期刊文献+
共找到2,157篇文章
< 1 2 108 >
每页显示 20 50 100
Methodology for Extraction of Tunnel Cross-Sections Using Dense Point Cloud Data 被引量:3
1
作者 Yueqian SHEN Jinguo WANG +2 位作者 Jinhu WANG Wei DUAN Vagner G.FERREIRA 《Journal of Geodesy and Geoinformation Science》 2021年第2期56-71,共16页
Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minute... Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minutes as an innovation technique,which provides promising applications in tunnel deformation monitoring.Here,an efficient method for extracting tunnel cross-sections and convergence analysis using dense TLS point cloud data is proposed.First,the tunnel orientation is determined using principal component analysis(PCA)in the Euclidean plane.Two control points are introduced to detect and remove the unsuitable points by using point cloud division and then the ground points are removed by defining an elevation value width of 0.5 m.Next,a z-score method is introduced to detect and remove the outlies.Because the tunnel cross-section’s standard shape is round,the circle fitting is implemented using the least-squares method.Afterward,the convergence analysis is made at the angles of 0°,30°and 150°.The proposed approach’s feasibility is tested on a TLS point cloud of a Nanjing subway tunnel acquired using a FARO X330 laser scanner.The results indicate that the proposed methodology achieves an overall accuracy of 1.34 mm,which is also in agreement with the measurements acquired by a total station instrument.The proposed methodology provides new insights and references for the applications of TLS in tunnel deformation monitoring,which can also be extended to other engineering applications. 展开更多
关键词 CROSS-SECTION control point convergence analysis z-score method terrestrial laser scanning dense point cloud data
在线阅读 下载PDF
Indoor Space Modeling and Parametric Component Construction Based on 3D Laser Point Cloud Data
2
作者 Ruzhe Wang Xin Li Xin Meng 《Journal of World Architecture》 2023年第5期37-45,共9页
In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit so... In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit software to extract geometric information about the indoor environment.Furthermore,we proposed a method for constructing indoor elements based on parametric components.The research outcomes of this paper will offer new methods and tools for indoor space modeling and design.The approach of indoor space modeling based on 3D laser point cloud data and parametric component construction can enhance modeling efficiency and accuracy,providing architects,interior designers,and decorators with a better working platform and design reference. 展开更多
关键词 3D laser scanning technology Indoor space point cloud data Building information modeling(BIM)
在线阅读 下载PDF
Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data 被引量:10
3
作者 邸凯昌 岳宗玉 +1 位作者 刘召芹 王树良 《Journal of Earth Science》 SCIE CAS CSCD 2013年第1期125-135,共11页
