A nano probe system which can measure precise contact force in mN scale was demonstrated. The nano probe micro parts or optical parts in nanometer range resolution and scratch was originally designed for on-machine me...A nano probe system which can measure precise contact force in mN scale was demonstrated. The nano probe micro parts or optical parts in nanometer range resolution and scratch was originally designed for on-machine measuring applications and one kind of contact type measuring probes was designed for miniaturized or microfactory system. It ideally should be of small size and able to measure surface topography in nanometer scale. A commercial capacitive displacement sensor was proposed. It was a new concept in nano probe systems which can measure the displacement of shaft driven by the variation of surface topography. The nano probe mainly consisted of three parts: a capacitive displacement sensor, a porous type air slide and a contact probe part with various tip radiuses. The porous type air slide assured the shaft slided smoothly with controllable normal force in mN scale and had high positioning accuracy. The probe part which was directly in contact with target surface, can be applied to micro/nanoscale scratching as well as the measurement of sample topography by a simple tip change.展开更多
Nanotechnology has played an influential role in improving the energetic content without subsiding the performance of high energy materials in the current era.In this work,HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetr...Nanotechnology has played an influential role in improving the energetic content without subsiding the performance of high energy materials in the current era.In this work,HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)nanoparticles were prepared by sonochemically assisted solvent-antisolvent spray technique focussing the reduction in its size so as to improve its energetic properties.In order to fabricate nano HMX various parameters such as different solvents and temperature were investigated.Sonication is one of the strategies recently explored in this regard;so time dependent study of sonication using probe sonicator was performed.It has been postulated that bubble formed during sonication when collapses generate high temperature and many nucleation sites which leads to the formation of uniform spherical particles with small size and fast transition phase.XRD studies depicted phase transformation from a toβas a result of sonication.The TEM images revealed that the rise in the sonication time resulted into decrease in the particle size from 300 to 10 nm.Differential scanning calorimetry(DSC)was employed to determine the heat release of the samples and enhancement in the heat release with the decrease in the particle size.A decrease in the spark sensitivity was observed from 2 J(regular HMX)to 50 mJ(nano HMX).展开更多
To satisfy the measuring demands for the micro components of the industry, micro/nano probing systems with various ball tips have been developed. However, most of them cannot be used to measure the real micro geometri...To satisfy the measuring demands for the micro components of the industry, micro/nano probing systems with various ball tips have been developed. However, most of them cannot be used to measure the real micro geometrical features high precisely because the parameters of the ball tips are not appropriate. The ball tips with a diameter of less than 100 μm, a sphericity and eccentricity of far less than 1 μm are required urgently. A review on the state-of-the-art of ball tips of micro/nano probing systems is presented. The material characteristics and geometric parameters of now available ball tips are introduced sepa- rately. The existing fabrication methods for the ball tips are demonstrated and summarized. The ball tips' future trends, which are smaller diameter, better sphericity and smaller eccentricity, are proposed in view of the practical requirements of high-precision measurement for micro geometrical features. Some challenges have to be faced in future, such as the promotion and high-precision measurement for the small ball tip's sphericity and eccentricity. Fusion method without the gravity effect when the molten ball tip solidifying is a more suitable way to fabricate a small diameter ball tip together with a shaft.展开更多
This paper introduces the use of STM, AFM and SEM for detection of the mirror-like surface texture andfeatures of hard metals machined by ELID grinding, analyses causes for different measurements of the same surtacean...This paper introduces the use of STM, AFM and SEM for detection of the mirror-like surface texture andfeatures of hard metals machined by ELID grinding, analyses causes for different measurements of the same surtaceand peesents the preliminary analysis of the mirror-like surface formation by ELID grinding.展开更多
A method of measuring the thermoelectric power of nano-heterostructures based on four-probe scanning tunneling microscopy is presented. The process is composed of the in-situ fabrication of a tungsten-indium tip, the ...A method of measuring the thermoelectric power of nano-heterostructures based on four-probe scanning tunneling microscopy is presented. The process is composed of the in-situ fabrication of a tungsten-indium tip, the precise control of the tip-sample contact and the identification of thermoelectric potential. When the temperature of the substrate is elevated, while that of the tip is kept at room temperature, a thermoelectric potential occurs and can be detected by a current voltage measurement. As an example of its application, the method is demonstrated to be effective to measure the thermoelectric power in several systems. A Seebeck coefficient of tens of IxV/K is obtained in graphene epitaxially grown on Ru (0001) substrate and the thermoelectric potential polarity of this system is found to be the reverse of that of bare Ru (0001) substrate.展开更多
In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon tech...In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon technique. Based on the sensor, a micro capacitive tactile probe is constructed by stylus assembly and packaging design for dimension metrology on micro/nano scale, in which a data acquiring system is developed with AD7747. Some measurements of the micro capacitive tactile probe are performed on a nano positioning and measuring machine (NMM). The measurement results show good linearity and hysteresis with a range of 11.6 μm and resolution of better than 5 nm. Hence, the micro capacitive tactile probe can be integrated on NMM to realize measurement of micro structures with nanometer accuracy.展开更多
基金Project supported by National Core Research Center (NCRC) and Chosun University, Korea
文摘A nano probe system which can measure precise contact force in mN scale was demonstrated. The nano probe micro parts or optical parts in nanometer range resolution and scratch was originally designed for on-machine measuring applications and one kind of contact type measuring probes was designed for miniaturized or microfactory system. It ideally should be of small size and able to measure surface topography in nanometer scale. A commercial capacitive displacement sensor was proposed. It was a new concept in nano probe systems which can measure the displacement of shaft driven by the variation of surface topography. The nano probe mainly consisted of three parts: a capacitive displacement sensor, a porous type air slide and a contact probe part with various tip radiuses. The porous type air slide assured the shaft slided smoothly with controllable normal force in mN scale and had high positioning accuracy. The probe part which was directly in contact with target surface, can be applied to micro/nanoscale scratching as well as the measurement of sample topography by a simple tip change.
