期刊文献+
共找到34,203篇文章
< 1 2 250 >
每页显示 20 50 100
Boron-containing copolymers as environmentally friendly lubricant additives
1
作者 Hua Xue Fengchun Liang +4 位作者 Weili Yang Qun He Meirong Cai Feng Zhou Weifeng Bu 《日用化学工业(中英文)》 北大核心 2025年第1期1-11,共11页
Increasing environmental concerns about limiting harmful emissions has necessitated sulfur-and phosphorus-free green lubricant additives.Although boron-containing compounds have been widely investigated as green lubri... Increasing environmental concerns about limiting harmful emissions has necessitated sulfur-and phosphorus-free green lubricant additives.Although boron-containing compounds have been widely investigated as green lubricant additives,their macromolecular analogs have been rarely considered yet to develop environmentally friendly lubricant additives.In this work,a series of boron-containing copolymers have been synthesized by free-radical copolymerization of stearyl methacrylate and isopropenyl boronic acid pinacol ester with different feeding ratios(S_(n)-r-B_(m),n=1,m=1/3,1,2,3,5,9).The resulting copolymers of S_(n)-r-B_(m)(n=1,m=1/3,1,2,3,5)are readily dispersed in the PAO-10 base oil and form micelle-like aggregates with hydrodynamic diameters ranging from 9.7 to 52 nm.SRV-IV oscillating reciprocating tribological tests on ball-on-flat steel pairs show that compared with the base oil of PAO-10,the friction coefficients and wear volumes of the base oil solutions of S_(n)-r-B_(m)decrease considerably up to 62%and 97%,respectively.Moreover,the base oil solution of S_(1)-r-B_(1)exhibits an excellent load-bearing capacity of(850±100)N.These superior lubricating properties are due to the formation of protective tribofilms comprising S_(n)-r-B_(m),boron oxide,and iron oxide compounds on the lubricated steel surface.Therefore,the boron-containing copolymers can be regarded as a novel class of environmentally friendly lubricating oil macroadditives for efficient friction and wear reduction without sulfur and phosphorus elements. 展开更多
关键词 friction and wear reduction lubricant additives boron-containing copolymers polymerIZATION
在线阅读 下载PDF
Polymerized-ionic-liquid-based solid polymer electrolyte for ultra-stable lithium metal batteries enabled by structural design of monomer and crosslinked 3D network
2
作者 Lingwang Liu Jiangyan Xue +14 位作者 Yiwen Gao Shiqi Zhang Haiyang Zhang Keyang Peng Xin Zhang Suwan Lu Shixiao Weng Haifeng Tu Yang Liu Zhicheng Wang Fengrui Zhang Daosong Fu Jingjing Xu Qun Luo Xiaodong Wu 《Materials Reports(Energy)》 2025年第1期61-69,共9页
Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials ... Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability. 展开更多
关键词 polymerized ionic liquid Solid polymer electrolyte Structural design Crosslinked 3D network Lithium metal battery
在线阅读 下载PDF
Use of Polymeric Materials in Construction to Improve Durability & Sustainability
3
作者 Waseem Ahmad Khatri Mohammed Al Mehthel +2 位作者 Oscar Salazar Mirza Baig Saleh Al Wohaibi 《World Journal of Engineering and Technology》 2025年第1期12-38,共27页
Building and construction sector, including infrastructures, are facing many challenges which are scarcity of raw materials, CO2 emissions, lower construction efficiency, and deterioration under corrosive environment ... Building and construction sector, including infrastructures, are facing many challenges which are scarcity of raw materials, CO2 emissions, lower construction efficiency, and deterioration under corrosive environment that cost the world economy $2.5 trillion and this translates to 3.4% of world gross domestic product. This paper presents several examples that show how the use of the nonmetallic materials improved sustainability and life cycles in the built environment by removing the corrosion issue from its root and using durable NM polymers in construction. The paper details recently patented Aramco technology for the use of nonmetallic paving panels that could be used as an alternative to concrete and asphalt paving. Other case studies presented cover use of GFRP Poles for traffic signs and signal poles to replace traditional steel poles. Details of developments for specialist structural application in bridges, in architectural applications, polymers in soils, fibers in pavement manholes and bendable concrete are presented. 展开更多
关键词 Non-Metallic Materials Corrosion DURABILITY Non-Metallic Paving Metals Building and Construction Paving Panels Bridges ARCHITECTURAL polymers Glass Fiber Reinforced polymers (GFRP)