A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken b... A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm. Then, the objects in the segmented images are classified into small rock candidates, rock shadows, and large objects. Rock shadows and large objects are considered as the regions within which large rocks may exist. In these regions, large rock candidates are extracted through ground-plane fitting with the 3D point cloud data. Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results. The shape properties of the rocks (angularity, circularity, width, height, and width-height ratio) have been calculated for subsequent ~eological studies. 展开更多
关键词 Mars rover rock extraction rover image 3D point cloud data.
原文传递
Development of vehicle-recognition method on water surfaces using LiDAR data:SPD^(2)(spherically stratified point projection with diameter and distance)
4
作者 Eon-ho Lee Hyeon Jun Jeon +2 位作者 Jinwoo Choi Hyun-Taek Choi Sejin Lee 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期95-104,共10页
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ... Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework. 展开更多
关键词 Object classification Clustering 3D point cloud data LiDAR(light detection and ranging) Surface vehicle
在线阅读 下载PDF
Classification of rice seed variety using point cloud data combined with deep learning 被引量:3
5
作者 Yan Qian Qianjin Xu +4 位作者 Yingying Yang Hu Lu Hua Li Xuebin Feng Wenqing Yin 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第5期206-212,共7页
Rice variety selection and quality inspection are key links in rice planting.Compared with two-dimensional images,three-dimensional information on rice seeds shows the appearance characteristics of rice seeds more com... Rice variety selection and quality inspection are key links in rice planting.Compared with two-dimensional images,three-dimensional information on rice seeds shows the appearance characteristics of rice seeds more comprehensively and accurately.This study proposed a rice variety classification method using three-dimensional point cloud data of the surface of rice seeds combined with a deep learning network to achieve the rapid and accurate identification of rice varieties.First,a point cloud collection platform was set up with a Raytrix light field camera as the core to collect three-dimensional point cloud data on the surface of rice seeds;then,the collected point cloud was filled,filtered and smoothed;after that,the point cloud segmentation is based on the RANSAC algorithm,and the point cloud downsampling is based on a combination of random sampling algorithm and voxel grid filtering algorithm.Finally,the processed point cloud was input to the improved PointNet network for feature extraction and species classification.The improved PointNet network added a cross-level feature connection structure,made full use of features at different levels,and better extracted the surface structure features of rice seeds.After testing,the improved PointNet model had an average classification accuracy of 89.4%for eight varieties of rice,which was 1.2%higher than that of the PointNet model.The method proposed in this study combined deep learning and point cloud data to achieve the efficient classification of rice varieties. 展开更多
关键词 rice seed variety classification point cloud data deep learning light field camera
原文传递
Classified denoising method for laser point cloud data of stored grain bulk surface based on discrete wavelet threshold 被引量:1
6
作者 Shao Qing Xu Tao +2 位作者 Yoshino Tatsuo Song Nan Zhu Hang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第4期123-131,共9页
Surfaces of stored grain bulk are often reconstructed from organized point sets with noise by 3-D laser scanner in an online measuring system.As a result,denoising is an essential procedure in processing point cloud d... Surfaces of stored grain bulk are often reconstructed from organized point sets with noise by 3-D laser scanner in an online measuring system.As a result,denoising is an essential procedure in processing point cloud data for more accurate surface reconstruction and grain volume calculation.A classified denoising method was presented in this research for noise removal from point cloud data of the grain bulk surface.Based on the distribution characteristics of cloud point data,the noisy points were divided into three types:The first and second types of the noisy points were either sparse points or small point cloud data deviating and suspending from the main point cloud data,which could be deleted directly by a grid method;the third type of the noisy points was mixed with the main body of point cloud data,which were most difficult to distinguish.The point cloud data with those noisy points were projected into a horizontal plane.An image denoising method,discrete wavelet threshold(DWT)method,was applied to delete the third type of the noisy points.Three kinds of denoising methods including average filtering method,median filtering method and DWT method were applied respectively and compared for denoising the point cloud data.Experimental results show that the proposed method remains the most of the details and obtains the lowest average value of RMSE(Root Mean Square Error,0.219)as well as the lowest relative error of grain volume(0.086%)compared with the other two methods.Furthermore,the proposed denoising method could not only achieve the aim of removing noisy points,but also improve self-adaptive ability according to the characteristics of point cloud data of grain bulk surface.The results from this research also indicate that the proposed method is effective for denoising noisy points and provides more accurate data for calculating grain volume. 展开更多
关键词 point cloud data DENOISING grid method discrete wavelet threshold(DWT)method 3-D laser scanning stored grain
原文传递
基于改进PointNet++的船体分段合拢面构件智能识别算法研究 被引量:1
7
作者 李瑞 赵怡荣 +2 位作者 霍世霖 汪骥 史卫东 《中国舰船研究》 CSCD 北大核心 2024年第6期173-179,共7页
[目的]三维扫描仪获得的船体分段合拢面点云数据,具有精度高、数据量大的优势,能够很好地反映分段合拢面的建造状况。由于现有的PointNet++网络无法处理大容量点云数据,因此提出一种基于改进PointNet++的船体分段合拢面构件智能识别算法... [目的]三维扫描仪获得的船体分段合拢面点云数据,具有精度高、数据量大的优势,能够很好地反映分段合拢面的建造状况。由于现有的PointNet++网络无法处理大容量点云数据,因此提出一种基于改进PointNet++的船体分段合拢面构件智能识别算法,实现针对大容量船体分段合拢面点云数据构件的智能识别。[方法]基于超体素生长理论对船体分段合拢面点云数据进行分割及简化,构建船体分段合拢面点云数据集,并使用该数据集训练基于深度学习理论改进的PointNet++网络。[结果]网络模型在船体分段合拢面点云数据训练集和测试集上的收敛结果趋于稳定,在测试集上识别准确率达到90.012%。[结论]该方法具有良好的识别能力,能够完成船体分段合拢面构件的智能识别。 展开更多
关键词 船舶建造 人工智能 船体分段合拢面 点云数据 超体素生长 pointNet++ 智能识别
在线阅读 下载PDF
Accuracy of common stem volume formulae using terrestrial photogrammetric point clouds:a case study with savanna trees in Benin
8
作者 Hospice A.Akpo Gilbert Atindogbe +3 位作者 Maxwell C.Obiakara Arios B.Adjinanoukon Madai Gbedolo Noel H.Fonton 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2415-2422,共8页