基金The financial supports provided, in whole or in part, by the National Natural Science Foundation of China (81071257, 81201192, 81 lO1147, 11272083 ), Postdoctal Program of China (2011M501297, 2012T50715 ) , and the Fundamental Research Funds for Central Uni- versities ( ZYGX2010X019, ZYGX201OJ101, ZYGX2011 J099) , are greatly appreciated.
基金ER&IPR,DRDO,New Delhi for funding the project “DRDO-DIAT Programme on Nanomaterials”
文摘Nanotechnology has played an influential role in improving the energetic content without subsiding the performance of high energy materials in the current era.In this work,HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)nanoparticles were prepared by sonochemically assisted solvent-antisolvent spray technique focussing the reduction in its size so as to improve its energetic properties.In order to fabricate nano HMX various parameters such as different solvents and temperature were investigated.Sonication is one of the strategies recently explored in this regard;so time dependent study of sonication using probe sonicator was performed.It has been postulated that bubble formed during sonication when collapses generate high temperature and many nucleation sites which leads to the formation of uniform spherical particles with small size and fast transition phase.XRD studies depicted phase transformation from a toβas a result of sonication.The TEM images revealed that the rise in the sonication time resulted into decrease in the particle size from 300 to 10 nm.Differential scanning calorimetry(DSC)was employed to determine the heat release of the samples and enhancement in the heat release with the decrease in the particle size.A decrease in the spark sensitivity was observed from 2 J(regular HMX)to 50 mJ(nano HMX).
基金Supported by National Natural Science Foundation of China(Grant Nos.51675157,51475131)State Key Laboratory of Precision Measuring Technology and Instruments of China(Grant No.PIL1401)
文摘To satisfy the measuring demands for the micro components of the industry, micro/nano probing systems with various ball tips have been developed. However, most of them cannot be used to measure the real micro geometrical features high precisely because the parameters of the ball tips are not appropriate. The ball tips with a diameter of less than 100 μm, a sphericity and eccentricity of far less than 1 μm are required urgently. A review on the state-of-the-art of ball tips of micro/nano probing systems is presented. The material characteristics and geometric parameters of now available ball tips are introduced sepa- rately. The existing fabrication methods for the ball tips are demonstrated and summarized. The ball tips' future trends, which are smaller diameter, better sphericity and smaller eccentricity, are proposed in view of the practical requirements of high-precision measurement for micro geometrical features. Some challenges have to be faced in future, such as the promotion and high-precision measurement for the small ball tip's sphericity and eccentricity. Fusion method without the gravity effect when the molten ball tip solidifying is a more suitable way to fabricate a small diameter ball tip together with a shaft.
文摘This paper introduces the use of STM, AFM and SEM for detection of the mirror-like surface texture andfeatures of hard metals machined by ELID grinding, analyses causes for different measurements of the same surtaceand peesents the preliminary analysis of the mirror-like surface formation by ELID grinding.
基金supported by the National Natural Science Foundation of China (Grant No. 60976089)the National Basic Research Program of China (Grant Nos. 2007CB936802 and 2009CB929103)
文摘A method of measuring the thermoelectric power of nano-heterostructures based on four-probe scanning tunneling microscopy is presented. The process is composed of the in-situ fabrication of a tungsten-indium tip, the precise control of the tip-sample contact and the identification of thermoelectric potential. When the temperature of the substrate is elevated, while that of the tip is kept at room temperature, a thermoelectric potential occurs and can be detected by a current voltage measurement. As an example of its application, the method is demonstrated to be effective to measure the thermoelectric power in several systems. A Seebeck coefficient of tens of IxV/K is obtained in graphene epitaxially grown on Ru (0001) substrate and the thermoelectric potential polarity of this system is found to be the reverse of that of bare Ru (0001) substrate.
基金supported by the Nano Special Projects of Shanghai Science and Technology Commission of China(Grant No.11nm0560800)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11104284)
文摘In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon technique. Based on the sensor, a micro capacitive tactile probe is constructed by stylus assembly and packaging design for dimension metrology on micro/nano scale, in which a data acquiring system is developed with AD7747. Some measurements of the micro capacitive tactile probe are performed on a nano positioning and measuring machine (NMM). The measurement results show good linearity and hysteresis with a range of 11.6 μm and resolution of better than 5 nm. Hence, the micro capacitive tactile probe can be integrated on NMM to realize measurement of micro structures with nanometer accuracy.