Neodymium-iron-boron(Nd-Fe-B)sludge is an important secondary resource of rare-earth elements(REEs).However,the state-of-the-art recycling method,i.e.,HCl-preferential dissolution faces challenges such as slow leachin...Neodymium-iron-boron(Nd-Fe-B)sludge is an important secondary resource of rare-earth elements(REEs).However,the state-of-the-art recycling method,i.e.,HCl-preferential dissolution faces challenges such as slow leaching kinetics,excessive chemical consumption and wastewater generation.In this work,the in situ anodic leaching of Nd-Fe-B sludge was developed to selectively recover REEs with high efficiency.The leaching rates of the REEs are 2.4-9.0 times higher using the in situ anodic leaching at the current density from 10 to 40 mA/cm^(2)than using conventional chemical leaching under the maintained pH of 3.7.Mechanism studies reveal that the anode-generated H~+plays the key role during the in situ anodic leaching process that locally increases the H^(+)concentration at the interface of sludge particles,accele rating the leaching kinetics.By achieving a total leaching efficiency of Nd-Fe-B sludge close to 100%and the Fe deposition efficiency in the range of 70.9%-74.3%,selective leaching of REEs is successfully realized and thus largely reduces chemical consumption.Additionally,a two-step recycling route involving electrolysis-selective precipitation was proposed that enables a stable REEs recovery of 92.2%with recyclable electrolyte.This study provides a novel and environmentally-friendly strategy for the efficient recovery of REEs from secondary resources.展开更多
采用反向热挤压技术,制备了外径39.5 mm、壁厚4.5 mm的Nd-Fe-B磁环,研究了挤压速度、变形压力和模具结构对反向热挤压Nd-Fe-B磁环磁性能、微观组织和相结构的影响,结果表明,随着挤压速度、变形压力的提高,磁环的磁性能先增大后减小,挤...采用反向热挤压技术,制备了外径39.5 mm、壁厚4.5 mm的Nd-Fe-B磁环,研究了挤压速度、变形压力和模具结构对反向热挤压Nd-Fe-B磁环磁性能、微观组织和相结构的影响,结果表明,随着挤压速度、变形压力的提高,磁环的磁性能先增大后减小,挤压速度0.05 mm/s、变形压力164 MPa下制备的磁环磁性能最佳,剩磁、矫顽力和最大磁能积分别为12.385 kGs、10.705 kOe、32.808 MGOe。采用具有凸台结构的反向热挤压模具制备的Nd-Fe-B永磁环比常规的反向热挤压模具制备的磁环的矫顽力更高且磁性能轴向均匀性更好。Nd-Fe-B magnetic ring with outer diameter of 39.5 mm and wall thickness of 4.5 mm was prepared by backward hot-extrusion technology. The effects of extrusion speed, deformation pressure and mold structure on the magnetic properties, microstructure and phase structure of the backward hot-extruded Nd-Fe-B magnetic ring were studied. The results showed that, with the increase of extrusion speed and deformation stress, the magnetic properties of the magnetic ring increased first and then decreased. The magnetic properties of the magnetic ring prepared using an extrusion speed of 0.05 mm/s and a deformation pressure of 164 MPa were the best, and its remanence, coercivity and maximum magnetic energy product were 12.385 kGs, 10.705 kOe and 32.808 MGOe, respectively. The Nd-Fe-B permanent magnet prepared by the backward hot-extrusion mold with a boss structure has higher coercivity and better axial uniformity of magnetic properties than the magnetic ring prepared by the conventional backward hot-extrusion mold.展开更多
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue...Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.展开更多
Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering tem...Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis.展开更多
基金Project supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China(2021BS02007,2022MS02014)the"Science and Technology Project of Ordos"Program(2021 CGI 17-9,2021 ZDI11-14)+2 种基金the National Natural Science Foundation of China(21971129,21961022,51903125,21661023)the"Inner Mongolia Autonomous Region 2022 Leading Talent Team of Science and Technology"Program(2022LJRC0008)China Postdoctoral Science Foundation(2018M640043,2019T120038)。
文摘Neodymium-iron-boron(Nd-Fe-B)sludge is an important secondary resource of rare-earth elements(REEs).However,the state-of-the-art recycling method,i.e.,HCl-preferential dissolution faces challenges such as slow leaching kinetics,excessive chemical consumption and wastewater generation.In this work,the in situ anodic leaching of Nd-Fe-B sludge was developed to selectively recover REEs with high efficiency.The leaching rates of the REEs are 2.4-9.0 times higher using the in situ anodic leaching at the current density from 10 to 40 mA/cm^(2)than using conventional chemical leaching under the maintained pH of 3.7.Mechanism studies reveal that the anode-generated H~+plays the key role during the in situ anodic leaching process that locally increases the H^(+)concentration at the interface of sludge particles,accele rating the leaching kinetics.By achieving a total leaching efficiency of Nd-Fe-B sludge close to 100%and the Fe deposition efficiency in the range of 70.9%-74.3%,selective leaching of REEs is successfully realized and thus largely reduces chemical consumption.Additionally,a two-step recycling route involving electrolysis-selective precipitation was proposed that enables a stable REEs recovery of 92.2%with recyclable electrolyte.This study provides a novel and environmentally-friendly strategy for the efficient recovery of REEs from secondary resources.
文摘采用反向热挤压技术,制备了外径39.5 mm、壁厚4.5 mm的Nd-Fe-B磁环,研究了挤压速度、变形压力和模具结构对反向热挤压Nd-Fe-B磁环磁性能、微观组织和相结构的影响,结果表明,随着挤压速度、变形压力的提高,磁环的磁性能先增大后减小,挤压速度0.05 mm/s、变形压力164 MPa下制备的磁环磁性能最佳,剩磁、矫顽力和最大磁能积分别为12.385 kGs、10.705 kOe、32.808 MGOe。采用具有凸台结构的反向热挤压模具制备的Nd-Fe-B永磁环比常规的反向热挤压模具制备的磁环的矫顽力更高且磁性能轴向均匀性更好。Nd-Fe-B magnetic ring with outer diameter of 39.5 mm and wall thickness of 4.5 mm was prepared by backward hot-extrusion technology. The effects of extrusion speed, deformation pressure and mold structure on the magnetic properties, microstructure and phase structure of the backward hot-extruded Nd-Fe-B magnetic ring were studied. The results showed that, with the increase of extrusion speed and deformation stress, the magnetic properties of the magnetic ring increased first and then decreased. The magnetic properties of the magnetic ring prepared using an extrusion speed of 0.05 mm/s and a deformation pressure of 164 MPa were the best, and its remanence, coercivity and maximum magnetic energy product were 12.385 kGs, 10.705 kOe and 32.808 MGOe, respectively. The Nd-Fe-B permanent magnet prepared by the backward hot-extrusion mold with a boss structure has higher coercivity and better axial uniformity of magnetic properties than the magnetic ring prepared by the conventional backward hot-extrusion mold.
基金supported by the National Key R&D Program of China(Grant No.2022YFB4600300)the National Natural Science Foundation of China(No.U22A20189,52175364)the China Scholarship Council(Grant No.202206290134)。
文摘Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.
基金Project(NCET-10-0364)supported by the Program for New Century Excellent Talents in University,ChinaProject(2012ZG0006)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51174095)supported the National Natural Science Foundation of China
文摘Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis.