Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in ed...Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.展开更多
Cracks are important migration channels and storage spaces for oil and gas, and the peripheral cracks in the Ordos Basin have developed extensively after multiple tectonic movements. Using unmanned aerial vehicle obli...Cracks are important migration channels and storage spaces for oil and gas, and the peripheral cracks in the Ordos Basin have developed extensively after multiple tectonic movements. Using unmanned aerial vehicle oblique photogrammetry technology to obtain field outcrop image data and establish a three-dimensional model for observation, the NEE and NNW fractures are the most developed in the Yanchang Formation of the study area, while the NW and NNE fractures are slightly developed, all of which are high angle vertical fractures and belong to regional structural fractures. The NNW oriented cracks are restricted by the NEE oriented cracks and developed in the late stage. Combined with the analysis of regional geological background, fracture intersection relationship and tectonic stress field, it is considered that there are two stages of fractures in Dongjiahe, namely, the late Indosinian and Yanshanian.展开更多
Photogrammetry,reconstructing three-dimensional(3D)models from overlapping two-dimensional(2D)photos,finds application in rock mechanics and rock engineering to extract geometrical details of reconstructed objects,for...Photogrammetry,reconstructing three-dimensional(3D)models from overlapping two-dimensional(2D)photos,finds application in rock mechanics and rock engineering to extract geometrical details of reconstructed objects,for example rock fractures.Fracture properties are important for determining the mechanical stability,permeability,strength,and shear behavior of the rock mass.Photogrammetry can be used to reconstruct detailed 3D models of two separated rock fracture surfaces to characterize fracture roughness and physical aperture,which controls the fluid flow,hydromechanical and shear behavior of the rock mass.This research aimed to determine the optimal number of scale bars required to produce high-precision 3D models of a fracture surface.A workflow has been developed to define the physical aperture of a fracture using photogrammetry.Three blocks of Kuru granite(25 cm×25 cm×10 cm)with an artificially induced fracture,were investigated.For scaling 3D models,321 markers were used as ground control points(GCPs)with predefined distances on each block.When the samples were wellmatched in their original positions,the entire block was photographed.Coordinate data of the GCPs were extracted from the 3D model of the blocks.Each half was surveyed separately and georeferenced by GCPs and merged into the same coordinate system.Two fracture surfaces were extracted from the 3D models and the vertical distance between the two surfaces was digitally calculated as physical aperture.Accuracy assessment of the photogrammetric reconstruction showed a 20-30 mm digital control distance accuracy when compared to known distances defined between markers.To attain this accuracy,the study found that at least 200 scale bars were required.Furthermore,photogrammetry was employed to measure changes in aperture under normal stresses.The results obtained from this approach were found to be in good agreement with those obtained using linear variable displacement transducers(LVDTs),with differences ranging from 1 mm to 8μm.展开更多
The geometry of joints has a significant influence on the mechanical properties of rocks.To simplify the curved joint shapes in rocks,the joint shape is usually treated as straight lines or planes in most laboratory e...The geometry of joints has a significant influence on the mechanical properties of rocks.To simplify the curved joint shapes in rocks,the joint shape is usually treated as straight lines or planes in most laboratory experiments and numerical simulations.In this study,the computerized tomography (CT) scanning and photogrammetry were employed to obtain the internal and surface joint structures of a limestone sample,respectively.To describe the joint geometry,the edge detection algorithms and a three-dimensional (3D) matrix mapping method were applied to reconstruct CT-based and photogrammetry-based jointed rock models.For comparison tests,the numerical uniaxial compression tests were conducted on an intact rock sample and a sample with a joint simplified to a plane using the parallel computing method.The results indicate that the mechanical characteristics and failure process of jointed rocks are significantly affected by the geometry of joints.The presence of joints reduces the uniaxial compressive strength (UCS),elastic modulus,and released acoustic emission (AE) energy of rocks by 37%–67%,21%–24%,and 52%–90%,respectively.Compared to the simplified joint sample,the proposed photogrammetry-based numerical model makes the most of the limited geometry information of joints.The UCS,accumulative released AE energy,and elastic modulus of the photogrammetry-based sample were found to be very close to those of the CT-based sample.The UCS value of the simplified joint sample (i.e.38.5 MPa) is much lower than that of the CT-based sample (i.e.72.3 MPa).Additionally,the accumulative released AE energy observed in the simplified joint sample is 3.899 times lower than that observed in the CT-based sample.CT scanning provides a reliable means to visualize the joints in rocks,which can be used to verify the reliability of photogrammetry techniques.The application of the photogrammetry-based sample enables detailed analysis for estimating the mechanical properties of jointed rocks.展开更多
[Objective] The aim was to explore the measurement of coordinate parameter by multi-baseline digital close-range photogrammetry system.[Method] The 3-dimensional coordinate of 8-year-old Jujube was measured by using L...[Objective] The aim was to explore the measurement of coordinate parameter by multi-baseline digital close-range photogrammetry system.[Method] The 3-dimensional coordinate of 8-year-old Jujube was measured by using Lensphoto multi-baseline digital close-range photogrammetry system,and through comparing with measured data of Total Station,the error and accuracy of photogrammetry data were analyzed.[Result] The absolute error of X,Y and Z coordinate was 0-0.014,0-0.018 and 0-0.004 m respectively,and the relative error of X,Y and Z coordinate was less than 0.145%.The significance test of pairs for the photogrammetry data and measured data of Total Station indicated that the space coordinate data of stumpage were accurately measured by using the multi-baseline digital close-range photogrammetry method,and the photogrammetry data meet the need of space coordinate measurement for virtual plant growth simulation.[Conclusion] This study had provided theoretical basis for the growth measurement of virtual plant growth simulation.展开更多
Slope failures are an inevitable aspect of economic pit slope designs in the mining industry.Large open pit guidelines and industry standards accept up to 30%of benches in open pits to collapse provided that they are ...Slope failures are an inevitable aspect of economic pit slope designs in the mining industry.Large open pit guidelines and industry standards accept up to 30%of benches in open pits to collapse provided that they are controlled and that no personnel are at risk.Rigorous ground control measures including real time monitoring systems at TARP(trigger-action-response-plan)protocols are widely utilized to prevent personnel from being exposed to slope failure risks.Technology and computing capability are rapidly evolving.Aerial photogrammetry techniques using UAV(unmanned aerial vehicle)enable geotechnical engineers and engineering geologists to work faster and more safely by removing themselves from potential line-of-fire near unstable slopes.Slope stability modelling software using limit equilibrium(LE)and finite element(FE)methods in three dimensions(3D)is also becoming more accessible,user-friendly and faster to operate.These key components enable geotechnical engineers to undertake site investigations,develop geotechnical models and assess slope stability faster and in more detail with less exposure to fall of ground hazards in the field.This paper describes the rapid and robust process utilized at BHP Limited for appraising a slope failure at an iron ore mine site in the Pilbara region of Western Australia using a combination of UAV photogrammetry and 3D slope stability models in less than a shift(i.e.less than 12 h).展开更多
Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogra...Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogrammetry method is used for measurement of the 3-D terrain of the experimental target. Auto CAD Lisp and EXCEL VBA are used to perform 3-D limit equilibrium analysis of the stability of sliding mass and perform backanalysis of shear strength parameters. The presented method was used to determine the shear strength parameters of rock-soil mixtures at the Liyuan Hydropower Station. The 3-D terrain of sliding surface could be measured notably well using of closerange photogrammetry. The computed results reveal that the cohesion and friction angle of rock-soil mixtures were 3.15 k Pa and 29.88o for test A, respectively, and 4.43 k Pa and 28.30o for test B, respectively, within the range of shear strength parameters, as determined by field and laboratory tests. The computation of shear strength parameters is influenced by the mesh grid number, especially the cohesion of the rock-soil mixture. The application of close-range photogrammetry can reduce the siteworks and improve the computational efficiency and accuracy.展开更多
An abundance of data from seismic and geodetic monitoring has provided new insight into dyke propagation and emplacement mechanisms.These studies show that faulting and fracturing is part of the magma
The purpose, classification, required accuracy and surveying methods of control work for close range photogrammetry have been briefly stated. The different methods for definition of space, object coordinate system are...The purpose, classification, required accuracy and surveying methods of control work for close range photogrammetry have been briefly stated. The different methods for definition of space, object coordinate system are also reviewed. It is suggested that the habitu-ally-practised rotation angle system for aerophotogrammetry in China should be used for the future teaching and resaarching work in the close range photogrammetry, and that the rotation angle system for terrestrial deformation photogrammetry should be left out in order to avoid the confuse and reduce the amount of expanse for making softwares. It has been emphasized that there are three improtant aspects in the close range control work with high accurary using the conventional method of engineering surveying: the use of standard scale for measurement of distance between two general stations, the accurate determination of start direction line between two general stations and the handling method of influence of 2C change. A method for setting up industrial surveying control net with extra-high accuracy ±(0.05–0.20) mm is presented by the author. This kind of industrial control net is necessary for batch process of large industrial components with purposes of measurement, inspect and lofting. There are some special methods of control work in the close range photogrammetry, including two methods presented by the author.展开更多
Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of undergrou...Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health(NIOSH). A commercially available, digital single-lens reflex(DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject,camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio(F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study.展开更多
With the development of drone technology and oblique photogrammetry technology, the acquisition of oblique photogrammetry models and basemap becomes more and more convenient and quickly. The increase in the number of ...With the development of drone technology and oblique photogrammetry technology, the acquisition of oblique photogrammetry models and basemap becomes more and more convenient and quickly. The increase in the number of basemap leads to excessively redundant basemap tiles requests in 3D GIS when loading oblique photogrammetry models, which slows down the system. Aiming at improving the speed of running system, this paper proposes a dynamic strategy for loading basemap tiles. Different from existing 3D GIS which loading oblique photogrammetry models and basemap tiles inde-pendently, this strategy dynamically loads basemap tiles depending on different height of view and the range of loaded oblique photogrammetry models. We achieve dynamic loading of basemap tiles by predetermining whether the basemap tiles will be covered by the oblique photogrammetry models. The experimental results show that this strategy can greatly reduce the num-ber of redundant requests from the client to the server while ensuring the user’s visual requirements for the oblique photogrammetric model.展开更多
Deep learning has become popular and the mainstream technology in many researches related to learning,and has shown its impact on photogrammetry.According to the definition of photogrammetry,that is,a subject that res...Deep learning has become popular and the mainstream technology in many researches related to learning,and has shown its impact on photogrammetry.According to the definition of photogrammetry,that is,a subject that researches shapes,locations,sizes,characteristics and inter-relationships of real objects from optical images,photogrammetry considers two aspects,geometry and semantics.From the two aspects,we review the history of deep learning and discuss its current applications on photogrammetry,and forecast the future development of photogrammetry.In geometry,the deep convolutional neural network(CNN)has been widely applied in stereo matching,SLAM and 3D reconstruction,and has made some effects but needs more improvement.In semantics,conventional methods that have to design empirical and handcrafted features have failed to extract the semantic information accurately and failed to produce types of“semantic thematic map”as 4D productions(DEM,DOM,DLG,DRG)of photogrammetry.This causes the semantic part of photogrammetry be ignored for a long time.The powerful generalization capacity,ability to fit any functions and stability under types of situations of deep leaning is making the automatic production of thematic maps possible.We review the achievements that have been obtained in road network extraction,building detection and crop classification,etc.,and forecast that producing high-accuracy semantic thematic maps directly from optical images will become reality and these maps will become a type of standard products of photogrammetry.At last,we introduce our two current researches related to geometry and semantics respectively.One is stereo matching of aerial images based on deep learning and transfer learning;the other is precise crop classification from satellite spatio-temporal images based on 3D CNN.展开更多