在线阅读 下载PDF
Iron-nitrogen-doped porous carbon absorbers constructed from hypercrosslinked ferrocene polymers for efficient electromagnetic wave absorption 被引量:1
4
作者 Yi Hu Yijia Zhou +4 位作者 Lijia Liu Qiang Wang Chunhong Zhang Hao Wei Yudan Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期578-590,共13页
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni... Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research. 展开更多
关键词 hypercrosslinked polymers porous carbon iron-nitrogen doping annealing
在线阅读 下载PDF
Bioinspired Passive Tactile Sensors Enabled by Reversible Polarization of Conjugated Polymers
5
作者 Feng He Sitong Chen +3 位作者 Ruili Zhou Hanyu Diao Yangyang Han Xiaodong Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期361-377,共17页
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c... Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins. 展开更多
关键词 Passive tactile sensors Reversible polarization of conjugated polymers Tactile perception Machine learning algorithm Object recognition
在线阅读 下载PDF
Merging polymers of intrinsic microporosity and porous carbon-based zinc oxide composites in novel mixed matrix membranes for efficient gas separation
6
作者 Muning Chen Jiemei Zhou +7 位作者 Jing Ma Weigang Zheng Guanying Dong Xin Li Zhihong Tian Yatao Zhang Jing Wang Yong Wang 《Green Energy & Environment》 SCIE EI CAS 2025年第1期203-213,共11页
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim... Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials. 展开更多
关键词 Mixed matrix membranes polymers of intrinsic microporosity CO_(2)separation Porous carbon materials
在线阅读 下载PDF
Syntheses,crystal structures,and characterizations of two cadmium(Ⅱ)coordination polymers
7
作者 LI Xiumei LI Linlin +1 位作者 LIU Bo PAN Yaru 《无机化学学报》 北大核心 2025年第3期613-623,共11页
Two new transition-metal coordination polymers,{[Cd(oba)(L)_(2)]·H_(2)O}_n(1)and[Cd(4-nph)(L)_(2)]_n(2)(H_(2)oba=4,4'-oxydibenzoic acid,4-H_(2)nph=4-nitrophthalic acid,L=2,2'-biimidazole),were successfull... Two new transition-metal coordination polymers,{[Cd(oba)(L)_(2)]·H_(2)O}_n(1)and[Cd(4-nph)(L)_(2)]_n(2)(H_(2)oba=4,4'-oxydibenzoic acid,4-H_(2)nph=4-nitrophthalic acid,L=2,2'-biimidazole),were successfully synthesized under hydrothermal conditions and characterized structurally by IR spectroscopy,elemental analyses,single-crystal X-ray diffraction,powder X-ray diffraction,and thermogravimetric analysis.The results of single-crystal X-ray diffraction show that complex 1 presents a 1D zigzag chain structure and further extends to a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.Meanwhile,complex 2 has a zero-dimensional structure and also extends to form a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.In addition,both 1and 2 exhibited luminescent properties in the solid state.Furthermore,quantum chemical calculations were carried out on the"molecular fragments"extracted from the crystal structures of 1 and 2 using the PBE0/LANL2DZ method constructed by the Gaussian 16 program.The calculated values signify a significant covalent interaction between the coordination atoms and the Cd(Ⅱ)ions.CCDC:2332173,1;2332176,2. 展开更多
关键词 coordination polymer cadmium(Ⅱ)complex crystal structure quantum⁃chemical calculations
在线阅读 下载PDF
Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer
8
作者 REN Jing YAN Ruikui +3 位作者 CHEN Xiaoli CUI Huali YANG Hua WANG Jijiang 《无机化学学报》 北大核心 2025年第3期574-586,共13页
A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_... A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_(2)O.The structure was characterized by single-crystal X-ray diffraction,powder X-ray diffraction,elemental analysis,and infrared spectroscopy.Cd-CP belongs to the monoclinic crystal system with the P2_1/c space group and performs in a 1D double-chain structure.The adjacent double chains further form a 3D supramolecular network structure through hydrogen bonding.Thermogravimetric analysis shows that Cd-CP has good thermal stability.Fluorescence analysis showed that Cd-CP had good choosing selectively and was sensitive to metal ions(Fe^(3+)and Zn^(2+)),2,4,6-trinitrophenylhydrazine(TRI),and pyrimethanil(Pth).Interestingly,when Cd-CP was used for fluorescence detection of metal ions,it was found to have a fluorescence quenching effect on Fe^(3+)but had an obvious enhancement effect on Zn^(2+).Therefore,we designed an“on-off-on”logic gate.In addition,the mechanism of fluorescence sensing has been deeply explored.CCDC:2258625. 展开更多
