Inclusion characteristic and microstructure steel were evaluated with scanning electron of rare earth (RE) elements containing microscopy with energy dispersive spec- troscopy (SEM-EDS), element-mapping, optical m...Inclusion characteristic and microstructure steel were evaluated with scanning electron of rare earth (RE) elements containing microscopy with energy dispersive spec- troscopy (SEM-EDS), element-mapping, optical microscopy (OM), and automated feature analysis (AFA) option equipped with ASPEX PSEM. Factsage was used to calculate the equilibrium inclusion composition. Based on the calculation, an inclu- sion evolution mechanism was proposed. Furthermore, line scanning analysis was used to elucidate the intra-granular acicular ferrite (IAF) nucleation mechanism. The re- sult showed that two different inclusions exist in sample steel: (Mn-A1-Si-Ti-La-Ce-O) +MnS complex inclusion and isolated MnS inclusion. Almost all nucleation sites for IAF are complex inclusions, while single MnS inclusion cannot induce IAF. A possible formation mechanism of complex inclusion is proposed based on calculated results using Factsage, which agrees well with experimental results. A Mn-depletion zone (MDZ) which exists adjacent to the (Mn-A1-Si-Ti-La-Ce-O) +MnS complex inclusion can account for the IAF formation. However, the low volume fraction (1.49× 10-7) of effective inclusion may result in only 10% (volume fraction) IAF.展开更多
基金supported by the National Natural Science Foundation of China(No.2010CB30806)
文摘Inclusion characteristic and microstructure steel were evaluated with scanning electron of rare earth (RE) elements containing microscopy with energy dispersive spec- troscopy (SEM-EDS), element-mapping, optical microscopy (OM), and automated feature analysis (AFA) option equipped with ASPEX PSEM. Factsage was used to calculate the equilibrium inclusion composition. Based on the calculation, an inclu- sion evolution mechanism was proposed. Furthermore, line scanning analysis was used to elucidate the intra-granular acicular ferrite (IAF) nucleation mechanism. The re- sult showed that two different inclusions exist in sample steel: (Mn-A1-Si-Ti-La-Ce-O) +MnS complex inclusion and isolated MnS inclusion. Almost all nucleation sites for IAF are complex inclusions, while single MnS inclusion cannot induce IAF. A possible formation mechanism of complex inclusion is proposed based on calculated results using Factsage, which agrees well with experimental results. A Mn-depletion zone (MDZ) which exists adjacent to the (Mn-A1-Si-Ti-La-Ce-O) +MnS complex inclusion can account for the IAF formation. However, the low volume fraction (1.49× 10-7) of effective inclusion may result in only 10% (volume fraction) IAF.