期刊文献+
共找到1,541篇文章
< 1 2 78 >
每页显示 20 50 100
Dual-selective silver recovery strategy by simultaneous adsorption-reduction boosted by in-situ magnetic field
1
作者 Jianran Ren Zhiliang Zhu +4 位作者 Yanling Qiu Fei Yu Tao Zhou Jie Ma Jianfu Zhao 《Green Energy & Environment》 2025年第2期433-440,共8页
The mainstream silver recovery has problems such as resource waste,weak silver selectivity,and complicated operation.Here,self-propelled magnetic enhanced capture hydrogel(magnetic NbFeB/MXene/GO,MNMGH)was prepared by... The mainstream silver recovery has problems such as resource waste,weak silver selectivity,and complicated operation.Here,self-propelled magnetic enhanced capture hydrogel(magnetic NbFeB/MXene/GO,MNMGH)was prepared by self-crosslinking encapsulation method.MNMGH achieved high selectivity(K_(d)=23.31 mL/g)in the acidic range,and exhibited ultrahigh silver recovery capacity(1604.8 mg/g),which greatly improved by 66%with the assistance of in-situ magnetic field.The recovered silver crystals could be directly physically exfoliated,without acid/base additions.The selective sieving effect of adsorption,MNMGH preferentially adsorbed Ag(I),and then selectively reduced to Ag(0),realizing dual-selective recovery.The in-situ magnetic field enhanced selective adsorption by enhancing mass transfer,reactivity of oxygen-containing functional groups.Furthermore,density function theory simulations demonstrated that the in-situ magnetic field could lower the silver reduction reaction energy barrier to enhance the selective reduction.Three-drive synergy system(reduction drive,adsorption drive and magnetic drive)achieved ultrahigh silver recovery performance.This study pioneered an in-situ magnetic field assisted enhancement strategy for dual-selective(adsorption/reduction)recovery of precious metal silver,which provided new idea for low-carbon recovery of noble metal from industrial waste liquids. 展开更多
关键词 In-situ magnetic field Silver recovery Adsorption-reduction SELECTIVITY Physical separation
在线阅读 下载PDF
Influence of Magnetic Field and Temperature on the Transient Density and Voltage in a Radial Junction Solar Cell in Dynamic Regime under Pulsed Multispectral Illumination
2
作者 Moussa Ouedraogo Nazé Yacouba Traore +2 位作者 Alain Diasso Raguilignaba Sam François Zougmore 《Open Journal of Applied Sciences》 2025年第1期42-52,共11页
This study examines the influence of magnetic field and temperature on the transient voltage of a polycrystalline silicon radial junction solar cell in a dynamic regime under multispectral illumination. Radial junctio... This study examines the influence of magnetic field and temperature on the transient voltage of a polycrystalline silicon radial junction solar cell in a dynamic regime under multispectral illumination. Radial junction solar cells represent a major advancement in photovoltaic technologies, as they optimize light absorption and charge collection efficiency. The focus is on the impact of the magnetic field and temperature on the decay of transient voltage, which provides crucial information on recombination processes and the lifetime of minority carriers. The results reveal that the magnetic field tends to increase the transient voltage by directly affecting the transient electron density. Indeed, for B > 7 × 10−5 T, the magnetic field prolongs the relaxation time by increasing the transient voltage amplitude. Additionally, rising temperatures accelerate (ranging from 290 K to 450 K) recombination processes, thereby reducing the transient voltage, although this effect is moderated by the presence of a magnetic field. The study highlights the complex interaction between magnetic field and temperature, with significant impacts on the transient behaviour. 展开更多
关键词 ELECTRONS Radial Junction Transient Voltage magnetic field Operating Temperature
在线阅读 下载PDF
Evaluation of influence of detrending CSES satellite data on lithospheric magnetic field modeling
3
作者 Jie Wang YanYan Yang +2 位作者 ZhiMa Zeren JianPing Huang HengXin Lu 《Earth and Planetary Physics》 2025年第2期346-356,共11页
