working areas for the two clustering methods are first obtained quantitatively in terms of non-zero fraction(NZF)and singular value modularity index(SMI),in which the whole working area is divided into six sub-zones.Then,a judgement procedure is proposed for conveniently choosing the optimal DSM clustering method,which makes it easy to determine which DSM clustering method performs better for a given case.Subsequently,a conceptual model is constructed to assist project managers in effectively analyzing the network of projects and greatly reducing reworks in complex projects by defining preventive actions.Finally,the aircraft design process is presented to show how the proposed judgement mechanism can be utilized to reduce the reworks in actual projects.
基金supported by the Chinese Natural Science Foundation(Funding Numbers:41303070,21307045)
文摘The infaunal polychaete Perinereis aibuhitensis Grube, distributes widelyalong Asian coasts and estuaries. In this research the particle reworking function of P.aibuhitensis was investigated in Beitang Estuary, Tianjin. The result showed that P.aibuhitensis displayed significant particle mixing function, in which small grain sizesediment particles were mixed more than the large size ones. Some small grain sizesediment particles could be ingested by P. aibuhitensis and egested with fecal pellets.
基金supported by funds from the Natural Science Foundation of China(41772228)。
文摘Intensive mid-Neoproterozoic magmatism is the salient feature of the Yangtze Block,preserving abundant information about crustal reworking and growth.Zircon U-Pb-Lu-Hf isotope analysis was performed on material from the Feidong Complex(FDC)and Zhangbaling Group(ZBLG)of the Zhangbaling Uplift,in order to determine the age and magmatic source of the Neoproterozoic igneous rocks as well as the detrital provenance for the sedimentary rocks,to further provide important data for understanding the mid-Neoproterozoic crustal evolution of the Northeast Yangtze Block.The amphibolite and gneissic granites in the Feidong Complex(FDC)gave similar protolith ages of 782-776 Ma.The synmagmatic zircons exhibited variable negativeεHf(t)values of-26.9 to-8.3.Early(ca.2.4 Ga)to late Paleoproterozoic(ca.2.0-1.9 Ga)inherited zircons were found in the gneissic monzogranite,with negativeεHf(t)values of-11.2 to-7.2,indicating strong reworking of the ancient crustal materials of the Northeast Yangtze Block.Whereas the amphibolites represent minor crustal growth through emplacement of continental rifting-related mafic magmas.The quartz-keratophyres in the Xileng Formation of the ZBLG in contrast systematically yield young protolith crystallization ages of 754-727 Ma with highεHf(t)values of-2.0 to+5.6,indicating their derivation from the reworking of juvenile crustal materials.The detrital zircons from the metasiltstone in the Beijiangjun Formation yield variable^(206)Pb/^(238)U ages(871-644 Ma)with a peak age at 741±11 Ma andεHf(t)values of-4.3 to+5.3,which is consistent with those of the Xileng Formation,but distinct from the FDC,indicating that the provenance of the metasiltstone is primarily the underlying Xileng Formation.The mid-Neoproterozoic igneous and sedimentary rocks of the Zhangbaling Uplift were products from continental rifting zones along the northern margin of the Yangtze Block,situated in different positions from the Susong Complex and the Haizhou Group.The transition from ancient to juvenile crustal sources for felsic magmatic rocks is attributed to gradually increased crustal extension during continental rifting.
基金supported by the National Council for the Improvement of Higher Education(CAPES)the Brazilian Council for Research and Technological Development(CNPQ)。
文摘Iron formations are valuable archives of sedimentary conditions and post-depositional events.However,geochemical proxies commonly used to determine genetic characteristics can be variably modified during metamorphism and deformation,hampering their use as records of regional geological events.This work focuses on strongly reworked magnetite-quartz-rich rocks from the São Josédo Campestre Massif,one of the oldest fragments of preserved crust in South America.The genetic classification of these magnetite-quartz-rich rocks is not straightforward because primary assemblages and textures were variably modified by granulite facies metamorphism during a regional Paleoproterozoic migmatization event.To address genetic ambiguities,we analyzed their magnetite and pyroxene chemistry,wholerock geochemistry,and Sm-Nd isotopes.Magnetite chemistry indicates that pyroxene-poor iron formations(Type B)are low in trace elements such as Ti,Al,V,and Mn,suggesting a chemical similarity to iron formations elsewhere.In contrast,magnetites from pyroxene-enriched Type A iron formations are rich in trace elements and more akin to magnetite crystallized from higher temperature systems,such as skarn and IOCG.The^(147)Sm/^(144)Nd of these rocks show substantial variation even at the outcrop scale,indicating a locally-controlled,highly heterogeneous mixture of Archean,Paleoproterozoic,and Neoproterozoic sources.Therefore,our geochemical tools point out to heterogenous signatures of these magnetitequartz rocks and proxies compatible with both low and high-temperature conditions and age of deposition spanning sources from the Archean to the Neoproterozoic.We interpret that the studied São Josédo Campestre magnetite-quartz rocks represent Archean iron formations with original magnetite chemistry and isotopic signatures variably modified by metamorphism and by at least one deformation-related hydrothermal event.These results contrast with similar examples from China and Greenland where iron formations either preserved the magnetite chemistry or the primary isotopic signatures.Our study indicates that metamorphism can selectively affect chemical proxies used to study iron formations and undermine the genetic classification of iron ores.Thus,these proxies should be carefully applied in the interpretation of syn-depositional environments of polydeformed belts.
基金financial support of the Australian Research Council (DP210101281)。
文摘There has been a wealth of research that has examined the nature of rework in construction.Progress toward addressing the rework problem has been limited-it still plagues practice,adversely impacting a project’s performance.Almost all rework studies have focused on determining its proximal or root causes and therefore have overlooked the conditions that result from its manifestation.In filling this void,this paper draws upon our previous empirical studies,amongst others,to provide a much-needed theoretical framing to understand better why rework occurs,what its consequences are,and how it can be mitigated during construction.The theoretical framing we derive from our review provides construction organizations and their projects with a realization that the journey to mitigating rework begins with creating an error-mastery culture comprising authentic leadership,psychological safety,an errormanagement orientation,and resilience.We suggest that,once an error-mastery culture is established within construction organizations and their projects,they will be better positioned to realize the benefits of the techniques,tools,and technologies espoused to address rework,such as the Last Planner® and building information modeling.We also provide directions for future research and identify implications for practice so that strides toward rework mitigation in construction can be made.