关键词 coordination polymer 4⁃(2 4⁃dicarboxylic phenoxyl)phthalic acid fluorescence sensing logic gate
在线阅读 下载PDF
Structure and magnetic properties of Mn(Ⅱ)coordination polymers regulated by N-auxiliary ligands
9
作者 LIU Xiaxia MA Xiaofang +2 位作者 GUO Luxia HAN Xianda FENG Sisi 《无机化学学报》 北大核心 2025年第3期587-596,共10页
Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions an... Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions and 6-(3',4'-dicarboxylphenoxy)-1,2,4-benzenetricarboxylic acid(H_(5)L)in the presence of N-auxiliary ligands 1,10-phenanthroline(phen)and1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib).The structures of coordination polymers 1 and 2 were characterized by infrared spectroscopy,single-crystal X-ray diffraction,thermogravimetric analysis,and powder X-ray diffraction.Single-crystal X-ray diffraction reveals that 1 has a 1D chain structure based on binuclear Mn(Ⅱ)units,while 2 features a(3,8)-connected 3D network structure based on tetranuclear Mn(Ⅱ)units.Magnetic studies show that 1 and 2exhibit antiferromagnetic interactions between manganese ions.2 shows stronger antiferromagnetic interactions due to the shorter Mn…Mn distances within the tetranuclear manganese units.CCDC:2357601,1;2357602,2. 展开更多
关键词 coordination polymers crystal structures binuclear Mnunit tetranuclear Mnunit MAGNETISM
在线阅读 下载PDF
Modification of Maxwell model for conductivity prediction of carbon nanotubes-filled polymer composites with tunneling effect
10
作者 Jue ZHU Longyuan LI Ningtao ZHU 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期25-36,共12页
Carbon nanotubes(CNTs)have garnered great attention in recent years due to their outstanding electrical,thermal,and mechanical properties.The incorporation of small amounts of CNTs in polymers can substantially improv... Carbon nanotubes(CNTs)have garnered great attention in recent years due to their outstanding electrical,thermal,and mechanical properties.The incorporation of small amounts of CNTs in polymers can substantially improve the sensitivity of the polymer's electrical conductivity.This paper presents a modified Maxwell model to evaluate the electrical conductivity of CNTs-filled polymer composites by introducing a transition zone to account for the tunneling effect.In this modified Maxwell model,the CNTs-filled polymer composite is modeled as a three-phase composite,consisting of a matrix(polymer),inclusions(CNTs),and a transition zone(tunneling zone).The effective electrical conductivity(EEC)of the composite is calculated based on the volume fractions and electrical conductivities of the matrix,inclusions,and transition zone.The model's validity is confirmed through the use of available test data,which demonstrates its capability to accurately capture the nonlinear conductivity behavior observed in CNTs-polymer composites.This study offers valuable insights into the design of high-performance conductive polymer nanocomposites,and enhances the understanding of electrical conduction mechanisms in CNT-dispersed polymer composites. 展开更多
关键词 carbon nanotube(CNT) polymer composite electrical conductivity TUNNELING Maxwell model
在线阅读 下载PDF
High-temperature-tolerant flexible supercapacitors: Gel polymer electrolytes and electrode materials
11
作者 Chong Peng Xinyi Huang +4 位作者 Mingwei Zhao Shuling Liao Quanhong Yang Nianjun Yang Siyu Yu 《Journal of Energy Chemistry》 2025年第1期426-457,共32页
The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and elec... The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and electrode materials stand as two key components that significantly impact the efficacy of hightemperature-tolerant FSCs(HT-FSCs). They should not only exhibit high electrochemical performance and excellent flexibility, but also withstand intense thermal stress. Considerable efforts have been devoted to enhancing their thermal stability while maintaining high electrochemical and mechanical performance. In this review, the fundamentals of HT-FSCs are outlined. A comprehensive overview of state-of-the-art progress and achievements in HT-FSCs, with a focus on thermally stable gel polymer electrolytes and electrode materials is provided. Finally, challenges and future perspectives regarding HT-FSCs are discussed, alongside strategies for elevating operational temperatures and performance.This review offers both theoretical foundations and practical guidelines for designing and manufacturing HT-FSCs, further promoting their widespread adoption across diverse fields. 展开更多
