Based on symbolic computation system Maple and Lyapunov stability theory,an active control method isused to projectively synchronize two different chaotic systems—Lorenz-Chen-Lü system(LCL)and Rssler system,whic...Based on symbolic computation system Maple and Lyapunov stability theory,an active control method isused to projectively synchronize two different chaotic systems—Lorenz-Chen-Lü system(LCL)and Rssler system,which belong to different dynamic systems.In this paper,we achieve generalized projective synchronization between thetwo different chaotic systems by directing the scaling factor onto the desired value arbitrarily.To illustrate our result,numerical simulations are used to perform the process of the synchronization and successfully put the orbits of drivesystem(LCL)and orbits of the response system(Rssler system)in the same plot for understanding intuitively.展开更多
In this case-study, we examine the effects of linear control on continuous dynamical systems that exhibit chaotic behavior using the symbolic computer algebra system Mathematica. Stabilizing (or controlling) higher-di...In this case-study, we examine the effects of linear control on continuous dynamical systems that exhibit chaotic behavior using the symbolic computer algebra system Mathematica. Stabilizing (or controlling) higher-dimensional chaotic dynamical systems is generally a difficult problem, Musielak and Musielak, [1]. We numerically illustrate that sometimes elementary approaches can yield the desired numerical results with two different continuous higher order dynamical systems that exhibit chaotic behavior, the Lorenz equations and the Rössler attractor.展开更多
基金the Natural Science Foundation of Zhejiang Province of China under Grant No.Y604056the Doctoral Foundation of Ningbo City under Grant No.2005A610030
文摘Based on symbolic computation system Maple and Lyapunov stability theory,an active control method isused to projectively synchronize two different chaotic systems—Lorenz-Chen-Lü system(LCL)and Rssler system,which belong to different dynamic systems.In this paper,we achieve generalized projective synchronization between thetwo different chaotic systems by directing the scaling factor onto the desired value arbitrarily.To illustrate our result,numerical simulations are used to perform the process of the synchronization and successfully put the orbits of drivesystem(LCL)and orbits of the response system(Rssler system)in the same plot for understanding intuitively.
文摘In this case-study, we examine the effects of linear control on continuous dynamical systems that exhibit chaotic behavior using the symbolic computer algebra system Mathematica. Stabilizing (or controlling) higher-dimensional chaotic dynamical systems is generally a difficult problem, Musielak and Musielak, [1]. We numerically illustrate that sometimes elementary approaches can yield the desired numerical results with two different continuous higher order dynamical systems that exhibit chaotic behavior, the Lorenz equations and the Rössler attractor.