Recent applications of digital photogrammetry in forestry have highlighted its utility as a viable mensuration technique.However,in tropical regions little research has been done on the accuracy of this approach for s... Recent applications of digital photogrammetry in forestry have highlighted its utility as a viable mensuration technique.However,in tropical regions little research has been done on the accuracy of this approach for stem volume calculation.In this study,the performance of Structure from Motion photogrammetry for estimating individual tree stem volume in relation to traditional approaches was evaluated.We selected 30 trees from five savanna species growing at the periphery of the W National Park in northern Benin and measured their circumferences at different heights using traditional tape and clinometer.Stem volumes of sample trees were estimated from the measured circumferences using nine volumetric formulae for solids of revolution,including cylinder,cone,paraboloid,neiloid and their respective fustrums.Each tree was photographed and stem volume determined using a taper function derived from tri-dimensional stem models.This reference volume was compared with the results of formulaic estimations.Tree stem profiles were further decomposed into different portions,approximately corresponding to the stump,butt logs and logs,and the suitability of each solid of revolution was assessed for simulating the resulting shapes.Stem volumes calculated using the fustrums of paraboloid and neiloid formulae were the closest to reference volumes with a bias and root mean square error of 8.0%and 24.4%,respectively.Stems closely resembled fustrums of a paraboloid and a neiloid.Individual stem portions assumed different solids as follows:fustrums of paraboloid and neiloid were more prevalent from the stump to breast height,while a paraboloid closely matched stem shapes beyond this point.Therefore,a more accurate stem volumetric estimate was attained when stems were considered as a composite of at least three geometric solids. 展开更多
关键词 Structure from motion photogrammetry point cloud data Stem volume Savanna species BENIN
在线阅读 下载PDF
基于改进PointNet++的输电线路关键部位点云语义分割研究 被引量:2
9
作者 杨文杰 裴少通 +3 位作者 刘云鹏 胡晨龙 杨瑞 张行远 《高电压技术》 EI CAS CSCD 北大核心 2024年第5期1943-1953,I0009,共12页
输电线路的关键部位包括塔身、导线、绝缘子、避雷线以及引流线,无人机精细化导航的首要任务是构造输电线路的点云地图并从中分割出上述部位。为解决现有算法在输电线路的绝缘子、引流线等精细结构分割时精度低的问题,通过改进PointNet+... 输电线路的关键部位包括塔身、导线、绝缘子、避雷线以及引流线,无人机精细化导航的首要任务是构造输电线路的点云地图并从中分割出上述部位。为解决现有算法在输电线路的绝缘子、引流线等精细结构分割时精度低的问题,通过改进PointNet++算法,提出了一种面向输电线路精细结构的点云分割方法。首先,基于无人机机载激光雷达在现场采集的点云数据,构造了输电线路点云分割数据集;其次,通过对比实验,筛选出在本输电线路场景下合理的数据增强方法,并对数据集进行了数据增强;最后,将自注意力机制以及倒置残差结构和PointNet++相结合,设计了输电线路关键部位点云语义分割算法。实验结果表明:该改进PointNet++算法在全场景输电线路现场点云数据作为输入的前提下,首次实现了对引流线、绝缘子等输电线路中精细结构和导线、杆塔塔身以及输电线路无关背景点的同时分割,平均交并比(mean intersection over union,mIoU)达80.79%,所有类别分割的平均F_(1)值(F1 score)达88.99%。 展开更多
关键词 点云深度学习 点云语义分割 数据增强 自注意力 倒置残差
在线阅读 下载PDF
ALGORITHM OF PRETREATMENT ON AUTOMOBILE BODY POINT CLOUD 被引量:2
10
作者 GAO Feng ZHOU Yu DU Farong QU Weiwei XIONG Yonghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期71-74,共4页