关键词 Flexible supercapacitors High-temperature tolerance Gel polymer electrolytes Electrode materials
在线阅读 下载PDF
TiO_(2)–Cu_(7)S_(4) modified with a carbazole-based conjugated porous polymer for adsorption and photocatalytic degradation of bisphenol A
12
作者 Wanjun Xu Xunxun Li +4 位作者 Dongyun Chen Najun Li Qingfeng Xu Hua Li Jianmei Lu 《Green Energy & Environment》 2025年第3期598-608,共11页
Adsorption-photocatalytic degradation of organic pollutants in water is an advantageous method for environmental purification.Herein,a feasible strategy is developed to construct a novel dual S-scheme heterojunctions ... Adsorption-photocatalytic degradation of organic pollutants in water is an advantageous method for environmental purification.Herein,a feasible strategy is developed to construct a novel dual S-scheme heterojunctions Cu_(7)S_(4)-TiO_(2)-conjugated polymer with a donor-acceptor structure.There are abundant adsorption active sites for adsorption in the porous structure of the composites,which can rapidly capture pollutants through hydrogen bonding and π-π interactions.In addition,the dual S-scheme heterojunctions effectively improve carrier separation while maintaining a strong redox ability.Thus,the optimized 1.5% CST-130 catalysts can adsorb 71% of 20 ppm BPA in 15 min and completely remove it within 30 min with high adsorption capacity and photodegradation efficiency.Therefore,this study provides a new inspiration for synergistic adsorption and degradation of BPA and the construction of dual S-scheme heterojunction. 展开更多
关键词 Conjugated porous polymer ADSORPTION Photocatalytic degradation Dual S-Scheme heterojunction
在线阅读 下载PDF
Metallized polymer current collector as“stress acceptor”for stable micron-sized silicon anodes
13
作者 Ziyi Cao Haoteng Sun +7 位作者 Yi Zhang Lixia Yuan Yaqi Liao Haijin Ji Shuaipeng Hao Zhen Li Long Qie Yunhui Huang 《Journal of Energy Chemistry》 2025年第2期786-794,I0017,共10页
Micron-sized silicon(μSi)is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity,low cost,and abundant reserves.However,the volume expansion that occurs during cyclin... Micron-sized silicon(μSi)is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity,low cost,and abundant reserves.However,the volume expansion that occurs during cycling leads to the accumulation of undesirable stresses,resulting in pulverization of silicon microparticles and shortened lifespan of the batteries.Herein,a composite film of Cu-PET-Cu is proposed as the current collector(CC)forμSi anodes to replace the conventional Cu CC.Cu-PET-Cu CC is prepared by depositing Cu on both sides of a polyethylene terephthalate(PET)film.The PET layer promises good ductility of the film,permitting the Cu-PET-Cu CC to accommodate the volumetric changes of silicon microparticles and facilitates the stress release through ductile deformation.As a result,theμSi electrode with Cu-PET-Cu CC retains a high specific capacity of 2181 mA h g^(-1),whereas theμSi electrode with Cu CC(μSi/Cu)exhibits a specific capacity of 1285 mA h g^(-1)after 80 cycles.The stress relieving effect of CuPET-Cu was demonstrated by in-situ fiber optic stress monitoring and multi-physics simulations.This work proposes an effective stress relief strategy at the electrode level for the practical implementation ofμSi anodes. 展开更多
关键词 Micron-sized Si anodes Metallized polymer current collector Stress relieving Electrode design
在线阅读 下载PDF
Facilitated transport membranes in post-combustion carbon capture:Recent advancements in polymer materials and challenges towards practical application
14
作者 Zihan Wang Zhien Zhang +1 位作者 Mohamad Reza Soltanian Ruizhi Pang 《Green Energy & Environment》 2025年第3期500-517,共18页
Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture.The central principle is to utilize the affinity of CO_(2) for the carrier to... Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture.The central principle is to utilize the affinity of CO_(2) for the carrier to achieve efficient separation and to break the Robson upper bound.This paper reviews the progress of facilitated transport membranes research regarding polymer materials,principles,and problems faced at this stage.Firstly,we briefly introduce the transport mechanism of the facilitated transport membranes.Then the research progress of several major polymers used for facilitated transport membranes for CO_(2)/N_(2) separation was presented in the past five years.Additionally,we analyze the primary challenges of facilitated transport membranes,including the influence of water,the effect of temperature,the saturation effect of the carrier,and the process configuration.Finally,we also delve into the challenges and competitiveness of facilitated transport membranes. 展开更多
关键词 Facilitated transport CO_(2)/N_(2)separation polymer materials Membrane stability
在线阅读 下载PDF
Zn(TFSI)_(2)-Mediated Ring-Opening Polymerization for Electrolyte Engineering Toward Stable Aqueous Zinc Metal Batteries
15
作者 Zhenjie Liu Murong Xi +6 位作者 Rui Sheng Yudai Huang Juan Ding Zhouliang Tan Jiapei Li Wenjun Zhang Yonggang Wang 《Nano-Micro Letters》 2025年第5期479-491,共13页
Practical Zn metal batteries have been hindered by several challenges,including Zn dendrite growth,undesirable side reactions,and unstable electrode/electrolyte interface.These issues are particularly more serious in ... Practical Zn metal batteries have been hindered by several challenges,including Zn dendrite growth,undesirable side reactions,and unstable electrode/electrolyte interface.These issues are particularly more serious in low-concentration electrolytes.Herein,we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.The Zn(TFSI)_(2)salt catalyzes the ring-opening polymerization of(1,3-dioxolane(DOL)),generating oxidation-resistant and non-combustible long-chain polymer(poly(1,3-dioxolane)(pDOL)).The pDOL reduces the active H_(2)O molecules in electrolyte and assists in forming stable organic–inorganic gradient solid electrolyte interphase with rich organic constituents,ZnO and ZnF_(2).The introduction of pDOL endows the electrolyte with several advantages:excellent Zn dendrite inhibition,improved corrosion resistance,widened electrochemical window(2.6 V),and enhanced low-temperature performance(freezing point=-34.9°C).Zn plating/stripping in pDOL-enhanced electrolyte lasts for 4200 cycles at 99.02%Coulomb efficiency and maintains a lifetime of 8200 h.Moreover,Zn metal anodes deliver stable cycling for 2500 h with a high Zn utilization of 60%.A Zn//VO_(2)pouch cell assembled with lean electrolyte(electrolyte/capacity(E/C=41 mL(Ah)^(-1))also demonstrates a capacity retention ratio of 92%after 600 cycles.These results highlight the promising application prospects of practical Zn metal batteries enabled by the Zn(TFSI)2-mediated electrolyte engineering. 展开更多
关键词 Electrolyte engineering Ring-opening polymerization Lewis acid catalyst Zn metal battery
在线阅读 下载PDF
Membranes of Polymer of Intrinsic Microporosity PIM-1 for Gas Separation:Modification Strategies and Meta-Analysis
16
作者 Boya Qiu Yong Gao +1 位作者 Patricia Gorgojo Xiaolei Fan 《Nano-Micro Letters》 2025年第5期326-358,共33页
Polymers of intrinsic microporosity(PIMs)have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades,owing to their highly permeable porous struct... Polymers of intrinsic microporosity(PIMs)have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades,owing to their highly permeable porous structures.However,challenges regarding its relatively low selectivity,physical aging,and plasticisation impede relevant industrial adoptions for gas separation.To address these issues,several strategies including chain modification,post-modification,blending with other polymers,and the addition of fillers,have been developed and explored.PIM-1 is the most investigated PIMs,and hence here we review the stateof-the-arts of the modification strategies of PIM-1 critically and discuss the progress achieved for addressing the aforementioned challenges via meta-analysis.Additionally,the development of PIM-1-based thin film composite membranes is commented as well,shedding light on their potential in industrial gas separation.We hope that the review can be a timely snapshot of the relevant state-of-the-arts of PIMs guiding future design and optimisation of PIMs-based membranes for enhanced performance towards a higher technology readiness level for practical applications. 展开更多
关键词 polymers of intrinsic microporosity(PIMs) PIM-1 Gas separation META-ANALYSIS Upper bound
在线阅读 下载PDF
Microbial community and dynamic changes of extracellular polymeric substances in relation to plastisphere of disposable surgical masks in natural aquatic environment
17
作者 Ling ZHANG Yuxin ZHOU +6 位作者 Zixian ZHU Feifei YAN Luxi TAN Chunyan WEI Zihao WANG Qingfeng CHEN Ying ZHANG 《Journal of Oceanology and Limnology》 2025年第2期502-514,共13页
In the context of global COVID-19 epidemic preparedness,the extensive use of disposable surgical masks(DSM)may lead to its emergence as a main new source of microplastics in the environment.Nowadays,DSMs have become a... In the context of global COVID-19 epidemic preparedness,the extensive use of disposable surgical masks(DSM)may lead to its emergence as a main new source of microplastics in the environment.Nowadays,DSMs have become a non-negligible source of plastic waste in aquatic environment,however,less research has been done on DSM after biofilm colonization in freshwater environment.The study investigated the microbial community of DSM-associated biofilms by 16S rRNA gene sequencing.Analysis of the microbial community in the middle and inner/outer layers of the DSM showed that the middle layer was different from the remaining two layers and that potential pathogens were enriched only in the middle layer of the DSM.Herein,we focused on the middle layer and explored the characterization properties and extracellular polymeric substances(EPS)components changes during biofilm formation.The results showed that the EPS components varied with the biofilm incubation time.As the formation of biofilm,the protein(PN)and polysaccharide(PS)in EPS showed an overall increasing trend,and the growth of PS was well synchronized with PN.Three fluorescent components of EPS were determined by the three-dimensional excitation emission matrix(3D-EEM),including humic acid-like,fulvic acid-like,and aromatic protein-like components.The percentage of fluorescent components varied with increasing biofilm development time and then stabilized.Fourier transform infrared spectroscopy(FTIR)characterization results elucidated the emergence of oxygen-containing functional groups during biofilm formation.Moreover,the hydrophilicity increased with biofilm development.In conclusion,the environmental behavior and ecological risks of DSM in aquatic environment deserve urgent attention in future studies. 展开更多
关键词 BIOFILM disposable surgical masks(DSM) extracellular polymeric substances(EPS) microbial community plastisphere
在线阅读 下载PDF
Fluorinated semi-interpenetrating polymer networks for enhancing the mechanical performance and storage stability of polymer-bonded explosives by controlling curing and phase separation rates
18
作者 Chao Deng Huihui Liu +1 位作者 Yongping Bai Zhen Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期58-66,共9页
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare... Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount. 展开更多
关键词 Semi-interpenetrating polymer networks FLUOROpolymer Curing rate Phase separation rate polymer-bonded explosives
在线阅读 下载PDF
AQUEOUS STABLE FREE RADICAL POLYMERIZATION PROCESSES 被引量:1
19
作者 Andrea R. Szkurhan Michael K. Georges 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2004年第4期309-312,共4页
An overview of aqueous polymerizations, which include emulsion, miniemulsion and suspension polymerizations, under stable free radical polymerization (SFRP) conditions is presented. The success of miniemulsion and sus... An overview of aqueous polymerizations, which include emulsion, miniemulsion and suspension polymerizations, under stable free radical polymerization (SFRP) conditions is presented. The success of miniemulsion and suspension SFRP polymerizations is contrasted with the difficulties associated with obtaining a stable emulsion polymerization. A recently developed unique microprecipitation technique is referenced as a means of making submicron sized particles that can be used to achieve a stable emulsion SFRP process. 展开更多
关键词 Stable free radical polymerization Living-radical polymerization Aqueous polymerization Miniemulsion polymerization Emulsion polymerization Suspension polymerization
在线阅读 下载PDF
Advancements in Polymer Science: Synthesis, Characterization, and Biomedical Applications of Homopolymers and Copolymers
20
作者 Anaif M. Alhewaitey Ishrat Khan Emmanuel Ramsey Buabeng 《Open Journal of Polymer Chemistry》 2024年第3期167-198,共32页
Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copo... Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being. 展开更多
关键词 HOMOpolymer COpolymer Poly(2-hydroxyethyl methacrylate) (pHEMA) Polystyrene Free Radical polymerization Atomic Force Microscopy Solvent Polarity
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部