The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive... The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive a global lithospheric magnetic field model. While preparing the datasets for this lithospheric magnetic field model, researchers found that they still contained prominent residual trends within the magnetic anomaly even once signals from other sources had been eliminated. However, no processing was undertaken to deal with the residual trends during modeling to avoid subjective processing and represent the realistic nature of the data. In this work, we analyze the influence of these residual trends on the lithospheric magnetic field modeling.Polynomials of orders 0–3 were used to fit the trend of each track and remove it for detrending. We then derived four models through detrending-based processing, and compared their power spectra and grid maps with those of the CSES original model and CHAOS-7model. The misfit between the model and the dataset decreased after detrending the data, and the convergence of the inverted spherical harmonic coefficients improved. However, detrending reduced the signal strength and the power spectrum, while detrending based on high-order polynomials introduced prominent distortions in details of the magnetic anomaly. Based on this analysis, we recommend along-track detrending by using a zero-order polynomial(removing a constant value) on the CSES magnetic anomaly data to drag its mean value to zero. This would lead to only a slight reduction in the signal strength while significantly improving the stability of the inverted coefficients and details of the anomaly. 展开更多
关键词 lithospheric magnetic field model satellite magnetic survey DETRENDING long-wavelength magnetic anomaly CSES
在线阅读 下载PDF
The intensity of geomagnetic storms associated with the interplanetary magnetic field and solar wind parameters during Solar Cycle 24
4
作者 Anwar Santoso Sismanto Sismanto +2 位作者 Rhorom Priyatikanto Eddy Hartantyo Dyah R.Martiningrum 《Earth and Planetary Physics》 2025年第2期375-386,共12页
Proper knowledge of the nature of geomagnetic storms and their relationships with the conditions of the space environment at the outer part of the Earth's magnetosphere(bow shock nose) is essential to increase our... Proper knowledge of the nature of geomagnetic storms and their relationships with the conditions of the space environment at the outer part of the Earth's magnetosphere(bow shock nose) is essential to increase our resilience to space weather disturbances. In this article, we present an analysis of the interplanetary magnetic field(IMF) and solar wind parameters relevant to 100 geomagnetic storms in Solar Cycle 24. We revisit the relationship between the minimum disturbance storm time index(Dst_(min)), the minimum southward IMF(B_(S, min)), the maximum solar wind density(N_(SW, max)) and speed(V_(max)), and the lag time between the extrema(dT(B_(z), N),dT(B_(z), V)). We end with a regression formula that fits the data, with a coefficient of determination of 0.58, a root mean square error of 21.30 nT, and a mean absolute error of 15.87 nT. Even though more complex machine learning models can outperform this model, it serves as a theoretically sensible alternative for understanding and forecasting geomagnetic storms. 展开更多
关键词 geomagnetic storm interplanetary magnetic field(IMF) solar wind space weather
在线阅读 下载PDF
Dynamics of three ferrofluid droplets in a rotating magnetic field
5
作者 Xinping ZHOU Wencai XIAO +3 位作者 Qi ZHANG Chunyue LIANG Wanqiu ZHANG Fei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第3期591-600,共10页
Two-dimensional(2D)direct numerical simulations on the dynamics of three identical ferrofluid droplets suspended in a non-magnetic ambient fluid under a rotating uniform magnetic field are conducted,and the motion and... Two-dimensional(2D)direct numerical simulations on the dynamics of three identical ferrofluid droplets suspended in a non-magnetic ambient fluid under a rotating uniform magnetic field are conducted,and the motion and deformation of the three ferrofluid droplets are studied in this paper.Results show that there are four modes(i.e.,the three droplets'direct coalescence(TC),the coalescence of two droplets and the subsequent planetary motion with the third droplet(CAP),the three droplets'planetary motion(TP),and the independent spin(IS))for the three ferrofluid droplets,dependent on the magnetic Bond number(Bom)and the initial distance(d0)between two of the droplets.It is found that the decrease in d0and the increase in Bomcan make the droplets'mode change from the IS to the planetary motion,and then turn to the CAP.Furthermore,reducing Bomor d0is helpful for the droplets to become merged. 展开更多
