The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ...The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite.展开更多
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o...The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.展开更多
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi...Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).展开更多
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a...The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.展开更多
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne...Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.展开更多
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions...With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.展开更多
Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering...Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering activity,it also presents challenges such as the necessity for high reaction temperatures and difficulties in achieving uniform mixing of its raw materials.This study presents a comprehensive investigation into preparation process of AlN nanopowders using a combination of hydrothermal synthesis and CRN.In the hydrothermal reaction,a homogeneous composite precursor consisting of carbon and boehmite(γ-AlOOH)is synthesized at 200℃using aluminum nitrate as the aluminum source,sucrose as the carbon source,and urea as the precipitant.During the hydrothermal process,the precursor develops a core-shell structure,with boehmite tightly coated with carbon(γ-AlOOH@C)due to electrostatic attraction.Compared with conventional precursor,the hydrothermal hybrid offers many advantages,such as ultrafine particles,uniform particle size distribution,good dispersion,high reactivity,and environmental friendliness.The carbon shell enhances thermodynamic stability of γ-Al_(2)O_(3) compared to the corundum phase(α-Al_(2)O_(3))by preventing the loss of the surface area in alumina.This stability enables γ-Al_(2)O_(3) to maintain high reactivity during CRN process,which initiates at 1300℃,and concludes at 1400℃.The underlying mechanisms are substantiated through experiments and thermodynamic calculations.This research provides a robust theoretical and experimental foundation for the hydrothermal combined carbothermal preparation of non-oxide ceramic nanopowders.展开更多
This article discusses the coexistence of prostate adenocarcinoma and prostate urothelial carcinoma.Combining existing literature and research results,the potential mechanisms of the co-occurrence of these two cancers...This article discusses the coexistence of prostate adenocarcinoma and prostate urothelial carcinoma.Combining existing literature and research results,the potential mechanisms of the co-occurrence of these two cancers are explored,including the role of androgen receptor,gene mutations,and their complex interactions in cell signaling pathways,etc.Also,the hypothesis of prostate cancer transformation into urothelial carcinoma is explained from some perspectives,including tumor multipotent stem cell differentiation,epithelial-mesenchymal transition,mesenchymal-epithelial transition,and other mechanisms.Ultimately,the goal is to provide more accurate diagnoses and more personalized treatments in clinical practice,as well as to lay the foundation for improving patient prognoses in the future.展开更多
On December 18, 2023, an M_(s) 6.2 earthquake jolted Jishishan County in the Linxia Hui Autonomous Prefecture in Northwest China's Gansu Province, causing substantial casualties and building collapses. The earthqu...On December 18, 2023, an M_(s) 6.2 earthquake jolted Jishishan County in the Linxia Hui Autonomous Prefecture in Northwest China's Gansu Province, causing substantial casualties and building collapses. The earthquake occurred in the Qilian Block on the northeastern border of the Qinghai-Tibet Plateau, where faults are highly active and the geological structure is complex. In this study, we utilized methods such as relocation, focal mechanism solutions, and earthquake rupture processes to describe seismogenic faults. The results indicated that the majority of aftershocks occurred at a depth of 12 km. The centroid depth of the main shock and the depth of the maximum rupture point during the rupture process were also 12 km. Various geophysical methods exhibited a high degree of consistency in depth exploration. Aftershocks were distributed mainly to the west and north of the main shock and extended in the NNW direction, primarily through unilateral rupture. The main shock was a reverse thrust event with a small dextral strike-slip component. In this study, more regional data, such as previous GPS observations, field geological observations, and the distributions of the