As point cloud of one whole vehicle body has the traits of large geometric dimension, huge data and rigorous reverse precision, one pretreatment algorithm on automobile body point cloud is put forward. The basic idea ... As point cloud of one whole vehicle body has the traits of large geometric dimension, huge data and rigorous reverse precision, one pretreatment algorithm on automobile body point cloud is put forward. The basic idea of the registration algorithm based on the skeleton points is to construct the skeleton points of the whole vehicle model and the mark points of the separate point cloud, to search the mapped relationship between skeleton points and mark points using congruence triangle method and to match the whole vehicle point cloud using the improved iterative closed point (ICP) algorithm. The data reduction algorithm, based on average square root of distance, condenses data by three steps, computing datasets' average square root of distance in sampling cube grid, sorting order according to the value computed from the first step, choosing sampling percentage. The accuracy of the two algorithms above is proved by a registration and reduction example of whole vehicle point cloud of a certain light truck. 展开更多
关键词 Reverse engineering point cloud registration Skeleton point Iterative closed point(ICP) data reduction
在线阅读 下载PDF
基于点云加权邻域聚合的语义分割方法
11
作者 李新 孙钰奇 +1 位作者 宋刘广 曾佳全 《软件导刊》 2025年第3期162-169,共8页
点云数据本身无序且形状不规则,给现有语义分割算法带来了挑战,因为现有算法通常采用固定的特征聚合策略,导致对数据分布缺乏适应性。针对该问题,提出一种基于点云加权聚合的语义分割方法。首先,加权聚合模块通过一种可训练方式,为邻域... 点云数据本身无序且形状不规则,给现有语义分割算法带来了挑战,因为现有算法通常采用固定的特征聚合策略,导致对数据分布缺乏适应性。针对该问题,提出一种基于点云加权聚合的语义分割方法。首先,加权聚合模块通过一种可训练方式,为邻域点生成加权系数,从而实现邻域特征的加权聚合,显著增强邻域特征表达能力。其次,开发了一个基于距离加权的逆残差模块Weighted InvresMLP,进一步提高特征提取深度和效率。最后,在这些模块的基础上,设计了一个端到端的点云语义分割框架Weighted Local Aggregation Neural Network(WLA-Net)。在大规模公共数据集S3DIS和ScanNet上进行广泛实验后,证明所提出方法著提高了网络拟合能力,与其他方法相比具有更高的精度。 展开更多
关键词 点云数据 语义分割 特征聚合 加权逆残差
在线阅读 下载PDF
基于点云数据提取的建筑物单体化模型研究
12
作者 靳洁 《黑龙江科学》 2025年第4期65-67,71,共4页
城市三维建模的关键任务是精准提取单体建筑物的三维模型,为实现这一目标,需要对场景中的点云数据进行深入处理,提取并优化与建筑物相关的数据,为建筑物建模提供基础支持。提出通过生成点云特征图像,结合边缘检测技术来提取建筑物的边缘... 城市三维建模的关键任务是精准提取单体建筑物的三维模型,为实现这一目标,需要对场景中的点云数据进行深入处理,提取并优化与建筑物相关的数据,为建筑物建模提供基础支持。提出通过生成点云特征图像,结合边缘检测技术来提取建筑物的边缘,从而初步获得建筑物的点云数据。研究结果表明,该方法在单体建筑物点云处理上表现出色,能够有效去除无关的地面点、低矮植被及悬空结构下的地面部分,提高了点云数据的纯净度,改善了其视觉效果。 展开更多
关键词 点云数据处理 单体化建模 滤波优化
在线阅读 下载PDF
基于数字车间设备的点云数据处理算法研究
13
作者 黄秀娟 《软件》 2025年第1期56-58,共3页
数字车间是现代智能制造的重要组成部分,而点云数据处理是实现车间设备数字化管理的重要环节。本文对数字化车间设备的点云数据的获取和处理进行研究,实现了从车间设备硬件到数字车间设备识别和管理的算法及程序。采用布置在车间4个转... 数字车间是现代智能制造的重要组成部分,而点云数据处理是实现车间设备数字化管理的重要环节。本文对数字化车间设备的点云数据的获取和处理进行研究,实现了从车间设备硬件到数字车间设备识别和管理的算法及程序。采用布置在车间4个转角处的摄像头作为车间数据获取硬件采集设备,获取的点云数据包括坐标、颜色及温度等信息。应用软件算法将设备的点云数据与地面、设备环境噪点进行分割,进一步完成对车间硬件设备的分类管理。在此基础上,对点云数据进行数据增强。本文通过为设备贴上不同的颜色及数字标记等方式,使得数据处理更准确,程序更易实现,为构建数字车间建立了基础。 展开更多
关键词 数字车间设备 点云数据 数据处理
在线阅读 下载PDF
基于三维重建的猪大排定量切片方法
14
作者 江政 俞驰威 +4 位作者 黄天然 缪佳晖 陈坤杰 黄明 黄继超 《农业工程学报》 北大核心 2025年第2期291-299,共9页
针对猪大排定量切片准确度低的问题,该研究提出了一种基于三维重建的猪大排定量切片方法。首先,通过搭建点云数据采集试验平台,利用线激光扫描仪采集不同视角下的猪大排点云数据,并经过点云预处理提取目标点云;其次,结合长方体标靶块和T... 针对猪大排定量切片准确度低的问题,该研究提出了一种基于三维重建的猪大排定量切片方法。首先,通过搭建点云数据采集试验平台,利用线激光扫描仪采集不同视角下的猪大排点云数据,并经过点云预处理提取目标点云;其次,结合长方体标靶块和Trimmed icp算法完成多视角的点云配准工作;然后,利用Graham扫描法以及不规则体切片分割累加算法估算猪大排的体积;最后根据设定的切片质量要求进行切片厚度计算,完成定量切片试验。采用15条猪大排样本对该研究所提出的方法进行验证,结果表明,实际的切片质量值与设定的切片质量值相比,其平均绝对误差为8.62 g,平均相对误差为7.41%,达标率为85.67%,该研究为猪大排的定量切片提供了一种有效方法。 展开更多
关键词 猪大排 点云数据 三维重建 体积计算 定量切片
在线阅读 下载PDF
基于点云配准的钢箱梁数字化拼装方法
15
作者 王操 张子瑜 +3 位作者 吴军 梁钱 吉伯海 傅中秋 《现代交通与冶金材料》 2025年第1期15-21,共7页
基于全站仪检测结果修正钢箱梁模型并生成对应三维点云模型,利用RANSAC聚类算法,实现钢箱梁的拼接控制截面点云数据提取,并通过利用边缘准则(Angle Criterion)算法实现截面点云的边缘提取。结合拼接控制点集的快速四点一致配准(4PCS)和... 基于全站仪检测结果修正钢箱梁模型并生成对应三维点云模型,利用RANSAC聚类算法,实现钢箱梁的拼接控制截面点云数据提取,并通过利用边缘准则(Angle Criterion)算法实现截面点云的边缘提取。结合拼接控制点集的快速四点一致配准(4PCS)和快速全局配准(FGR)算法,完成钢箱梁拼接的配准拼装。结合实验室试验,通过拼装具有典型钢箱梁特征的钢结构试件,验证了本文提出钢箱梁智能化虚拟预拼装方法的精度和可行性。通过对比实体预拼装与虚拟预拼装在拼装效率和检测结果上的差异,分析了基于三维点云的装配式钢箱梁虚拟预拼装方法的诸多优势。 展开更多
关键词 钢箱梁 三维激光扫描 智能化 虚拟预拼装 三维点云数据
在线阅读 下载PDF
四旋翼无人机自主避障与定位技术研究
16
作者 胡改玲 权双璐 +1 位作者 郭文静 王永泉 《中国现代教育装备》 2025年第1期33-37,共5页
无人机自主飞行的定位和避障是制约其发展的主要影响因素。为使无人机能够根据设定的多个目标点自主规划路径、躲避障碍并到达目标点,设计并制作了一架四旋翼无人机,利用ROS进行模块化设计实现GPS定位和基于SIFT特征点提取的双目视觉定... 无人机自主飞行的定位和避障是制约其发展的主要影响因素。为使无人机能够根据设定的多个目标点自主规划路径、躲避障碍并到达目标点,设计并制作了一架四旋翼无人机,利用ROS进行模块化设计实现GPS定位和基于SIFT特征点提取的双目视觉定位,分析激光雷达点云数据实现障碍检测,并利用人工势场法实现路径规划,能够完成自动飞行到达若干个目标点的任务。最后进行了算法测试与真机测试,在飞行测试中无人机可以绕过或者跨越障碍物,按照预定路线到达目标点。 展开更多
关键词 双目视觉 特征点提取 自主避障 点云数据 人工势场法
在线阅读 下载PDF
高精度高速AEB系统的实现策略研究
17
作者 黄志伟 徐海璐 《科学技术创新》 2025年第5期72-75,共4页
本研究介绍了AEB系统在复杂驾驶环境中的实现方法,旨在提升车辆安全性。系统采用激光雷达获取并预处理点云数据,通过分割和聚类识别道路障碍物。利用DBSCAN算法,系统分析障碍物特征并基于碰撞时间(TTC)做出反应,以确保行车安全。该方法... 本研究介绍了AEB系统在复杂驾驶环境中的实现方法,旨在提升车辆安全性。系统采用激光雷达获取并预处理点云数据,通过分割和聚类识别道路障碍物。利用DBSCAN算法,系统分析障碍物特征并基于碰撞时间(TTC)做出反应,以确保行车安全。该方法提高了AEB系统的响应速度和准确性,增强了车辆的防碰撞能力,并为AEB技术的发展提供了支持。 展开更多
关键词 AEB 点云数据 分割 聚类 决策
在线阅读 下载PDF
点云数据处理方法的地铁变电站可视化建模研究 被引量:1
18
作者 陈楚炼 袁金海 +2 位作者 郭智生 刘庆华 张伟萌 《自动化技术与应用》 2025年第1期127-131,162,共6页
为有效监控变电站运行状态、保障地铁运行的平稳性,研究基于点云数据处理方法的地铁变电站可视化建模方法。在通过无人机倾斜摄影采集变电站的三维点云数据后,对点云数据实施处理,并利用ICP算法完成数据匹配。然后将点云数据导入Revit... 为有效监控变电站运行状态、保障地铁运行的平稳性,研究基于点云数据处理方法的地铁变电站可视化建模方法。在通过无人机倾斜摄影采集变电站的三维点云数据后,对点云数据实施处理,并利用ICP算法完成数据匹配。然后将点云数据导入Revit软件构建可视化基础模型,再经利用包裹贴图渲染方法无缝拼接后得到整体模型。最后通过双线性光强插值方法的增强处理获得最终的变电站可视化模型。实验结果表明,该方法构建的模型具有稳定性和流畅性,明暗度适中,内部细节呈现清晰,可用于实际的地铁变电站监控工作,保障地铁平稳、安全运行。 展开更多
关键词 地铁变电站 可视化建模 点云数据处理 ICP算法 Revit软件
在线阅读 下载PDF
基于超体素划分的三维声呐点云数据滤波方法比较
19
作者 甘淏柽 张帆 +3 位作者 贺正军 孙爱国 熊荣军 吴云龙 《城市勘测》 2025年第1期51-58,共8页
三维声呐点云数据的滤波效果直接影响点云重建的精度。针对测深数据滤波方法在三维声呐点云数据适用性不足的现状,开展了基于超体素划分的三维声呐点云数据滤波方法研究。利用超体素聚类划分方法构建点云块趋势面,给出顾及三维方向偏差... 三维声呐点云数据的滤波效果直接影响点云重建的精度。针对测深数据滤波方法在三维声呐点云数据适用性不足的现状,开展了基于超体素划分的三维声呐点云数据滤波方法研究。利用超体素聚类划分方法构建点云块趋势面,给出顾及三维方向偏差的检测数据构建策略,并对三种滤波效果进行了定量分析。计算结果显示,Dixon滤波和Grubbs滤波的总误差分别为2.22%和3.04%,总误差较小且接近,Dixon滤波可以更好地保留水下结构物、底层地面点等位置的特征信息,Grubbs滤波对于近地噪点的过滤效果优于Dixon滤波。3σ滤波总误差为5.84%,较前两种滤波总误差较大,在水下结构物、近地点等区域易出现过滤波和欠滤波的问题,滤波效果较差。 展开更多
关键词 三维声呐点云数据 超体素 滤波方法比较
在线阅读 下载PDF
基于激光点云数据的输电线路电力线提取方法研究
20
作者 苏毅 李泊松 +3 位作者 王伟东 方春华 朱海峰 陈典丽 《电工材料》 2025年第1期94-97,共4页
电力巡线是架空输电线路日常维护和安全保障的重要工作,传统的人工巡线方式费时、费力,难以满足日益增长的电力巡线需求。随着激光扫描技术的快速发展,机载激光雷达通过向架空输电线路发射激光脉冲,可以快速获取大量电力线三维空间信息... 电力巡线是架空输电线路日常维护和安全保障的重要工作,传统的人工巡线方式费时、费力,难以满足日益增长的电力巡线需求。随着激光扫描技术的快速发展,机载激光雷达通过向架空输电线路发射激光脉冲,可以快速获取大量电力线三维空间信息,在输电线路安全勘探、电力巡线中发挥着重要作用。基于此,本文提出一种基于激光点云数据的输电线路电力线提取方法,首先根据输电线路点云空间维度特征,将原始点云数据投影到水平面上获得3种类型点云,通过分析点云高程连续性实现对电力线的粗提取;然后采用归一化高程滤波去除地表噪声点,获取电力线种子点;最后根据电力线种子,使用kd-tree算法进行近邻检索获取更为完整的电力线。试验结果表明,该方法能够从激光点云数据中提取完整的电力线,具有一定的工程价值。 展开更多
关键词 点云数据 电力巡线 电力线提取
在线阅读 下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部