Remote sensing has played a pivotal role in our understanding of the geometry of dykes and dyke swarms on Earth,Venus and Mars(West and Ernst,1991;Mege and Masson,1995;Ernst et al.,2005).Since the 1970’s
AIM:To evaluate the use of photogrammetry and identify the mathematical procedures applied when evaluating spinal posture.METHODS:A systematic search using keywords was conducted in the Pub Med,EMBASE,Scopus,Science a...AIM:To evaluate the use of photogrammetry and identify the mathematical procedures applied when evaluating spinal posture.METHODS:A systematic search using keywords was conducted in the Pub Med,EMBASE,Scopus,Science and Medicine®databases.The following inclusion criteria adopted were:(1)the use of photogrammetry as a method to evaluate spinal posture;(2)evaluations of spinal curvature in the sagittal and/or frontal plane;(3)studies published within the last three decades;and(4)written entirely in English.The exclusion criteria were:(1)studies which objective involved the verification of some aspect of validation of instruments;(2)studies published as abstracts and those published in scientific events;and(3)studies using evaluation of the anteriorization of the head to determine the angular positioning of the cervical spine.The articles in this review were included and evaluated for their methodological quality,based on the Downs and Black scale,by two independent reviewers.RESULTS:Initially,1758 articles were found,76 of which were included upon reading the full texts and 29 were included in accordance with the predetermined criteria.In addition,after analyzing the references in those articles,a further six articles were selected,so that 35 articles were included in this review.This systematic review revealed that the photogrammetry has been using in observational studies.Furthermore,it was also found that,although the data collection methodologies are similar across the studies,in relation to aspects of data analysis,the methodologies are very different,especially regarding the mathematical routines employed to support different postural evaluation software.CONCLUSION:With photogrammetry,the aim of the assessment,whether it is for clinical,research or collective health purposes,must be considered when choosing which protocol to use to evaluate spinal posture.展开更多
The application of digital photogrammetry to measure distribution of tree positions with stereo image couple is introduced in detail, and the procedure of stereo vision applied in forestry environment is explored. Non...The application of digital photogrammetry to measure distribution of tree positions with stereo image couple is introduced in detail, and the procedure of stereo vision applied in forestry environment is explored. Nonlinear error in measure model is adopted in the camera calibration; the interactive correlation matching is used under constraint of epipolar line and edge of tree detected by Canny operator. Results prove that application of digital photogrammetry technology to measure distribution of tree positions can meet demand of precision in experimental conditions.展开更多
Unmanned Aerial Vehicles(UAV)tilt photogrammetry technology can quickly acquire image data in a short time.This technology has been widely used in all walks of life with the rapid development in recent years especiall...Unmanned Aerial Vehicles(UAV)tilt photogrammetry technology can quickly acquire image data in a short time.This technology has been widely used in all walks of life with the rapid development in recent years especially in the rapid acquisition of high-resolution remote sensing images,because of its advantages of high efficiency,reliability,low cost and high precision.Fully using the UAV tilt photogrammetry technology,the construction image progress can be observed by stages,and the construction site can be reasonably and optimally arranged through three-dimensional modeling to create a civilized,safe and tidy construction environment.展开更多
Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry ...Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry should use wide-angle camera as much as possible is done.Then,the limitation of the single lens camera to expand field angle and the combined wide-angle camera existing on the market not suitable for light load of low altitude UAV(Unmanned Aerial Vehicle)due to excessive weight are pointed out.The characteristics of combined wide-angle low altitude light camera with self-calibration and self-stabilization developed by the author are described,especially the principle of self-calibration for the combination of static error and dynamic error.Based on the practice of large scale mapping,a technical procedure in aerial photography by taking with wide-angle camera and large overlap simultaneously for improving the accuracy of low altitude photogrammetry is proposed.The typical engineering produced data is used to verity the above theoretical analysis.A technical route for increasing accuracy of low altitude photogrammetry with combined wide-angle camera is expounded.展开更多
文摘Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.
文摘Cracks are important migration channels and storage spaces for oil and gas, and the peripheral cracks in the Ordos Basin have developed extensively after multiple tectonic movements. Using unmanned aerial vehicle oblique photogrammetry technology to obtain field outcrop image data and establish a three-dimensional model for observation, the NEE and NNW fractures are the most developed in the Yanchang Formation of the study area, while the NW and NNE fractures are slightly developed, all of which are high angle vertical fractures and belong to regional structural fractures. The NNW oriented cracks are restricted by the NEE oriented cracks and developed in the late stage. Combined with the analysis of regional geological background, fracture intersection relationship and tectonic stress field, it is considered that there are two stages of fractures in Dongjiahe, namely, the late Indosinian and Yanshanian.
基金funding provided by the State Nuclear Waste Management Fund(VYR)and the support of the Ministry of Economic Affairs and Employment of Finland on the Finnish Research Program on Nuclear Waste Management KYT2018 and KYT2022 of the Nuclear Energy Act(990/1987)in the research projects Fluid flow in fractured hard rock mass(RAKKA),funding numbers KYT 1/2021 and KYT 1/2022Additional support was received from the National Nuclear Safety and Waste Management Research Program SAFER2028,funding numbers SAFER 25/2023(MIRKA)and SAFER 42/2023(CORF).
文摘Photogrammetry,reconstructing three-dimensional(3D)models from overlapping two-dimensional(2D)photos,finds application in rock mechanics and rock engineering to extract geometrical details of reconstructed objects,for example rock fractures.Fracture properties are important for determining the mechanical stability,permeability,strength,and shear behavior of the rock mass.Photogrammetry can be used to reconstruct detailed 3D models of two separated rock fracture surfaces to characterize fracture roughness and physical aperture,which controls the fluid flow,hydromechanical and shear behavior of the rock mass.This research aimed to determine the optimal number of scale bars required to produce high-precision 3D models of a fracture surface.A workflow has been developed to define the physical aperture of a fracture using photogrammetry.Three blocks of Kuru granite(25 cm×25 cm×10 cm)with an artificially induced fracture,were investigated.For scaling 3D models,321 markers were used as ground control points(GCPs)with predefined distances on each block.When the samples were wellmatched in their original positions,the entire block was photographed.Coordinate data of the GCPs were extracted from the 3D model of the blocks.Each half was surveyed separately and georeferenced by GCPs and merged into the same coordinate system.Two fracture surfaces were extracted from the 3D models and the vertical distance between the two surfaces was digitally calculated as physical aperture.Accuracy assessment of the photogrammetric reconstruction showed a 20-30 mm digital control distance accuracy when compared to known distances defined between markers.To attain this accuracy,the study found that at least 200 scale bars were required.Furthermore,photogrammetry was employed to measure changes in aperture under normal stresses.The results obtained from this approach were found to be in good agreement with those obtained using linear variable displacement transducers(LVDTs),with differences ranging from 1 mm to 8μm.
基金supported by the National Natural Science Foundation of China(Grant Nos.42277150,41977219)Henan Provincial Science and Technology Research Project(Grant No.222102320271).
