Aniline blue, one of the triphenylmethane dyes, is the most commonly produced and used of these dyes yet it is also the most dangerous and the most serious cause of pollution amongst them. An exploration of aniline bl...Aniline blue, one of the triphenylmethane dyes, is the most commonly produced and used of these dyes yet it is also the most dangerous and the most serious cause of pollution amongst them. An exploration of aniline blue degradation is likely to facilitate an understanding of the degradation mechanism for a range of related dyes. In this study, we managed to isolate a particular strain of microorganism, identified to be Lysinibacillus fusiformis N019a, which showed a significant capacity for aniline blue degradation in both laboratory tests and natural sewage treatment. In analysis aided by a UV-Visible spectrophotometer, we found that 96.7% of aniline blue had degraded within 24 hours under laboratory conditions. When treating natural sewage, 80.1% of the aniline blue was removed after just 16 hours. Further analysis has shown that Lysinibacillus fusiformis N019a has a strong resistance to Cu2+, Mn2+, Zn2+, and Pb2+. We also found that the degradation product of aniline blue by Lysinibacillus fusiformis N019a was of reduced toxicity to plants and microbes.展开更多
The initiation mechanism of methyl methacrylate (MMA) polymerization by organic peroxide and polymerizable aromatic tertiary amine such as N-methacryloyloxyethyl-N-methyl aniline (MEMA) binary system has been studied....The initiation mechanism of methyl methacrylate (MMA) polymerization by organic peroxide and polymerizable aromatic tertiary amine such as N-methacryloyloxyethyl-N-methyl aniline (MEMA) binary system has been studied. The kinetics of polymerization of MMA and the ESR spectra of organic peroxide/MEMA system were determined. Based on the ESR study and the end-group analysis by UV spectra of the polymer formed, the initiation mechanism is proposed.展开更多
The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^...The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.展开更多
The Cu/SiO2 catalyst prepared by incipient wetness method exhibited very high activity and selectivity for the vapor-phase synthesis of N-butylaniline from aniline and 1-butanol. When Cu loading was 0.70 mmol/g-SiO2 a...The Cu/SiO2 catalyst prepared by incipient wetness method exhibited very high activity and selectivity for the vapor-phase synthesis of N-butylaniline from aniline and 1-butanol. When Cu loading was 0.70 mmol/g-SiO2 and the catalyst precursor was calcined at 500 ℃, 1-butanol conversion reached 99%, and the selectivity of N-butylaniline exceeded 97%.展开更多
An efficient environment-friendly synthesis of N-phenylpiperidine was developed from aniline and 1,5-pentanediol over γ-Al2O3 catalyst under atmospheric pressure. The conversion of 1,5-pentanediol reached 97% and the...An efficient environment-friendly synthesis of N-phenylpiperidine was developed from aniline and 1,5-pentanediol over γ-Al2O3 catalyst under atmospheric pressure. The conversion of 1,5-pentanediol reached 97% and the selectivity for N-phenylpiperidine attained 94%. The structure of the catalyst was characterized by NH3-TPD and BET. The influences of calcination temperature of the catalyst and reaction temperature on activity and selectivity of the catalyst were investigated.展开更多
We report a one-pot three-component synthesis of N-arylmethyl-4-(7-cyclohepta-1,3,5-trienyl)anilines by using various aromatic imines, tropylium tetrafluoroborate, and sodium tetrahydroborate in the presence of imidaz...We report a one-pot three-component synthesis of N-arylmethyl-4-(7-cyclohepta-1,3,5-trienyl)anilines by using various aromatic imines, tropylium tetrafluoroborate, and sodium tetrahydroborate in the presence of imidazole as activator.展开更多
A 2D plane coordination compound [Ag_2(Dpya)_2.(NO_3)_2]n was synthesized and characterized by FT-IR,elemental analysis and TG analysis.The red crystal was obtained via solvent diffusion method at room temperature...A 2D plane coordination compound [Ag_2(Dpya)_2.(NO_3)_2]n was synthesized and characterized by FT-IR,elemental analysis and TG analysis.The red crystal was obtained via solvent diffusion method at room temperature and is slightly soluble in organic solvents.Its structure was determined by single-crystal X-ray diffraction analysis.It crystallizes in monoclinic,space group P1 with a = 10.7995(13),b = 7.4748(8),c = 18.364(2) A,β = 98.916(4)o,V = 1464.5(3) A^3,Z = 2,C_(26)H_(28)Ag_2N_(10)O_6,M_r = 792.32,Dc = 1.302 Mg/m^3,F(000) = 792,μ(Mo Ka) = 1.356 mm^-1,R = 0.0575 and w R = 0.0826.The compound [Ag_2(Dpya)_2.(NO_3)_2]_n is a two-dimensional structure and there are two kinds of coordination configurations about the Ag atoms in the compound.The Ag(1) center is tetrahedrally coordinated with two O atoms of NO_3^-and two N atoms from the ligand Dpya.Meanwhile,the Ag(2) is five-coordinated by five O atoms from three NO_3^-anions.The Ag centers(Ag(1) and Ag(2)) connect to themselves as well as with each other by the bridging NO_3^-anions.And the coordination compound shows photoluminescence with an emission peak at 530 nm(λex = 450 nm) as the ligand Dpya.展开更多