关键词 ferrofluid droplet rotating magnetic field capillary force
在线阅读 下载PDF
Magnetic Field Curves and Magnetic Equipotential Surfaces around Crossing Electrical Wires Replacing Classical Magnetic Field Lines
6
作者 Geoffroy Auvert 《Open Journal of Applied Sciences》 2024年第8期1996-2008,共13页
This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with... This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with the new concept of magnetic equipotential surface to magnetic field curves around crossing wires. Cases of single, double, and triple wires are described. Subsequent article will be conducted for more general scenarios where wires are neither infinite nor parallel. 展开更多
关键词 magnetic field Value magnetic field Vector magnetic field Line magnetic field Curve Equipotential Surface Crossing Electrical Wires magnetic Cross Product
在线阅读 下载PDF
Influence of upstream solar wind on magnetic field distribution in the Martian nightside ionosphere
7
作者 JiaWei Gao ZhaoJin Rong +3 位作者 Qi Zhang Anna Mittelholz Chi Zhang Yong Wei 《Earth and Planetary Physics》 EI CAS CSCD 2024年第5期728-741,共14页
Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of ups... Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of upstream solar wind drivers,including the interplanetary magnetic field intensity(∣BIMF∣),solar wind dynamic pressure(PS W),solar extreme ultraviolet flux(EUV),and Martian seasons(L s).Our analysis reveals pronounced correlations between magnetic field residuals and both∣BIMF∣and PS W.Correlations observed with EUV flux and Ls were weaker—notably,magnetic field residuals increased during periods of high EUV flux and at Mars perihelion.We find that the IMF penetrates to an altitude of 200 km under a wide range of upstream conditions,penetrating notably deeper under high∣BIMF∣andPSWconditions.Our analysis also indicates that EUV flux and IMF cone angle have minimal impact on IMF penetration depth.Those findings provide useful constraints on the dynamic nature of Martian atmospheric escape processes and their evolution,suggesting that historical solar wind conditions may have facilitated deeper IMF penetration and higher rates of ionospheric escape than are observed now.Moreover,by establishing criteria for magnetic‘quiet’conditions,this study offers new insights into the planet’s magnetic environment under varying solar wind influences,knowledge that should help refine models of the Martian crustal magnetic field. 展开更多
关键词 Martian magnetic field external magnetic field upstream solar wind drivers IMF penetration altitude magnetic field activity indices
在线阅读 下载PDF
The Effect of External Magnetic Field on Electron Scale Kelvin–Helmholtz Instability
8
作者 D.Tsiklauri 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第9期236-247,共12页
We use particle-in-cell,fully electromagnetic,plasma kinetic simulation to study the effect of external magnetic field on electron scale Kelvin–Helmholtz instability(ESKHI).The results are applicable to collisionless... We use particle-in-cell,fully electromagnetic,plasma kinetic simulation to study the effect of external magnetic field on electron scale Kelvin–Helmholtz instability(ESKHI).The results are applicable to collisionless plasmas when,e.g.,solar wind interacts with planetary magnetospheres or a magnetic field is generated in AGN jets.We find that as in the case of magnetohydrodynamic(MHD)KHI,in the kinetic regime,the presence of an external magnetic field reduces the growth rate of the instability.In the MHD case,there is a known threshold magnetic field for KHI stabilization,while for ESKHI this is to be analytically determined.Without a kinetic analytical expression,we use several numerical simulation runs to establish an empirical dependence of ESKHI growth rate,Γ(B_(0))ω_(pe),on the strength of the applied external magnetic field.We find the best fit is hyperbolic,Γ(B_(0))ω_(pe)=Γ_(0)ω_(pe)/(A+BB_(0)),where Γ_(0) is the ESKHI growth rate without an external magnetic field and B_(0)=B_(0)/B_(MHD)is the ratio of external and two-fluid MHD stability threshold magnetic field,derived here.An analytical theory to back up this growth rate dependence on the external magnetic field is needed.The results suggest that in astrophysical settings where a strong magnetic field pre-exists,the generation of an additional magnetic field by the ESKHI is suppressed,which implies that nature provides a“safety valve”—natural protection not to“over-generate”magnetic field by the ESKHI mechanism.Remarkably,we find that our two-fluid MHD threshold magnetic field is the same(up to a factor √γ_(0))as the DC saturation magnetic field,previously predicted by fully kinetic theory. 展开更多
