Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Curre...Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Current studies have elucidated the neuroprotective role of the sirtuin protein family(Sirtuins)in modulating cerebral ischemia-reperfusion injury.However,the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration.In this review,the origin and research progress of Sirtuins are summarized,suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury,including inflammation,oxidative stress,blood-brain barrier damage,apoptosis,pyroptosis,and autophagy.The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways,such as nuclear factor-kappa B signaling,oxidative stress mediated by adenosine monophosphate-activated protein kinase,and the forkhead box O.This review also summarizes the potential of endogenous substances,such as RNA and hormones,drugs,dietary supplements,and emerging therapies that regulate Sirtuins expression.This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors.While Sirtuins show promise as a potential target for the treatment of cerebral ischemiareperfusion injury,most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans,potentially influencing the efficacy of Sirtuinstargeting drug therapies.Overall,this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.展开更多
Ischemia/reperfusion(I/R)injury ismarked by the restriction and subsequent restoration of blood supply to an organ.This process can exacerbate the initial tissue damage,leading to further disorders,disability,and even...Ischemia/reperfusion(I/R)injury ismarked by the restriction and subsequent restoration of blood supply to an organ.This process can exacerbate the initial tissue damage,leading to further disorders,disability,and even death.Extracellular vesicles(EVs)are crucial in cell communication by releasing cargo that regulates the physiological state of recipient cells.The development of EVs presents a novel avenue for delivering therapeutic agents in I/R therapy.The therapeutic potential of EVs derived from stem cells,endothelial cells,and plasma in I/R injury has been actively investigated.Therefore,this review aims to provide an overview of the pathological process of I/R injury and the biophysical properties of EVs.We noted that EVs serve as nontoxic,flexible,and multifunctional carriers for delivering therapeutic agents capable of intervening in I/R injury progression.The therapeutic efficacy of EVs can be enhanced through various engineering strategies.Improving the tropism of EVs via surface modification and modulating their contents via preconditioning are widely investigated in preclinical studies.Finally,we summarize the challenges in the production and delivery of EV-based therapy in I/R injury and discuss how it can advance.This review will encourage further exploration in developing efficient EV-based delivery systems for I/R treatment.展开更多
Acute renal failure has a 50% - 80% mortality rate. Currently, treatment options for this life-threatening disease are limited. Low-level laser therapy (LLLT) has been found to modulate biological activity. The aim of...Acute renal failure has a 50% - 80% mortality rate. Currently, treatment options for this life-threatening disease are limited. Low-level laser therapy (LLLT) has been found to modulate biological activity. The aim of the present study was to investigate the possible beneficial effects of laser application to stem cells in the bone marrow, on the kidneys of rats that had undergone ischemia-reperfusion injury (IRI). IRI was induced by occlusion of the renal artery to 3- and 7-month-old rats for 15 or 30 minutes. In an additional experiment IRI was applied to both kidneys for 20 min each in 2-3-month-old rats. Rats were then divided randomly into two groups of control and laser-treated. Laser therapy (Ga-Al-As 810 nm, 200 mW output for 2 min) was applied to the bone marrow 1 and 7 days post-IRI to the kidneys, and rats were sacrificed 2 weeks later. Histomorphometry and immunohistochemistry were performed on kidney sections and blood markers for kidney function. Quantitative histomorphometric analysis revealed a reduction in dilatation of the renal tubules, restored structural integrity of the renal tubules, and reduced necrosis in the laser-treated rats as compared to the control, non-laser-irradiated group. C-kit positive cell density in kidneys post-IRI and laser-treatment was significantly (p = 0.015) 3.2-fold higher compared to the control group. Creatinine and blood urea nitrogen content were significantly lower in the laser-treated rats as compared to control. It is concluded that LLLT application to the bone marrow (BM) causes a significant increase in the density of mesenchymal stem cells in the kidneys post-IRI, probably by induction of stem cells in the BM, which subsequently migrate to the IRI kidney, significantly reducing the pathological features of the kidney and increasing kidney function post IRI.展开更多
Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none o...Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none of these techniques can markedly reverse neurological deficits.Recently,extracellular vesicles from various cell sources have been applied to different models of spinal cord injury,thereby generating new cell-free therapies for the treatment of spinal cord injury.However,the use of extracellular vesicles alone is still associated with some notable shortcomings,such as their uncertainty in targeting damaged spinal cord tissues and inability to provide structural support to damaged axons.Therefore,this paper reviews the latest combined strategies for the use of extracellular vesicle-based technology for spinal cord injury,including the combination of extracellular vesicles with nanoparticles,exogenous drugs and/or biological scaffold materials,which facilitate the targeting ability of extracellular vesicles and the combinatorial effects with extracellular vesicles.We also highlight issues relating to the clinical transformation of these extracellular vesicle-based combination strategies for the treatment of spinal cord injury.展开更多
This review aims at evaluating the existing evidence regarding post reperfusion syndrome, providing a description of the pathophysiologic mechanisms involved and possible management and preventive strategies. A Pub Me...This review aims at evaluating the existing evidence regarding post reperfusion syndrome, providing a description of the pathophysiologic mechanisms involved and possible management and preventive strategies. A Pub Med search was conducted using the Me SH database, "Reperfusion" AND "liver transplantation" were the combined Me SH headings; EMBASE and the Cochrane library were also searched using the same terms. 52 relevant studies and one ongoing trial were found. The concept of post reperfusion syndrome has evolved through years to a multisystemic disorder. The implications of the main organ, recipient and procedure related factors in the genesis of this complex syndrome are discussed in the text as the novel pharmacologic and technical approaches to reduce its incidence. However the available evidence about risk factors, physiopathology and preventive measures is still confusing, the presence of two main definitions and the numerosity of possible confounding factors greatly complicates the interpretation of the studies.展开更多
Heat-sensitive suspended moxibustion has a neuroprotective effect against focal cerebral ischemia/reperfusion injury, but the underly- ing mechanisms remain unclear. The duration of heat-sensitive suspended moxibusti...Heat-sensitive suspended moxibustion has a neuroprotective effect against focal cerebral ischemia/reperfusion injury, but the underly- ing mechanisms remain unclear. The duration of heat-sensitive suspended moxibustion (usually from 30 minutes to 1 hour) is longer than traditional suspended moxibustion (usually 15 minutes). However, the effects of 15- and 35-minute suspended moxibustion in rats with cerebra/ischemia/reperfusion injury are poorly understood. In this study, we performed 15- or 35-minute suspended moxibustion at acupoint Dazhui (GV14) in an adult rat model of focal cerebral ischemia/reperfusion injury. Infarct volume was evaluated with the 2,3,5-triphenyltetrazolium chloride assay. Histopathological changes and neuronal apoptosis at the injury site were assessed by hematoxy- lin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Caspase-9 and caspase-3 expression at the in- jury site was detected using immunofluorescent staining. Bax and Bcl-2 expression at the injury site was assessed using western blot assay. In the 35-minute moxibustion group, infarct volume was decreased, neuronal apoptosis was reduced, caspase-9, caspase-3 and Bax expres- sion was lower, and Bcl-2 expression was increased, compared with the 15-minute moxibustion group. Our findings show that 35-minute moxibustion has a greater anti-apoptotic effect than 15-minute moxibustion after focal cerebral ischemia/reperfusion injury.展开更多
Hepatic ischemia-reperfusion injury (IRI) occurs upon restoration of hepatic blood flow after a period of ischemia. Decreased endogenous nitric oxide (NO) production resulting in capillary luminal narrowing is central...Hepatic ischemia-reperfusion injury (IRI) occurs upon restoration of hepatic blood flow after a period of ischemia. Decreased endogenous nitric oxide (NO) production resulting in capillary luminal narrowing is central in the pathogenesis of IRI. Exogenous NO has emerged as a potential therapy for IRI based on its role in decreasing oxidative stress,cytokine release,leukocyte endothelial-adhesion and hepatic apoptosis. This review will highlight the influence of endogenous NO on hepatic IRI,role of inhaled NO in ameliorating IRI,modes of delivery,donor drugs and potential side effects of exogenous NO.展开更多
BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/reperfusion injury(MI/RI).Shuxin decoction(SXT)is a proven recipe modification from the classic herbal formula"Wu-tou-chi-shi-z...BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/reperfusion injury(MI/RI).Shuxin decoction(SXT)is a proven recipe modification from the classic herbal formula"Wu-tou-chi-shi-zhi-wan"according to the traditional Chinese medicine theory.It has been successfully used to alleviate secondary MI/RI in patients with diabetes mellitus in the clinical setting.However,the underlying mechanism is still unclear.AIM To further determine the mechanism of SXT in attenuating MI/RI associated with diabetes.METHODS This paper presents an ensemble model combining network pharmacology and biology.The Traditional Chinese Medicine System Pharmacology Database was accessed to select key components and potential targets of the SXT.In parallel,therapeutic targets associated with MI/RI in patients with diabetes were screened from various databases including Gene Expression Omnibus,DisGeNet,Genecards,Drugbank,OMIM,and PharmGKB.The potential targets of SXT and the therapeutic targets related to MI/RI in patients with diabetes were intersected and subjected to bioinformatics analysis using the Database for Annotation,Visualization and Integrated Discovery.The major results of bioinformatics analysis were subsequently validated by animal experiments.RESULTS According to the hypothesis derived from bioinformatics analysis,SXT could possibly ameliorate lipid metabolism disorders and exert anti-apoptotic effects in MI/RI associated with diabetes by reducing oxidized low density lipoprotein(LDL)and inhibiting the advanced glycation end products(AGE)-receptor for AGE(RAGE)signaling pathway.Subsequent animal experiments confirmed the hypothesis.The treatment with a dose of SXT(2.8 g/kg/d)resulted in a reduction in oxidized LDL,AGEs,and RAGE,and regulated the level of blood lipids.Besides,the expression of apoptosis-related proteins such as Bax and cleaved caspase 3 was down-regulated,whereas Bcl-2 expression was up-regulated.The findings indicated that SXT could inhibit myocardial apoptosis and improve cardiac function in MI/RI in diabetic rats.CONCLUSION This study indicated the active components and underlying molecular therapeutic mechanisms of SXT in MI/RI with diabetes.Moreover,animal experiments verified that SXT could regulate the level of blood lipids,alleviate cardiomyocyte apoptosis,and improve cardiac function through the AGE-RAGE signaling pathway.展开更多