文摘The geometry of joints has a significant influence on the mechanical properties of rocks.To simplify the curved joint shapes in rocks,the joint shape is usually treated as straight lines or planes in most laboratory experiments and numerical simulations.In this study,the computerized tomography (CT) scanning and photogrammetry were employed to obtain the internal and surface joint structures of a limestone sample,respectively.To describe the joint geometry,the edge detection algorithms and a three-dimensional (3D) matrix mapping method were applied to reconstruct CT-based and photogrammetry-based jointed rock models.For comparison tests,the numerical uniaxial compression tests were conducted on an intact rock sample and a sample with a joint simplified to a plane using the parallel computing method.The results indicate that the mechanical characteristics and failure process of jointed rocks are significantly affected by the geometry of joints.The presence of joints reduces the uniaxial compressive strength (UCS),elastic modulus,and released acoustic emission (AE) energy of rocks by 37%–67%,21%–24%,and 52%–90%,respectively.Compared to the simplified joint sample,the proposed photogrammetry-based numerical model makes the most of the limited geometry information of joints.The UCS,accumulative released AE energy,and elastic modulus of the photogrammetry-based sample were found to be very close to those of the CT-based sample.The UCS value of the simplified joint sample (i.e.38.5 MPa) is much lower than that of the CT-based sample (i.e.72.3 MPa).Additionally,the accumulative released AE energy observed in the simplified joint sample is 3.899 times lower than that observed in the CT-based sample.CT scanning provides a reliable means to visualize the joints in rocks,which can be used to verify the reliability of photogrammetry techniques.The application of the photogrammetry-based sample enables detailed analysis for estimating the mechanical properties of jointed rocks.
基金Supported by National Natural Science Foundation of China(30770401)National Eleventh Five-Year Plan for Forestry Scienceand Technology Support Topics(2006BADO3A0505)~~
文摘[Objective] The aim was to explore the measurement of coordinate parameter by multi-baseline digital close-range photogrammetry system.[Method] The 3-dimensional coordinate of 8-year-old Jujube was measured by using Lensphoto multi-baseline digital close-range photogrammetry system,and through comparing with measured data of Total Station,the error and accuracy of photogrammetry data were analyzed.[Result] The absolute error of X,Y and Z coordinate was 0-0.014,0-0.018 and 0-0.004 m respectively,and the relative error of X,Y and Z coordinate was less than 0.145%.The significance test of pairs for the photogrammetry data and measured data of Total Station indicated that the space coordinate data of stumpage were accurately measured by using the multi-baseline digital close-range photogrammetry method,and the photogrammetry data meet the need of space coordinate measurement for virtual plant growth simulation.[Conclusion] This study had provided theoretical basis for the growth measurement of virtual plant growth simulation.
文摘Slope failures are an inevitable aspect of economic pit slope designs in the mining industry.Large open pit guidelines and industry standards accept up to 30%of benches in open pits to collapse provided that they are controlled and that no personnel are at risk.Rigorous ground control measures including real time monitoring systems at TARP(trigger-action-response-plan)protocols are widely utilized to prevent personnel from being exposed to slope failure risks.Technology and computing capability are rapidly evolving.Aerial photogrammetry techniques using UAV(unmanned aerial vehicle)enable geotechnical engineers and engineering geologists to work faster and more safely by removing themselves from potential line-of-fire near unstable slopes.Slope stability modelling software using limit equilibrium(LE)and finite element(FE)methods in three dimensions(3D)is also becoming more accessible,user-friendly and faster to operate.These key components enable geotechnical engineers to undertake site investigations,develop geotechnical models and assess slope stability faster and in more detail with less exposure to fall of ground hazards in the field.This paper describes the rapid and robust process utilized at BHP Limited for appraising a slope failure at an iron ore mine site in the Pilbara region of Western Australia using a combination of UAV photogrammetry and 3D slope stability models in less than a shift(i.e.less than 12 h).