primary stress states in the region, were also incorporated. We inferred that the main shock was triggered by the main fault at the northern margin of the Lajishan Fault and that the movement of the main fault also activated some secondary faults. The compressive forces on both sides of the Lajishan Fault Zone led to the uplift of mountain areas, accompanied by some landslides, leading to this catastrophic earthquake event. In this article, the activity relationships among the 2022 M_(s) 6.9 Menyuan earthquake, the 2019 M_(s) 5.7 Xiahe earthquake,and the Jishishan earthquake under the action of regional stress are also discussed. This study provides additional evidence and new ideas for exploring the seismogenic process of the Lajishan Fault Zone and has implications for future in-depth research on underground activity in this region.展开更多
Obesity has become a significant global public health issue.Previous studies have found that the Chenpi has the anti-obesity activity.However,the anti-obesity phytochemicals and their mechanisms are still unclear.This...Obesity has become a significant global public health issue.Previous studies have found that the Chenpi has the anti-obesity activity.However,the anti-obesity phytochemicals and their mechanisms are still unclear.This study investigated the anti-obesity phytochemicals and molecular mechanisms involved in treating obesity by Chenpi through network pharmacology and molecular docking.A total of 17 bioactive phytochemicals from Chenpi and its 475 related anti-obesity targets have been identified.The KEGG pathway analysis showed that the PI3K/Akt signaling pathway,MAPK signaling pathway,AMPK signaling pathway,and nuclear factor kappa B signaling pathway are the main signaling pathways involved in the anti-obesity effect of Chenpi.According to molecular docking analysis,the phytochemicals of Chenpi can bind to central anti-obesity targets.Based on the ADMET analysis and network pharmacology results,tangeretin exhibited the lowest predicted toxicity and potential for anti-obesity effects.In the in vitro lipid accumulation model,tangeretin effectively suppressed the free fatty acid-induced lipid in Hep G2 cells by upregulating the PI3K/Akt/GSK3βsignaling pathway based on the result of q-PCR and Western blotting.The outcomes of this research give insights for future research on the anti-obesity phytochemicals and molecular mechanisms derived from Chenpi,also providing the theoretical basis for developing anti-obesity functional foods based on Chenpi.展开更多
Methyl methoxyacetate(MMAc)and methyl formate(MF)can be produced directly by heterogeneous zeolite-catalyzed carbonylation and disproportionation of dimethoxymethane(DMM),with near 100%selectivity for each process.Des...Methyl methoxyacetate(MMAc)and methyl formate(MF)can be produced directly by heterogeneous zeolite-catalyzed carbonylation and disproportionation of dimethoxymethane(DMM),with near 100%selectivity for each process.Despite continuous research efforts,the insight into the reaction mechanism and kinetics theory are still in their nascent stage.In this study,ZEO-1 material,a zeolite with up to now the largest cages comprising 16×16-MRs,16×12-MRs,and 12×12-MRs,was explored for DMM carbonylation and disproportionation reactions.The rate of MMAc formation based on accessible Brönsted acid sites is 2.5 times higher for ZEO-1(Si/Al=21)relative to the previously investigated FAU(Si/Al=15),indicating the positive effect of spatial separation of active sites in ZEO-1 on catalytic activity.A higher MF formation rate is also observed over ZEO-1 with lower activation energy(79.94 vs.95.19 kJ/mol)compared with FAU(Si/Al=30).Two types of active sites are proposed within ZEO-1 zeolite:Site 1 located in large cages formed by 16×16-MRs and 16×12-MRs,which is active predominantly for MMAc formation,and Site 2 located in smaller cages for methyl formate/dimethyl ether formation.Kinetics investigation of DMM carbonylation over ZEO-1 exhibit a first-order dependence on CO partial pressure and a slightly inverse-order dependence on DMM partial pressure.The DMM disproportionation is nearly first-order dependence on DMM partial pressure,while it reveals a strongly inverse dependence with increasing CO partial pressure.Furthermore,ZEO-1 exhibits good catalytic stability,and almost no deactivation is observed during the more than 70 h test with high carbonylation selectivity of above 89%,due to the well-enhanced diffusion property demonstrated by intelligent-gravimetric analysis.展开更多
