As the scaling down of semiconductor devices, it would be necessary to discover the structure-property relationship of semiconductor nanomaterials at nanometer scale. In this review, the quantitative characterization ...As the scaling down of semiconductor devices, it would be necessary to discover the structure-property relationship of semiconductor nanomaterials at nanometer scale. In this review, the quantitative characterization technique off-axis electron holography is introduced in details, followed by its applications in various semiconductor nanomaterials including group IV, compound and two-dimensional semiconductor nanostructures in static states as well as under various stimuli. The advantages and disadvantages of off-axis electron holography in material analysis are discussed, the challenges facing in-situ electron holographic study of semiconductor devices at working conditions are presented, and all the possible influencing factors need to be considered to achieve the final goal of fulfilling quantitative characterization of the structure-property relationship of semiconductor devices at their working conditions.展开更多
A method of digitally high pass filtering in frequency domain is proposed to eliminate the background noise of the decoded image in Fresnel zone plate scanning holography. The high pass filter is designed as a circula...A method of digitally high pass filtering in frequency domain is proposed to eliminate the background noise of the decoded image in Fresnel zone plate scanning holography. The high pass filter is designed as a circular stop, which should be suitable to suppressing the background noise significantly and remain much low frequency information of the object. The principle of high pass filtering is that the Fourier transform of the decoded image is multiplied with the high pass filter. Thus the frequency spectrum of the decoded image without the background noise is achieved. By inverse Fourier transform of the spectrum of the decoded image after multiplying operation, the decoded image without the background noise is obtained. Both of the computer simulations and the experimental results show that the contrast and the signal-to-noise ratio of the decoded image are significantly improved with digital filtering.展开更多
For eliminating the zero-order image in digital holography, a new method using the differential of the hologram intensity instead of the hologram itself for numerical reconstruction is proposed. This method is based o...For eliminating the zero-order image in digital holography, a new method using the differential of the hologram intensity instead of the hologram itself for numerical reconstruction is proposed. This method is based on digital image processing. By analyzing the spatial spectrum of the off-axis digital hologram, it theoretically proves that the zero-order image can be effectively eliminated by differential before reconstruction. Then, the detected hologram is processed in the program with differential and reconstruction. Both the theoretical analysis and digital reconstruction results show that it can effectively eliminate the large bright spot in the center of the reconstructed image caused by the zero-order image, improve the image quality significantly, and render a better contrast of the reconstructed image. This method is very simple and convenient due to no superfluous optical elements and requiring only one time record.展开更多
It is still a great challenge at present to combine the high rate capability of the electrochemical capacitor with the high electrochemical capacity feature of rechargeable battery in energy storage and transport devi...It is still a great challenge at present to combine the high rate capability of the electrochemical capacitor with the high electrochemical capacity feature of rechargeable battery in energy storage and transport devices. By studying the lithiation mechanism of Li_4Ti_5O_12 (LTO) using in-situ electron holography, we find that double charge layers are formed at the interface of the insulating Li_4Ti_5O_12 (Li_4) phase and the semiconducting Li_7Ti_5O_12 (Li_7) phase, and can greatly boost the lithiation kinetics. The electron wave phase of the LTO particle is found to gradually shrink with the interface movement, leaving a positive electric field from Li_7 to Li_4 phase. Once the capacitive interface charges are formed, the lithiation of the core/shell particle could be established within 10 s. The ultrafast kinetics is attributed to the built-in interface potential and the mixed Ti3+/Ti4+ sites at the interface that could be maximally lowering the thermodynamic barrier for Li ion migration.展开更多
An optical encryption of three-dimensional (3D) object with digital holography was implemented. In the process of encryption, two holograms involved recording key information and 3D object were obtained. In the proces...An optical encryption of three-dimensional (3D) object with digital holography was implemented. In the process of encryption, two holograms involved recording key information and 3D object were obtained. In the process of decryption, the 3D object was reconstructed from the two holograms by extracting the object and key information, followed by multiplication of the two holograms and inverse Fresnel transform numerically. The robustness of the method was also tested for different occlusions attacks and Gaussian noises. The results showed that the method was able to encrypt and decrypt the 3D object while being robust under different occlusions attacks and Gaussian noises.展开更多
The physical meaning and essence of Fresnel numbers are discussed,and two definitions of these numbers for offaxis optical systems are proposed.The universal Fresnel number is found to be N =(a2/λz) * C1+ C2.The Rayl...The physical meaning and essence of Fresnel numbers are discussed,and two definitions of these numbers for offaxis optical systems are proposed.The universal Fresnel number is found to be N =(a2/λz) * C1+ C2.The Rayleigh–Sommerfeld nonparaxial diffraction formula states that a simple analytical formula for the nonparaxial intensity distribution after a circular aperture can be obtained.Theoretical derivations and numerical calculations reveal that the first correction factor C1 is equal to cos θ and the second factor C2 is a function of the incident wavefront and the shape of the diffractive aperture.Finally,some diffraction phenomena in off-axis optical systems are explained by the off-axis Fresnel number.展开更多
Four-channel off-axis holography is proposed to simultaneously understand the polarization states and the mode coefficients of linearly polarized (LP) modes in few-mode fiber. Far-field off-axis holograms in the four ...Four-channel off-axis holography is proposed to simultaneously understand the polarization states and the mode coefficients of linearly polarized (LP) modes in few-mode fiber. Far-field off-axis holograms in the four polarization directions ofthe fiber laser were acquired at the same moment through a four-channel holographic device. The weights, the relativephase differences, and the polarization parameters of the vector fiber laser mode can be solved simultaneously. The simulated and experimental mode analysis of the laser output by 1060-XP fiber with 6 LP modes at 632.8 nm is conducted, whichshows that the similarity of the total intensity distribution of the laser before and after mode analysis is above 0.97. Themode polarization states, the mode weights, and the relative phase differences of the few-mode laser can be determinedsimultaneously in a single shot by four-channel off-axis holography.展开更多
基金supported by the National Natural Science Foundation of China (51871104)the Fundamental Research Funds for the Central Universities (No.2019kfy RCPY074)。
文摘As the scaling down of semiconductor devices, it would be necessary to discover the structure-property relationship of semiconductor nanomaterials at nanometer scale. In this review, the quantitative characterization technique off-axis electron holography is introduced in details, followed by its applications in various semiconductor nanomaterials including group IV, compound and two-dimensional semiconductor nanostructures in static states as well as under various stimuli. The advantages and disadvantages of off-axis electron holography in material analysis are discussed, the challenges facing in-situ electron holographic study of semiconductor devices at working conditions are presented, and all the possible influencing factors need to be considered to achieve the final goal of fulfilling quantitative characterization of the structure-property relationship of semiconductor devices at their working conditions.