基金the support of the National Natural Science Foundation of China (Grant Nos. 41472272, 41102194)the Key Deployment Project of the Chinese Academy of Sciences (KZZD-EW-05-01)the Science Foundation for Excellent Youth Scholars of Sichuan University (2013SCU04A07)
文摘Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogrammetry method is used for measurement of the 3-D terrain of the experimental target. Auto CAD Lisp and EXCEL VBA are used to perform 3-D limit equilibrium analysis of the stability of sliding mass and perform backanalysis of shear strength parameters. The presented method was used to determine the shear strength parameters of rock-soil mixtures at the Liyuan Hydropower Station. The 3-D terrain of sliding surface could be measured notably well using of closerange photogrammetry. The computed results reveal that the cohesion and friction angle of rock-soil mixtures were 3.15 k Pa and 29.88o for test A, respectively, and 4.43 k Pa and 28.30o for test B, respectively, within the range of shear strength parameters, as determined by field and laboratory tests. The computation of shear strength parameters is influenced by the mesh grid number, especially the cohesion of the rock-soil mixture. The application of close-range photogrammetry can reduce the siteworks and improve the computational efficiency and accuracy.
文摘An abundance of data from seismic and geodetic monitoring has provided new insight into dyke propagation and emplacement mechanisms.These studies show that faulting and fracturing is part of the magma
文摘The purpose, classification, required accuracy and surveying methods of control work for close range photogrammetry have been briefly stated. The different methods for definition of space, object coordinate system are also reviewed. It is suggested that the habitu-ally-practised rotation angle system for aerophotogrammetry in China should be used for the future teaching and resaarching work in the close range photogrammetry, and that the rotation angle system for terrestrial deformation photogrammetry should be left out in order to avoid the confuse and reduce the amount of expanse for making softwares. It has been emphasized that there are three improtant aspects in the close range control work with high accurary using the conventional method of engineering surveying: the use of standard scale for measurement of distance between two general stations, the accurate determination of start direction line between two general stations and the handling method of influence of 2C change. A method for setting up industrial surveying control net with extra-high accuracy ±(0.05–0.20) mm is presented by the author. This kind of industrial control net is necessary for batch process of large industrial components with purposes of measurement, inspect and lofting. There are some special methods of control work in the close range photogrammetry, including two methods presented by the author.
文摘Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health(NIOSH). A commercially available, digital single-lens reflex(DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject,camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio(F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study.
文摘With the development of drone technology and oblique photogrammetry technology, the acquisition of oblique photogrammetry models and basemap becomes more and more convenient and quickly. The increase in the number of basemap leads to excessively redundant basemap tiles requests in 3D GIS when loading oblique photogrammetry models, which slows down the system. Aiming at improving the speed of running system, this paper proposes a dynamic strategy for loading basemap tiles. Different from existing 3D GIS which loading oblique photogrammetry models and basemap tiles inde-pendently, this strategy dynamically loads basemap tiles depending on different height of view and the range of loaded oblique photogrammetry models. We achieve dynamic loading of basemap tiles by predetermining whether the basemap tiles will be covered by the oblique photogrammetry models. The experimental results show that this strategy can greatly reduce the num-ber of redundant requests from the client to the server while ensuring the user’s visual requirements for the oblique photogrammetric model.
基金National Natural Science Foundation of China(41471288).
文摘Deep learning has become popular and the mainstream technology in many researches related to learning,and has shown its impact on photogrammetry.According to the definition of photogrammetry,that is,a subject that researches shapes,locations,sizes,characteristics and inter-relationships of real objects from optical images,photogrammetry considers two aspects,geometry and semantics.From the two aspects,we review the history of deep learning and discuss its current applications on photogrammetry,and forecast the future development of photogrammetry.In geometry,the deep convolutional neural network(CNN)has been widely applied in stereo matching,SLAM and 3D reconstruction,and has made some effects but needs more improvement.In semantics,conventional methods that have to design empirical and handcrafted features have failed to extract the semantic information accurately and failed to produce types of“semantic thematic map”as 4D productions(DEM,DOM,DLG,DRG)of photogrammetry.This causes the semantic part of photogrammetry be ignored for a long time.The powerful generalization capacity,ability to fit any functions and stability under types of situations of deep leaning is making the automatic production of thematic maps possible.We review the achievements that have been obtained in road network extraction,building detection and crop classification,etc.,and forecast that producing high-accuracy semantic thematic maps directly from optical images will become reality and these maps will become a type of standard products of photogrammetry.At last,we introduce our two current researches related to geometry and semantics respectively.One is stereo matching of aerial images based on deep learning and transfer learning;the other is precise crop classification from satellite spatio-temporal images based on 3D CNN.