AIM:To determine whether Saiko-keishi-to(TJ-10),a Japanese herbal medicine,could protect liver injury induced by gut ischemia/reperfusion(I/R),and to investigate the role of NO. METHODS:Male Wistar rats were exposed t...AIM:To determine whether Saiko-keishi-to(TJ-10),a Japanese herbal medicine,could protect liver injury induced by gut ischemia/reperfusion(I/R),and to investigate the role of NO. METHODS:Male Wistar rats were exposed to 30-min gut isohemia followed by 60 min of reperfusion.Intravital microscopy was used to monitor leukocyte recruitment.Plasma tumor necrosis factor(TNF)levels and alanine aminotransferase (ALT)activities were measured.TJ-10 1 g/(kg.d)was intragastrically administered to rats for 7 d.A NO synthase inhibitor was administered. RESULTS:In control rats,gut I/R elicited increases in the number of stationary leukocytes,and plasma TNF levels and ALT activities were mitigated by pretreatment with TJ-10.Pretreatment with the NO synthase inhibitor diminished the protective effects of TJ-10 on leukostasis in the liver,and the increase of plasma TNF levels and ALT activities.Pretreatment with TJ-10 increased plasma nitrite/nitrate levels. CONCLUSION:TJ-10 attenuates the gut I/R-induced hepatic microvascular dysfunction and sequential hepatocellular injury via enhancement of NO production.展开更多
Current antiplatelet drugs mainly focus on prevention rather than the more clinically relevant issue of clearance of an existing thrombus. We recently described a novel and effective therapeutic strategy for dissoluti...Current antiplatelet drugs mainly focus on prevention rather than the more clinically relevant issue of clearance of an existing thrombus. We recently described a novel and effective therapeutic strategy for dissolution of preexisting platelet thrombus in a murine ischemic stroke model with a bifunctional platelet GPIIIa49-66 ligand (Single-chain antibody Linked first Kringle 1 of plasminogen, named SLK), which homes to newly deposited fibrin strands tangled of platelet thrombus and induces aggregated platelet fragmentation. In this study, we perform in-depth analysis of the effect of SLK on myocardial ischemia-reperfusion (IR) injury in rats. We show that SLK dose-dependently reduces lactate dehydrogenase (LDH) release as well as mean infarction size of left ventricle. Histological observation demonstrates that the arterial thrombi in coronary arteries of rat almost disappear after SLK injection. Optimal dose of SLK (37.5 μg/ individual) provides the myocardial protection at 2 hours post-infusion. However, there are no significant protective effects if SLK was given at 4 or 8 hours post-infusion. The combined application of SLK and urokinase (UK) demonstrates greater myocardial protection than UK alone at 2 hours post-infusion. Thus, SLK could be used as a thrombolytic alternative in other arterial vascular beds associated with thrombosis to enhance fibrinolysis.展开更多
Antituberculosis drug-induced hepatotoxicity(ATDIH)is a significant concern while managing pediatric tuberculosis.There is limited data on pediatric ATDIH,and much of the management practices are extrapolated from adu...Antituberculosis drug-induced hepatotoxicity(ATDIH)is a significant concern while managing pediatric tuberculosis.There is limited data on pediatric ATDIH,and much of the management practices are extrapolated from adult experiences.This article provides a comprehensive overview of the incidence,risk factors,clinical presentation,and management strategies for ATDIH in children.Pyrazi-namide,isoniazid,and rifampicin are the most hepatotoxic first-line antituber-culosis therapy(ATT).Though pyrazinamide has the highest potential for ATDIH,isoniazid is most frequently implicated.Hepatotoxicity typically mani-fests within the first 2–8 weeks of treatment,particularly during the intensive phase.Risk factors include younger age,female gender,malnutrition,hypoalbu-minemia,and baseline liver dysfunction.Extra-pulmonary TB,particularly tuberculous meningitis,and concomitant hepatotoxic medications such as anti-retro viral therapy or antiepileptic drugs further increase susceptibility.Genetic predisposition,including N-acetyltransferase 2 and cytochrome P4502E1 polymorphisms and specific HLA alleles also contribute to the increased risk.Clinically,ATDIH ranges from asymptomatic transaminase elevation to severe acute liver failure(ALF),necessitating prompt recognition and intervention.Diagnosis relies on the temporal association of liver injury with ATT initiation,supported by liver function tests,improvement upon ATT cessation,and recu-rrence upon reintroduction.Management involves discontinuing hepatotoxic drugs,initiating non-hepatotoxic regimens,and sequential reintroduction of ATT under close monitoring.For children with ALF,care in a tertiary center with liver transplantation expertise is essential.While pediatric ATDIH generally has favor-able outcomes with timely intervention,delays can result in significant morbidity and mortality.Improved understanding of risk factors,vigilant monitoring protocols,and standardized pediatric management strategies are critical for optimizing outcomes in pediatric ATDIH.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)have been used in liver transplantation and have certain effects in alleviating liver ischemia-reperfusion injury(IRI)and regulating immune rejection.However,some studies have in...BACKGROUND Mesenchymal stem cells(MSCs)have been used in liver transplantation and have certain effects in alleviating liver ischemia-reperfusion injury(IRI)and regulating immune rejection.However,some studies have indicated that the effects of MSCs are not very significant.Therefore,approaches that enable MSCs to exert significant and stable therapeutic effects are worth further study.AIM To enhance the therapeutic potential of human menstrual blood-derived stromal cells(MenSCs)in the mouse liver ischemia-reperfusion(I/R)model via interferon-γ(IFN-γ)priming.METHODS Apoptosis was analyzed by flow cytometry to evaluate the safety of IFN-γpriming,and indoleamine 2,3-dioxygenase(IDO)levels were measured by quantitative real-time reverse transcription polymerase chain reaction,western blotting,and ELISA to evaluate the efficacy of IFN-γpriming.In vivo,the liver I/R model was established in male C57/BL mice,hematoxylin and eosin and TUNEL staining was performed and serum liver enzyme levels were measured to assess the degree of liver injury,and regulatory T cell(Treg)numbers in spleens were determined by flow cytometry to assess immune tolerance potential.Metabolomics analysis was conducted to elucidate the potential mechanism underlying the regulatory effects of primed MenSCs.In vitro,we established a hypoxia/reoxygenation(H/R)model and analyzed apoptosis by flow cytometry to investigate the mechanism through which primed MenSCs inhibit apoptosis.Transmission electron microscopy,western blotting,and immunofluorescence were used to