文摘A method of digitally high pass filtering in frequency domain is proposed to eliminate the background noise of the decoded image in Fresnel zone plate scanning holography. The high pass filter is designed as a circular stop, which should be suitable to suppressing the background noise significantly and remain much low frequency information of the object. The principle of high pass filtering is that the Fourier transform of the decoded image is multiplied with the high pass filter. Thus the frequency spectrum of the decoded image without the background noise is achieved. By inverse Fourier transform of the spectrum of the decoded image after multiplying operation, the decoded image without the background noise is obtained. Both of the computer simulations and the experimental results show that the contrast and the signal-to-noise ratio of the decoded image are significantly improved with digital filtering.
基金The Natural Science Foundation of Jiangsu Province (No.BK2006102)the National Natural Science Foundation of China(No.10772086)
文摘For eliminating the zero-order image in digital holography, a new method using the differential of the hologram intensity instead of the hologram itself for numerical reconstruction is proposed. This method is based on digital image processing. By analyzing the spatial spectrum of the off-axis digital hologram, it theoretically proves that the zero-order image can be effectively eliminated by differential before reconstruction. Then, the detected hologram is processed in the program with differential and reconstruction. Both the theoretical analysis and digital reconstruction results show that it can effectively eliminate the large bright spot in the center of the reconstructed image caused by the zero-order image, improve the image quality significantly, and render a better contrast of the reconstructed image. This method is very simple and convenient due to no superfluous optical elements and requiring only one time record.
基金supported by the National Natural Science Foundation of China (Nos. 51501085, 11704019, 51522212 and 51421002)National Program on Key Basic Research Project (2014CB921002)the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB07030200)
文摘It is still a great challenge at present to combine the high rate capability of the electrochemical capacitor with the high electrochemical capacity feature of rechargeable battery in energy storage and transport devices. By studying the lithiation mechanism of Li_4Ti_5O_12 (LTO) using in-situ electron holography, we find that double charge layers are formed at the interface of the insulating Li_4Ti_5O_12 (Li_4) phase and the semiconducting Li_7Ti_5O_12 (Li_7) phase, and can greatly boost the lithiation kinetics. The electron wave phase of the LTO particle is found to gradually shrink with the interface movement, leaving a positive electric field from Li_7 to Li_4 phase. Once the capacitive interface charges are formed, the lithiation of the core/shell particle could be established within 10 s. The ultrafast kinetics is attributed to the built-in interface potential and the mixed Ti3+/Ti4+ sites at the interface that could be maximally lowering the thermodynamic barrier for Li ion migration.
文摘An optical encryption of three-dimensional (3D) object with digital holography was implemented. In the process of encryption, two holograms involved recording key information and 3D object were obtained. In the process of decryption, the 3D object was reconstructed from the two holograms by extracting the object and key information, followed by multiplication of the two holograms and inverse Fresnel transform numerically. The robustness of the method was also tested for different occlusions attacks and Gaussian noises. The results showed that the method was able to encrypt and decrypt the 3D object while being robust under different occlusions attacks and Gaussian noises.
基金supported by the National Natural Science Foundation of China(Grant Nos 61205212,11104296 and 61205210)
文摘The physical meaning and essence of Fresnel numbers are discussed,and two definitions of these numbers for offaxis optical systems are proposed.The universal Fresnel number is found to be N =(a2/λz) * C1+ C2.The Rayleigh–Sommerfeld nonparaxial diffraction formula states that a simple analytical formula for the nonparaxial intensity distribution after a circular aperture can be obtained.Theoretical derivations and numerical calculations reveal that the first correction factor C1 is equal to cos θ and the second factor C2 is a function of the incident wavefront and the shape of the diffractive aperture.Finally,some diffraction phenomena in off-axis optical systems are explained by the off-axis Fresnel number.
基金supported by the National Natural Science Foundation of China(No.61875087)。
文摘Four-channel off-axis holography is proposed to simultaneously understand the polarization states and the mode coefficients of linearly polarized (LP) modes in few-mode fiber. Far-field off-axis holograms in the four polarization directions ofthe fiber laser were acquired at the same moment through a four-channel holographic device. The weights, the relativephase differences, and the polarization parameters of the vector fiber laser mode can be solved simultaneously. The simulated and experimental mode analysis of the laser output by 1060-XP fiber with 6 LP modes at 632.8 nm is conducted, whichshows that the similarity of the total intensity distribution of the laser before and after mode analysis is above 0.97. Themode polarization states, the mode weights, and the relative phase differences of the few-mode laser can be determinedsimultaneously in a single shot by four-channel off-axis holography.