文摘Aniline blue, one of the triphenylmethane dyes, is the most commonly produced and used of these dyes yet it is also the most dangerous and the most serious cause of pollution amongst them. An exploration of aniline blue degradation is likely to facilitate an understanding of the degradation mechanism for a range of related dyes. In this study, we managed to isolate a particular strain of microorganism, identified to be Lysinibacillus fusiformis N019a, which showed a significant capacity for aniline blue degradation in both laboratory tests and natural sewage treatment. In analysis aided by a UV-Visible spectrophotometer, we found that 96.7% of aniline blue had degraded within 24 hours under laboratory conditions. When treating natural sewage, 80.1% of the aniline blue was removed after just 16 hours. Further analysis has shown that Lysinibacillus fusiformis N019a has a strong resistance to Cu2+, Mn2+, Zn2+, and Pb2+. We also found that the degradation product of aniline blue by Lysinibacillus fusiformis N019a was of reduced toxicity to plants and microbes.
基金Project supported by the National Natural Science Foundation of China
文摘The initiation mechanism of methyl methacrylate (MMA) polymerization by organic peroxide and polymerizable aromatic tertiary amine such as N-methacryloyloxyethyl-N-methyl aniline (MEMA) binary system has been studied. The kinetics of polymerization of MMA and the ESR spectra of organic peroxide/MEMA system were determined. Based on the ESR study and the end-group analysis by UV spectra of the polymer formed, the initiation mechanism is proposed.
基金This work was supported by the National Natural Science Foundation of China (No. 20737001)
文摘The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.
文摘The Cu/SiO2 catalyst prepared by incipient wetness method exhibited very high activity and selectivity for the vapor-phase synthesis of N-butylaniline from aniline and 1-butanol. When Cu loading was 0.70 mmol/g-SiO2 and the catalyst precursor was calcined at 500 ℃, 1-butanol conversion reached 99%, and the selectivity of N-butylaniline exceeded 97%.
基金supported by the Natural Science Foundation of Liaoning Province(No.20072154)
文摘An efficient environment-friendly synthesis of N-phenylpiperidine was developed from aniline and 1,5-pentanediol over γ-Al2O3 catalyst under atmospheric pressure. The conversion of 1,5-pentanediol reached 97% and the selectivity for N-phenylpiperidine attained 94%. The structure of the catalyst was characterized by NH3-TPD and BET. The influences of calcination temperature of the catalyst and reaction temperature on activity and selectivity of the catalyst were investigated.
文摘We report a one-pot three-component synthesis of N-arylmethyl-4-(7-cyclohepta-1,3,5-trienyl)anilines by using various aromatic imines, tropylium tetrafluoroborate, and sodium tetrahydroborate in the presence of imidazole as activator.
基金the sponsorship and financial support from the Key Laboratory of Organic Synthesis of Jiangsu Province
文摘A 2D plane coordination compound [Ag_2(Dpya)_2.(NO_3)_2]n was synthesized and characterized by FT-IR,elemental analysis and TG analysis.The red crystal was obtained via solvent diffusion method at room temperature and is slightly soluble in organic solvents.Its structure was determined by single-crystal X-ray diffraction analysis.It crystallizes in monoclinic,space group P1 with a = 10.7995(13),b = 7.4748(8),c = 18.364(2) A,β = 98.916(4)o,V = 1464.5(3) A^3,Z = 2,C_(26)H_(28)Ag_2N_(10)O_6,M_r = 792.32,Dc = 1.302 Mg/m^3,F(000) = 792,μ(Mo Ka) = 1.356 mm^-1,R = 0.0575 and w R = 0.0826.The compound [Ag_2(Dpya)_2.(NO_3)_2]_n is a two-dimensional structure and there are two kinds of coordination configurations about the Ag atoms in the compound.The Ag(1) center is tetrahedrally coordinated with two O atoms of NO_3^-and two N atoms from the ligand Dpya.Meanwhile,the Ag(2) is five-coordinated by five O atoms from three NO_3^-anions.The Ag centers(Ag(1) and Ag(2)) connect to themselves as well as with each other by the bridging NO_3^-anions.And the coordination compound shows photoluminescence with an emission peak at 530 nm(λex = 450 nm) as the ligand Dpya.