analyze autophagy levels.RESULTS IFN-γ-primed MenSCs secreted higher levels of IDO,attenuated liver injury,and increased Treg numbers in the mouse spleens to greater degrees than untreated MenSCs.Metabolomics and autophagy analyses proved that primed MenSCs more strongly induced autophagy in the mouse livers.In the H/R model,autophagy inhibitors increased the level of H/R-induced apoptosis,indicating that autophagy exerted protective effects.In addition,primed MenSCs decreased the level of H/R-induced apoptosis via IDO and autophagy.Further rescue experiments proved that IDO enhanced the protective autophagy by inhibiting the mammalian target of rapamycin(mTOR)pathway and activating the AMPK pathway.CONCLUSION IFN-γ-primed MenSCs exerted better therapeutic effects in the liver I/R model by secreting higher IDO levels.MenSCs and IDO activated the AMPK-mTOR-autophagy axis to reduce IRI,and IDO increased Treg numbers in the spleen and enhanced the MenSC-mediated induction of immune tolerance.Our study suggests that IFN-γ-primed MenSCs may be a novel and superior MSC product for liver transplantation in the future.展开更多
INTRODUCTIONThe incidence of primary non-function(PNF)of grafted liver in the early postoperative stage is 2%-23%[1-4],its main cause is the ischemic-rechemic injure[5,6].In this experiment,anisodamine was added into ...INTRODUCTIONThe incidence of primary non-function(PNF)of grafted liver in the early postoperative stage is 2%-23%[1-4],its main cause is the ischemic-rechemic injure[5,6].In this experiment,anisodamine was added into the preserving fluid and the grafted liver was rewarmed at different temperatures to protect the cell membranc and prevent ischemic-reperfusive injury.展开更多
INTRODUCTIONFrom the technical aspect of liver surgery ,control of bleeding during hepatic parenchymal resection is one of the most important procedures in hepatectomy .Pringle,s maneuver ,a temporary cross-clamping ...INTRODUCTIONFrom the technical aspect of liver surgery ,control of bleeding during hepatic parenchymal resection is one of the most important procedures in hepatectomy .Pringle,s maneuver ,a temporary cross-clamping of the hepatoduodnal ligament ,has often been used for this purpose[1],This is the simplest and userul technique to reduce intraoperative blood loss .展开更多
Traumatic spinal cord injury is a devastating disorder chara cterized by sensory,motor,and autonomic dysfunction that seve rely compromises an individual's ability to perform activities of daily living.These adve ...Traumatic spinal cord injury is a devastating disorder chara cterized by sensory,motor,and autonomic dysfunction that seve rely compromises an individual's ability to perform activities of daily living.These adve rse outcomes are closely related to the complex mechanism of spinal cord injury,the limited regenerative capacity of central neurons,and the inhibitory environment fo rmed by traumatic injury.Disruption to the microcirculation is an important pathophysiological mechanism of spinal cord injury.A number of therapeutic agents have been shown to improve the injury environment,mitigate secondary damage,and/or promote regeneration and repair.Among them,the spinal cord microcirculation has become an important target for the treatment of spinal cord injury.Drug inte rventions targeting the microcirculation can improve the microenvironment and promote recovery following spinal cord injury.These drugs target the structure and function of the spinal cord microcirculation and are essential for maintaining the normal function of spinal neuro ns,axons,and glial cells.This review discusses the pathophysiological role of spinal cord microcirculation in spinal cord injury,including its structure and histopathological changes.Further,it summarizes the progress of drug therapies targeting the spinal cord mic rocirc ulation after spinal cord injury.展开更多
Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulat...Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulation half-life and poor blood−brain barrier (BBB) permeability. For that, an edaravone-loaded pH/glutathione (pH/GSH) dual-responsive poly(amino acid) nanogel (NG/EDA) was developed to improve the neuroprotection of EDA. The nanogel was triggered by acidic and EDA-induced high-level GSH microenvironments, which enabled the selective and sustained release of EDA at the site of ischemic injury. NG/EDA exhibited a uniform sub-spherical morphology with a mean hydrodynamic diameter of 112.3 ± 8.2 nm. NG/EDA efficiently accumulated at the cerebral ischemic injury site of permanent middle cerebral artery occlusion (pMCAO) mice, showing an efficient BBB crossing feature. Notably, NG/EDA with 50 µM EDA significantly increased neuron survival (29.3%) following oxygen and glucose deprivation by inhibiting ferroptosis. In addition, administering NG/EDA for 7 d significantly reduced infarct volume to 22.2% ± 7.2% and decreased neurobehavioral scores from 9.0 ± 0.6 to 2.0 ± 0.8. Such a pH/GSH dual-responsive nanoplatform might provide a unique and promising modality for neuroprotection in ischemic stroke and other central nervous system diseases.展开更多
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
文摘Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Current studies have elucidated the neuroprotective role of the sirtuin protein family(Sirtuins)in modulating cerebral ischemia-reperfusion injury.However,the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration.In this review,the origin and research progress of Sirtuins are summarized,suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury,including inflammation,oxidative stress,blood-brain barrier damage,apoptosis,pyroptosis,and autophagy.The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways,such as nuclear factor-kappa B signaling,oxidative stress mediated by adenosine monophosphate-activated protein kinase,and the forkhead box O.This review also summarizes the potential of endogenous substances,such as RNA and hormones,drugs,dietary supplements,and emerging therapies that regulate Sirtuins expression.This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors.While Sirtuins show promise as a potential target for the treatment of cerebral ischemiareperfusion injury,most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans,potentially influencing the efficacy of Sirtuinstargeting drug therapies.Overall,this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.
基金This work was supported by the National Natural Science Foundation of China(U22A20383,82003668)the Natural Science Foundation of Zhejiang Province(LD22H300002,LQ21H300002)Ningbo Technology Innovation 2025 Major Special Project(2022Z150).
文摘Ischemia/reperfusion(I/R)injury ismarked by the restriction and subsequent restoration of blood supply to an organ.This process can exacerbate the initial tissue damage,leading to further disorders,disability,and even death.Extracellular vesicles(EVs)are crucial in cell communication by releasing cargo that regulates the physiological state of recipient cells.The development of EVs presents a novel avenue for delivering therapeutic agents in I/R therapy.The therapeutic potential of EVs derived from stem cells,endothelial cells,and plasma in I/R injury has been actively investigated.Therefore,this review aims to provide an overview of the pathological process of I/R injury and the biophysical properties of EVs.We noted that EVs serve as nontoxic,flexible,and multifunctional carriers for delivering therapeutic agents capable of intervening in I/R injury progression.The therapeutic efficacy of EVs can be enhanced through various engineering strategies.Improving the tropism of EVs via surface modification and modulating their contents via preconditioning are widely investigated in preclinical studies.Finally,we summarize the challenges in the production and delivery of EV-based therapy in I/R injury and discuss how it can advance.This review will encourage further exploration in developing efficient EV-based delivery systems for I/R treatment.
文摘Acute renal failure has a 50% - 80% mortality rate. Currently, treatment options for this life-threatening disease are limited. Low-level laser therapy (LLLT) has been found to modulate biological activity. The aim of the present study was to investigate the possible beneficial effects of laser application to stem cells in the bone marrow, on the kidneys of rats that had undergone ischemia-reperfusion injury (IRI). IRI was induced by occlusion of the renal artery to 3- and 7-month-old rats for 15 or 30 minutes. In an additional experiment IRI was applied to both kidneys for 20 min each in 2-3-month-old rats. Rats were then divided randomly into two groups of control and laser-treated. Laser therapy (Ga-Al-As 810 nm, 200 mW output for 2 min) was applied to the bone marrow 1 and 7 days post-IRI to the kidneys, and rats were sacrificed 2 weeks later. Histomorphometry and immunohistochemistry were performed on kidney sections and blood markers for kidney function. Quantitative histomorphometric analysis revealed a reduction in dilatation of the renal tubules, restored structural integrity of the renal tubules, and reduced necrosis in the laser-treated rats as compared to the control, non-laser-irradiated group. C-kit positive cell density in kidneys post-IRI and laser-treatment was significantly (p = 0.015) 3.2-fold higher compared to the control group. Creatinine and blood urea nitrogen content were significantly lower in the laser-treated rats as compared to control. It is concluded that LLLT application to the bone marrow (BM) causes a significant increase in the density of mesenchymal stem cells in the kidneys post-IRI, probably by induction of stem cells in the BM, which subsequently migrate to the IRI kidney, significantly reducing the pathological features of the kidney and increasing kidney function post IRI.
基金supported by the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant,No.2020LKSFG02C(to Qiang Fang and SG)the National Natural Science Foundation of China,No.82201511(to SG)+1 种基金the Guangdong Basic and Applied Basic Research Foundation,Nos.2021A1515110873(to SG),2022A1515110139(to TW)the Medical Scientific Research Foundation of Guangdong Province,No.A2022077(to SG)。
文摘Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none of these techniques can markedly reverse neurological deficits.Recently,extracellular vesicles from various cell sources have been applied to different models of spinal cord injury,thereby generating new cell-free therapies for the treatment of spinal cord injury.However,the use of extracellular vesicles alone is still associated with some notable shortcomings,such as their uncertainty in targeting damaged spinal cord tissues and inability to provide structural support to damaged axons.Therefore,this paper reviews the latest combined strategies for the use of extracellular vesicle-based technology for spinal cord injury,including the combination of extracellular vesicles with nanoparticles,exogenous drugs and/or biological scaffold materials,which facilitate the targeting ability of extracellular vesicles and the combinatorial effects with extracellular vesicles.We also highlight issues relating to the clinical transformation of these extracellular vesicle-based combination strategies for the treatment of spinal cord injury.
基金Supported by The Department of Anesthesiology of the University of Bologna
文摘This review aims at evaluating the existing evidence regarding post reperfusion syndrome, providing a description of the pathophysiologic mechanisms involved and possible management and preventive strategies. A Pub Med search was conducted using the Me SH database, "Reperfusion" AND "liver transplantation" were the combined Me SH headings; EMBASE and the Cochrane library were also searched using the same terms. 52 relevant studies and one ongoing trial were found. The concept of post reperfusion syndrome has evolved through years to a multisystemic disorder. The implications of the main organ, recipient and procedure related factors in the genesis of this complex syndrome are discussed in the text as the novel pharmacologic and technical approaches to reduce its incidence. However the available evidence about risk factors, physiopathology and preventive measures is still confusing, the presence of two main definitions and the numerosity of possible confounding factors greatly complicates the interpretation of the studies.
基金supported by the National Natural Science Foundation of China,No.81060305&81660819the Natural Science Foundation of Jiangxi Province of China,No.2015BAB205068+2 种基金Key Program for Science and Technology Cooperation Projects of Jiangxi Province of China,No.20161BBH80053a grant from the Key Project of Health Commission of Jiangxi Province of China,No.2014Z003the Natural Science Foundation of Jiangxi University of Traditional Chinese Medicine of China,No.2014ZR018&2015jzzdxk024
文摘Heat-sensitive suspended moxibustion has a neuroprotective effect against focal cerebral ischemia/reperfusion injury, but the underly- ing mechanisms remain unclear. The duration of heat-sensitive suspended moxibustion (usually from 30 minutes to 1 hour) is longer than traditional suspended moxibustion (usually 15 minutes). However, the effects of 15- and 35-minute suspended moxibustion in rats with cerebra/ischemia/reperfusion injury are poorly understood. In this study, we performed 15- or 35-minute suspended moxibustion at acupoint Dazhui (GV14) in an adult rat model of focal cerebral ischemia/reperfusion injury. Infarct volume was evaluated with the 2,3,5-triphenyltetrazolium chloride assay. Histopathological changes and neuronal apoptosis at the injury site were assessed by hematoxy- lin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Caspase-9 and caspase-3 expression at the in- jury site was detected using immunofluorescent staining. Bax and Bcl-2 expression at the injury site was assessed using western blot assay. In the 35-minute moxibustion group, infarct volume was decreased, neuronal apoptosis was reduced, caspase-9, caspase-3 and Bax expres- sion was lower, and Bcl-2 expression was increased, compared with the 15-minute moxibustion group. Our findings show that 35-minute moxibustion has a greater anti-apoptotic effect than 15-minute moxibustion after focal cerebral ischemia/reperfusion injury.
文摘Hepatic ischemia-reperfusion injury (IRI) occurs upon restoration of hepatic blood flow after a period of ischemia. Decreased endogenous nitric oxide (NO) production resulting in capillary luminal narrowing is central in the pathogenesis of IRI. Exogenous NO has emerged as a potential therapy for IRI based on its role in decreasing oxidative stress,cytokine release,leukocyte endothelial-adhesion and hepatic apoptosis. This review will highlight the influence of endogenous NO on hepatic IRI,role of inhaled NO in ameliorating IRI,modes of delivery,donor drugs and potential side effects of exogenous NO.
基金Supported by Natural Science Foundation of Sichuan Province,No.2022NSFSC0738Basic Research Funds for Central Universities,No.2682022ZTPY038Tibet Autonomous Region Science and Technology Planning Project,No.XZ2022RH001.
文摘BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/reperfusion injury(MI/RI).Shuxin decoction(SXT)is a proven recipe modification from the classic herbal formula"Wu-tou-chi-shi-zhi-wan"according to the traditional Chinese medicine theory.It has been successfully used to alleviate secondary MI/RI in patients with diabetes mellitus in the clinical setting.However,the underlying mechanism is still unclear.AIM To further determine the mechanism of SXT in attenuating MI/RI associated with diabetes.METHODS This paper presents an ensemble model combining network pharmacology and biology.The Traditional Chinese Medicine System Pharmacology Database was accessed to select key components and potential targets of the SXT.In parallel,therapeutic targets associated with MI/RI in patients with diabetes were screened from various databases including Gene Expression Omnibus,DisGeNet,Genecards,Drugbank,OMIM,and PharmGKB.The potential targets of SXT and the therapeutic targets related to MI/RI in patients with diabetes were intersected and subjected to bioinformatics analysis using the Database for Annotation,Visualization and Integrated Discovery.The major results of bioinformatics analysis were subsequently validated by animal experiments.RESULTS According to the hypothesis derived from bioinformatics analysis,SXT could possibly ameliorate lipid metabolism disorders and exert anti-apoptotic effects in MI/RI associated with diabetes by reducing oxidized low density lipoprotein(LDL)and inhibiting the advanced glycation end products(AGE)-receptor for AGE(RAGE)signaling pathway.Subsequent animal experiments confirmed the hypothesis.The treatment with a dose of SXT(2.8 g/kg/d)resulted in a reduction in oxidized LDL,AGEs,and RAGE,and regulated the level of blood lipids.Besides,the expression of apoptosis-related proteins such as Bax and cleaved caspase 3 was down-regulated,whereas Bcl-2 expression was up-regulated.The findings indicated that SXT could inhibit myocardial apoptosis and improve cardiac function in MI/RI in diabetic rats.CONCLUSION This study indicated the active components and underlying molecular therapeutic mechanisms of SXT in MI/RI with diabetes.Moreover,animal experiments verified that SXT could regulate the level of blood lipids,alleviate cardiomyocyte apoptosis,and improve cardiac function through the AGE-RAGE signaling pathway.