关键词 INSTABILITIES magnetic fields PLASMAS Sun:heliosphere ISM:magnetic fields
在线阅读 下载PDF
Optimization of magnetic field design for Hall thrusters based on a genetic algorithm
9
作者 谭睿 杭观荣 王平阳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期82-92,共11页
Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er... Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster. 展开更多
关键词 magnetic field design genetic algorithm divergence angle erosion of discharge channel convergent magnetic field
在线阅读 下载PDF
On the Role of Chemical Potential in Determining the Temperature Dependent Critical Magnetic Field and the Penetration Depth of Superconductors
10
作者 Gulshan Prakash Malik Vijaya Shankar Varma 《World Journal of Condensed Matter Physics》 CAS 2024年第4期96-106,共11页
Dealing with both elemental and high-Tc superconductors (SCs) - Sn, Nb and Pb belonging to the former category, and MgB2 and different samples of YBCO to the latter - we show that the difference in the values of their... Dealing with both elemental and high-Tc superconductors (SCs) - Sn, Nb and Pb belonging to the former category, and MgB2 and different samples of YBCO to the latter - we show that the difference in the values of their critical magnetic field Hc1,c2 and the penetration depth λL(0) is, remarkably, attributable predominantly to the difference in the values of a single parameter, viz., the chemical potential (μ) close to their critical temperatures (Tcs). Based directly on the dynamics of pairing in a magnetic field and the corresponding number equation, our approach relates Hc1,c2 of an SC with the following set of its properties: S1 = {μ, Tc, Debye temperature, effective mass of the electron, magnetic interaction parameter, Landau index}. Hence, it provides an alternative to the approach followed by Talantsev [Mod. Phys. Lett. B 33, 1950195 (2019)] who has shown by ingeniously combining the results of various well-established theories that Hc2 of an SC can be calculated via four different equations, each of which invokes two or more properties from its sample-specific set S2 = {Tc, gap, coherence length, λL(0), jump in sp. ht.}, which is radically different from S1. 展开更多
关键词 Pairing and Number Equations Incorporating Temperature Chemical Potential and magnetic field Critical magnetic field Penetration Depth Sn Nb Pb MGB2 YBCO
在线阅读 下载PDF
A Simple Mechanism for Generating a Geomagnetic Field
11
作者 Oleg Vladimirovich Styazhkin 《Open Journal of Applied Sciences》 2024年第9期2580-2591,共12页
On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic fi... On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic field were performed, taking into account the speed of its angular rotation, the parameters of density and temperature, the chemical composition, the ionization potential, the dielectric constant and the percentage of the main chemical compounds of the mantle substance. 展开更多
关键词 Physical Parameters of the Earth’s Mantle Maxwell-Boltzmann Statistics Phonon Gas Thermal Ionization Electron-Hole Polarization Electron-Hole Recombination Earth’s magnetic field Dipole Mode of the magnetic field
在线阅读 下载PDF
Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fin exposed to magnetic field in the presence of a shape-dependent trihybrid nanofluid 被引量:1
12
作者 C.G.PAVITHRA B.J.GIREESHA M.L.KEERTHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期197-216,共20页
The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, a... The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%. 展开更多
关键词 convection radiation moving longitudinal fin Adomian decomposition Sumudu transform method(ADSTM) trihybrid nanofluid magnetic field
在线阅读 下载PDF
Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning 被引量:1
13
作者 Andrey Samsonov Graziella Branduardi-Raymont +3 位作者 Steven Sembay Andrew Read David Sibeck Lutz Rastaetter 《Earth and Planetary Physics》 EI CSCD 2024年第1期39-46,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning. 展开更多
关键词 MAGNETOPAUSE magnetic reconnection solar wind charge exchange southward interplanetary magnetic field numerical modeling Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) Soft X-ray Imager
在线阅读 下载PDF
Stress corrosion cracking behavior of buried oil and gas pipeline steel under the coexistence of magnetic field and sulfate-reducing bacteria
14
作者 Jian-Yu He Fei Xie +3 位作者 Dan Wang Guang-Xin Liu Ming Wu Yue Qin 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1320-1332,共13页
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env... Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence. 展开更多
关键词 magnetic field Sulfate-reducing bacteria Film layer Stress corrosion cracking Oil and gas pipelines
在线阅读 下载PDF
Revolutionizing plasmonic platform via magnetic field-assisted confined ultrafast laser deposition of high-density,uniform,and ultrafine nanoparticle arrays
15
作者 Jin Xu Lingfeng Wang +5 位作者 Peilin Yang Haoqing Jiang Huai Zheng Licong An Xingtao Liu Gary J Cheng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期428-438,共11页
The remarkable capabilities of 2D plasmonic surfaces in controlling optical waves havegarnered significant attention.However,the challenge of large-scale manufacturing of uniform,well-aligned,and tunable plasmonic sur... The remarkable capabilities of 2D plasmonic surfaces in controlling optical waves havegarnered significant attention.However,the challenge of large-scale manufacturing of uniform,well-aligned,and tunable plasmonic surfaces has hindered their industrialization.To address this,we present a groundbreaking tunable plasmonic platform design achieved throughmagnetic field(MF)assisted ultrafast laser direct deposition in air.Through precise control of metal nanoparticles(NPs),with cobalt(Co)serving as the model material,employing an MF,and fine-tuning ultrafast laser parameters,we have effectively converted coarse and non-uniform NPs into densely packed,uniform,and ultrafine NPs(~3 nm).This revolutionary advancement results in the creation of customizable plasmonic‘hot spots,’which play a pivotal role insurface-enhanced Raman spectroscopy(SERS)sensors.The profound impact of this designable plasmonic platform lies in its close association with plasmonic resonance and energyenhancement.When the plasmonic nanostructures resonate with incident light,they generate intense local electromagnetic fields,thus vastly increasing the Raman scattering signal.This enhancement leads to an outstanding 2–18 fold boost in SERS performance and unparalleled sensing sensitivity down to 10^(-10)M.Notably,the plasmonic platform also demonstratesrobustness,retaining its sensing capability even after undergoing 50 cycles of rinsing andre-loading of chemicals.Moreover,this work adheres to green manufacturing standards,making it an efficient and environmentally friendly method for customizing plasmonic‘hot spots’inSERS devices.Our study not only achieves the formation of high-density,uniform,and ultrafine NP arrays on a tunable plasmonic platform but also showcases the profound relation betweenplasmonic resonance and energy enhancement.The outstanding results observed in SERS sensors further emphasize the immense potential of this technology for energy-relatedapplications,including photocatalysis,photovoltaics,and clean water,propelling us closer to a sustainable and cleaner future. 展开更多
关键词 magnetic field manipulation laser deposition metasurface SERS
在线阅读 下载PDF
Probing the peripheral self-generated magnetic field distribution in laser-plasma magnetic reconnection with Martin-Puplett interferometer polarimeter
16
作者 张雅芃 姚嘉文 +2 位作者 刘正东 马作霖 仲佳勇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期129-134,共6页
Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Pup... Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Puplett interferometer(MPI)polarimeter to probe the peripheral magnetic fields generated in the common magnetic reconnection configuration,two separated coplanar plane targets,in laser-target interaction.We introduce a new method that can obtain polarization information from the interference pattern instead of the sinusoidal function fitting of the intensity.A bidirectional magnetic field is observed from the side view,which is consistent with the magneto-hydro-dynamical(MHD)simulation results of self-generated magnetic field reconnection.We find that the cancellation of reverse magnetic fields after averaging and integration along the observing direction could reduce the magnetic field strength by one to two orders of magnitude.It indicates that imaging resolution can significantly affect the accuracy of measured magnetic field strength. 展开更多
关键词 laser-plasma experiment POLARIMETER self-generated magnetic field magnetic reconnection
在线阅读 下载PDF
Effect of antenna helicity on discharge characteristics of helicon plasma under a divergent magnetic field
17
作者 孙萌 徐晓芳 +3 位作者 王陈文 尹贤轶 陈强 张海宝 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期50-59,共10页
The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mod... The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mode transition, discharge image, spatial profiles of plasma density and electron temperature are diagnosed using a Langmuir probe, a Nikon D90 camera,an intensified charge-coupled device camera and an optical emission spectrometer, respectively.The results demonstrated that the blue core phenomenon appeared in the upstream region of the discharge tube at a fixed magnetic field under both helical antennas. However, it is more likely to appear in a right-handed helical antenna, in which the plasma density and ionization rate of the helicon plasma are higher. The spatial profiles of the plasma density and electron temperature are also different in both axial and radial directions for these two kinds of helical antenna. The wavelength calculated based on the dispersion relation of the bounded whistler wave is consistent with the order of magnitude of plasma length. It is proved that the helicon plasma is part of the wave mode discharge mechanism. 展开更多
关键词 helicon plasma non-uniform magnetic field helical antenna blue core discharge mechanism
在线阅读 下载PDF
Acetaminophen overdose-induced acute liver injury can be alleviated by static magnetic field
18
作者 Han-Xiao Chen Xin-Yu Wang +11 位作者 Biao Yu Chuan-Lin Feng Guo-Feng Cheng Lei Zhang Jun-Jun Wang Ying Wang Ruo-Wen Guo Xin-Miao Ji Wen-Jing Xie Wei-Li Chen Chao Song Xin Zhang 《Zoological Research》 SCIE CSCD 2024年第3期478-490,共13页
Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacolog... Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacological intervention approved for mitigating such overdose is the antioxidant N-acetylcysteine(NAC);however,its efficacy is limited in cases of advanced liver injury or when administered at a late stage.In the current study,we discovered that treatment with a moderate intensity static magnetic field(SMF)notably reduced the mortality rate in mice subjected to high-dose APAP from 40%to 0%,proving effective at both the initial liver injury stage and the subsequent recovery stage.During the early phase of liver injury,SMF markedly reduced APAPinduced oxidative stress,free radicals,and liver damage,resulting in a reduction in multiple oxidative stress markers and an increase in the antioxidant glutathione(GSH).During the later stage of liver recovery,application of vertically downward SMF increased DNA synthesis and hepatocyte proliferation.Moreover,the combination of NAC and SMF significantly mitigated liver damage induced by high-dose APAP and increased liver recovery,even 24 h post overdose,when the effectiveness of NAC alone substantially declines.Overall,this study provides a noninvasive non-pharmaceutical tool that offers dual benefits in the injury and repair stages following APAP overdose.Of note,this tool can work as an alternative to or in combination with NAC to prevent or minimize liver damage induced by APAP,and potentially other toxic overdoses. 展开更多
关键词 ACETAMINOPHEN Acute liver injury Static magnetic fields Oxidative stress DNA synthesis
在线阅读 下载PDF
Effects of vacuum magnetic field region on the compact torus trajectory in a tokamak plasma
19
作者 董期龙 张洁 +28 位作者 兰涛 肖持进 庄革 陈晨 周永康 吴捷 龙婷 聂林 卢鹏程 王天雄 邬佳仁 邓鹏 汪兴康 柏泽琪 黄玉华 李杰 薛雷 阿迪力江 毛文哲 周楚 刘阿娣 吴征威 谢锦林 丁卫星 刘万东 陈伟 钟武律 许敏 段旭如 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期23-39,共17页
The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tok... The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters. 展开更多
关键词 compact torus central fueling vacuum magnetic field region penetration mechanism optimization parameters
在线阅读 下载PDF
Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
20
作者 张丽萍 孙宗耀 +1 位作者 李佳妮 苏俊燕 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期683-689,共7页
The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas w... The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions. 展开更多
关键词 graphene field-effect transistors external magnetic field radiation frequency instability increment
在线阅读 下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部