文摘Remote sensing has played a pivotal role in our understanding of the geometry of dykes and dyke swarms on Earth,Venus and Mars(West and Ernst,1991;Mege and Masson,1995;Ernst et al.,2005).Since the 1970’s
文摘AIM:To evaluate the use of photogrammetry and identify the mathematical procedures applied when evaluating spinal posture.METHODS:A systematic search using keywords was conducted in the Pub Med,EMBASE,Scopus,Science and Medicine®databases.The following inclusion criteria adopted were:(1)the use of photogrammetry as a method to evaluate spinal posture;(2)evaluations of spinal curvature in the sagittal and/or frontal plane;(3)studies published within the last three decades;and(4)written entirely in English.The exclusion criteria were:(1)studies which objective involved the verification of some aspect of validation of instruments;(2)studies published as abstracts and those published in scientific events;and(3)studies using evaluation of the anteriorization of the head to determine the angular positioning of the cervical spine.The articles in this review were included and evaluated for their methodological quality,based on the Downs and Black scale,by two independent reviewers.RESULTS:Initially,1758 articles were found,76 of which were included upon reading the full texts and 29 were included in accordance with the predetermined criteria.In addition,after analyzing the references in those articles,a further six articles were selected,so that 35 articles were included in this review.This systematic review revealed that the photogrammetry has been using in observational studies.Furthermore,it was also found that,although the data collection methodologies are similar across the studies,in relation to aspects of data analysis,the methodologies are very different,especially regarding the mathematical routines employed to support different postural evaluation software.CONCLUSION:With photogrammetry,the aim of the assessment,whether it is for clinical,research or collective health purposes,must be considered when choosing which protocol to use to evaluate spinal posture.
基金the National Natural Science Foundationof China (Grant No. 30271079)
文摘The application of digital photogrammetry to measure distribution of tree positions with stereo image couple is introduced in detail, and the procedure of stereo vision applied in forestry environment is explored. Nonlinear error in measure model is adopted in the camera calibration; the interactive correlation matching is used under constraint of epipolar line and edge of tree detected by Canny operator. Results prove that application of digital photogrammetry technology to measure distribution of tree positions can meet demand of precision in experimental conditions.
文摘Unmanned Aerial Vehicles(UAV)tilt photogrammetry technology can quickly acquire image data in a short time.This technology has been widely used in all walks of life with the rapid development in recent years especially in the rapid acquisition of high-resolution remote sensing images,because of its advantages of high efficiency,reliability,low cost and high precision.Fully using the UAV tilt photogrammetry technology,the construction image progress can be observed by stages,and the construction site can be reasonably and optimally arranged through three-dimensional modeling to create a civilized,safe and tidy construction environment.
文摘Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry should use wide-angle camera as much as possible is done.Then,the limitation of the single lens camera to expand field angle and the combined wide-angle camera existing on the market not suitable for light load of low altitude UAV(Unmanned Aerial Vehicle)due to excessive weight are pointed out.The characteristics of combined wide-angle low altitude light camera with self-calibration and self-stabilization developed by the author are described,especially the principle of self-calibration for the combination of static error and dynamic error.Based on the practice of large scale mapping,a technical procedure in aerial photography by taking with wide-angle camera and large overlap simultaneously for improving the accuracy of low altitude photogrammetry is proposed.The typical engineering produced data is used to verity the above theoretical analysis.A technical route for increasing accuracy of low altitude photogrammetry with combined wide-angle camera is expounded.