文摘AIM:To determine whether Saiko-keishi-to(TJ-10),a Japanese herbal medicine,could protect liver injury induced by gut ischemia/reperfusion(I/R),and to investigate the role of NO. METHODS:Male Wistar rats were exposed to 30-min gut isohemia followed by 60 min of reperfusion.Intravital microscopy was used to monitor leukocyte recruitment.Plasma tumor necrosis factor(TNF)levels and alanine aminotransferase (ALT)activities were measured.TJ-10 1 g/(kg.d)was intragastrically administered to rats for 7 d.A NO synthase inhibitor was administered. RESULTS:In control rats,gut I/R elicited increases in the number of stationary leukocytes,and plasma TNF levels and ALT activities were mitigated by pretreatment with TJ-10.Pretreatment with the NO synthase inhibitor diminished the protective effects of TJ-10 on leukostasis in the liver,and the increase of plasma TNF levels and ALT activities.Pretreatment with TJ-10 increased plasma nitrite/nitrate levels. CONCLUSION:TJ-10 attenuates the gut I/R-induced hepatic microvascular dysfunction and sequential hepatocellular injury via enhancement of NO production.
文摘Current antiplatelet drugs mainly focus on prevention rather than the more clinically relevant issue of clearance of an existing thrombus. We recently described a novel and effective therapeutic strategy for dissolution of preexisting platelet thrombus in a murine ischemic stroke model with a bifunctional platelet GPIIIa49-66 ligand (Single-chain antibody Linked first Kringle 1 of plasminogen, named SLK), which homes to newly deposited fibrin strands tangled of platelet thrombus and induces aggregated platelet fragmentation. In this study, we perform in-depth analysis of the effect of SLK on myocardial ischemia-reperfusion (IR) injury in rats. We show that SLK dose-dependently reduces lactate dehydrogenase (LDH) release as well as mean infarction size of left ventricle. Histological observation demonstrates that the arterial thrombi in coronary arteries of rat almost disappear after SLK injection. Optimal dose of SLK (37.5 μg/ individual) provides the myocardial protection at 2 hours post-infusion. However, there are no significant protective effects if SLK was given at 4 or 8 hours post-infusion. The combined application of SLK and urokinase (UK) demonstrates greater myocardial protection than UK alone at 2 hours post-infusion. Thus, SLK could be used as a thrombolytic alternative in other arterial vascular beds associated with thrombosis to enhance fibrinolysis.
文摘Antituberculosis drug-induced hepatotoxicity(ATDIH)is a significant concern while managing pediatric tuberculosis.There is limited data on pediatric ATDIH,and much of the management practices are extrapolated from adult experiences.This article provides a comprehensive overview of the incidence,risk factors,clinical presentation,and management strategies for ATDIH in children.Pyrazi-namide,isoniazid,and rifampicin are the most hepatotoxic first-line antituber-culosis therapy(ATT).Though pyrazinamide has the highest potential for ATDIH,isoniazid is most frequently implicated.Hepatotoxicity typically mani-fests within the first 2–8 weeks of treatment,particularly during the intensive phase.Risk factors include younger age,female gender,malnutrition,hypoalbu-minemia,and baseline liver dysfunction.Extra-pulmonary TB,particularly tuberculous meningitis,and concomitant hepatotoxic medications such as anti-retro viral therapy or antiepileptic drugs further increase susceptibility.Genetic predisposition,including N-acetyltransferase 2 and cytochrome P4502E1 polymorphisms and specific HLA alleles also contribute to the increased risk.Clinically,ATDIH ranges from asymptomatic transaminase elevation to severe acute liver failure(ALF),necessitating prompt recognition and intervention.Diagnosis relies on the temporal association of liver injury with ATT initiation,supported by liver function tests,improvement upon ATT cessation,and recu-rrence upon reintroduction.Management involves discontinuing hepatotoxic drugs,initiating non-hepatotoxic regimens,and sequential reintroduction of ATT under close monitoring.For children with ALF,care in a tertiary center with liver transplantation expertise is essential.While pediatric ATDIH generally has favor-able outcomes with timely intervention,delays can result in significant morbidity and mortality.Improved understanding of risk factors,vigilant monitoring protocols,and standardized pediatric management strategies are critical for optimizing outcomes in pediatric ATDIH.
基金National Key R&D Program of China,No.2022YFA1105603 and 2022YFC2304405Hangzhou Science and Technology Project,China,No.20200224+1 种基金National Natural Science Foundation of China,No.81900563Key Research&Development Plan of Zhejiang Province,China,No.2019C03015 and 2020C04016。
文摘BACKGROUND Mesenchymal stem cells(MSCs)have been used in liver transplantation and have certain effects in alleviating liver ischemia-reperfusion injury(IRI)and regulating immune rejection.However,some studies have indicated that the effects of MSCs are not very significant.Therefore,approaches that enable MSCs to exert significant and stable therapeutic effects are worth further study.AIM To enhance the therapeutic potential of human menstrual blood-derived stromal cells(MenSCs)in the mouse liver ischemia-reperfusion(I/R)model via interferon-γ(IFN-γ)priming.METHODS Apoptosis was analyzed by flow cytometry to evaluate the safety of IFN-γpriming,and indoleamine 2,3-dioxygenase(IDO)levels were measured by quantitative real-time reverse transcription polymerase chain reaction,western blotting,and ELISA to evaluate the efficacy of IFN-γpriming.In vivo,the liver I/R model was established in male C57/BL mice,hematoxylin and eosin and TUNEL staining was performed and serum liver enzyme levels were measured to assess the degree of liver injury,and regulatory T cell(Treg)numbers in spleens were determined by flow cytometry to assess immune tolerance potential.Metabolomics analysis was conducted to elucidate the potential mechanism underlying the regulatory effects of primed MenSCs.In vitro,we established a hypoxia/reoxygenation(H/R)model and analyzed apoptosis by flow cytometry to investigate the mechanism through which primed MenSCs inhibit apoptosis.Transmission electron microscopy,western blotting,and immunofluorescence were used to analyze autophagy levels.RESULTS IFN-γ-primed MenSCs secreted higher levels of IDO,attenuated liver injury,and increased Treg numbers in the mouse spleens to greater degrees than untreated MenSCs.Metabolomics and autophagy analyses proved that primed MenSCs more strongly induced autophagy in the mouse livers.In the H/R model,autophagy inhibitors increased the level of H/R-induced apoptosis,indicating that autophagy exerted protective effects.In addition,primed MenSCs decreased the level of H/R-induced apoptosis via IDO and autophagy.Further rescue experiments proved that IDO enhanced the protective autophagy by inhibiting the mammalian target of rapamycin(mTOR)pathway and activating the AMPK pathway.CONCLUSION IFN-γ-primed MenSCs exerted better therapeutic effects in the liver I/R model by secreting higher IDO levels.MenSCs and IDO activated the AMPK-mTOR-autophagy axis to reduce IRI,and IDO increased Treg numbers in the spleen and enhanced the MenSC-mediated induction of immune tolerance.Our study suggests that IFN-γ-primed MenSCs may be a novel and superior MSC product for liver transplantation in the future.
基金the Natural Science Fund of Liaoning Province,No.962280
文摘INTRODUCTIONThe incidence of primary non-function(PNF)of grafted liver in the early postoperative stage is 2%-23%[1-4],its main cause is the ischemic-rechemic injure[5,6].In this experiment,anisodamine was added into the preserving fluid and the grafted liver was rewarmed at different temperatures to protect the cell membranc and prevent ischemic-reperfusive injury.
基金This work was supported partly by Grant 90089102 from the Scientific Research Fund of the Ministry of Education,Japan
文摘INTRODUCTIONFrom the technical aspect of liver surgery ,control of bleeding during hepatic parenchymal resection is one of the most important procedures in hepatectomy .Pringle,s maneuver ,a temporary cross-clamping of the hepatoduodnal ligament ,has often been used for this purpose[1],This is the simplest and userul technique to reduce intraoperative blood loss .
基金supported by Key Project of China Rehabilitation Research Center,Nos.2022ZX-05,2018ZX-08(both to JB)。
文摘Traumatic spinal cord injury is a devastating disorder chara cterized by sensory,motor,and autonomic dysfunction that seve rely compromises an individual's ability to perform activities of daily living.These adve rse outcomes are closely related to the complex mechanism of spinal cord injury,the limited regenerative capacity of central neurons,and the inhibitory environment fo rmed by traumatic injury.Disruption to the microcirculation is an important pathophysiological mechanism of spinal cord injury.A number of therapeutic agents have been shown to improve the injury environment,mitigate secondary damage,and/or promote regeneration and repair.Among them,the spinal cord microcirculation has become an important target for the treatment of spinal cord injury.Drug inte rventions targeting the microcirculation can improve the microenvironment and promote recovery following spinal cord injury.These drugs target the structure and function of the spinal cord microcirculation and are essential for maintaining the normal function of spinal neuro ns,axons,and glial cells.This review discusses the pathophysiological role of spinal cord microcirculation in spinal cord injury,including its structure and histopathological changes.Further,it summarizes the progress of drug therapies targeting the spinal cord mic rocirc ulation after spinal cord injury.
基金supported by the National Natural Science Foundation of China(Grant No.U23A20591,52203201,52173149,and 81971174)the Youth Talents Promotion Project of Jilin Province(Grant No.202019)+1 种基金the Science and Technology Development Program of Jilin Province(Grant No.20210101114JC)Research Cooperation Platform Project of Sino-Japanese Friendship Hospital of Jilin University and Basic Medical School of Jilin University(Grant No.KYXZ2022JC04).
文摘Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulation half-life and poor blood−brain barrier (BBB) permeability. For that, an edaravone-loaded pH/glutathione (pH/GSH) dual-responsive poly(amino acid) nanogel (NG/EDA) was developed to improve the neuroprotection of EDA. The nanogel was triggered by acidic and EDA-induced high-level GSH microenvironments, which enabled the selective and sustained release of EDA at the site of ischemic injury. NG/EDA exhibited a uniform sub-spherical morphology with a mean hydrodynamic diameter of 112.3 ± 8.2 nm. NG/EDA efficiently accumulated at the cerebral ischemic injury site of permanent middle cerebral artery occlusion (pMCAO) mice, showing an efficient BBB crossing feature. Notably, NG/EDA with 50 µM EDA significantly increased neuron survival (29.3%) following oxygen and glucose deprivation by inhibiting ferroptosis. In addition, administering NG/EDA for 7 d significantly reduced infarct volume to 22.2% ± 7.2% and decreased neurobehavioral scores from 9.0 ± 0.6 to 2.0 ± 0.8. Such a pH/GSH dual-responsive nanoplatform might provide a unique and promising modality for neuroprotection in ischemic stroke and other central nervous system diseases.