Postoperative ileus(POI)remains a prevalent and significant challenge following abdominal surgeries,precipitating patient distress,prolonged hospital stays,and escalated medical expenditures.Conventionally addressed v...Postoperative ileus(POI)remains a prevalent and significant challenge following abdominal surgeries,precipitating patient distress,prolonged hospital stays,and escalated medical expenditures.Conventionally addressed via pharmacological interventions,POI is increasingly being explored through adjunctive therapeutic strategies,with acupuncture gaining recognition as a promising option.Acupuncture has demonstrated encouraging potential in promoting gastrointestinal motility in patients with POI.Moreover,recent research has shed light on the therapeutic mechanisms underlying its efficacy.This article aims to present a comprehensive overview of acupuncture as a treatment for POI,highlighting advancements in clinical research and recent elucidations of its mechanistic underpinnings.It aspires to contribute a pivotal reference point for scholars and enthusiasts keen on garnering a deeper understanding of acupuncture’s role in managing POI.展开更多
In 2023,the World Obesity Atlas Federation concluded that more than 50%of the world’s population would be overweight or obese within the next 12 years.At the heart of this epidemic lies the gut microbiota,a complex e...In 2023,the World Obesity Atlas Federation concluded that more than 50%of the world’s population would be overweight or obese within the next 12 years.At the heart of this epidemic lies the gut microbiota,a complex ecosystem that profoundly influences obesity-related metabolic health.Its multifaced role encompasses energy harvesting,inflammation,satiety signaling,gut barrier function,gut-brain communication,and adipose tissue homeostasis.Recognizing the complexities of the cross-talk between host physiology and gut microbiota is crucial for developing cutting-edge,microbiome-targeted therapies to address the global obesity crisis and its alarming health and economic repercussions.This narrative review analyzed the current state of knowledge,illuminating emerging research areas and their implications for leveraging gut microbial manipulations as therapeutic strategies to prevent and treat obesity and related disorders in humans.By elucidating the complex relationship between gut microflora and obesity,we aim to contribute to the growing body of knowledge underpinning this critical field,potentially paving the way for novel interventions to combat the worldwide obesity epidemic.展开更多
Globally,hyperuricemia is a growing health,social,and economic problem which could cause gout,chronic kidney diseases and other diseases.There are increasing evidences that a sensible diet makes sense to reduce the ri...Globally,hyperuricemia is a growing health,social,and economic problem which could cause gout,chronic kidney diseases and other diseases.There are increasing evidences that a sensible diet makes sense to reduce the risk of hyperuricemia.This review aims to explore the metabolic mechanism of dietary factors and effects of dietary types associated with hyperuricemia.Recommendations for dietary modification to prevent hyperuricemia are as following:decreasing intake of animal organs,seafood,sugar-sweetened,and alcohol beverages is essential;choosing water or unsweetened tea and coffee instead of sweetened beverages is beneficial;and increasing intake of vegetables,reduced-fat dairy products,foods containing fiber,micronutrients and unsaturated fatty acids is helpful.In addition,consumption of fruits and legumes in moderation is advantageous,and low-fructose of fruits and low-purine of non-soy beans are recommended.Moreover,personalized diet needs to be emphasized for hyperuricemic patients accompanied with diverse metabolic diseases.展开更多
This paper investigated the use of magnesium phosphate cement (MPC) for solidifying sludge with different humic acid (HA) content (ranging from 0 to 4.5%) and explored the solidification mechanism. Fluidity, setting t...This paper investigated the use of magnesium phosphate cement (MPC) for solidifying sludge with different humic acid (HA) content (ranging from 0 to 4.5%) and explored the solidification mechanism. Fluidity, setting time, unconfined compressive strength (UCS), the strength formation mechanism, and the spontaneous imbibition process of solidified sludge (SS) were studied. The results indicate that MPC can be used as a low-alkalinity curing agent. As the HA content increases, fluidity and setting time also increase, while hydration temperature and strength decrease. Additionally, the failure mode of SS transitions from brittleness to ductility. The strength of SS is composed of the cementation strength provided by MPC hydration products, matric suction, osmotic suction, and the structural strength of the sludge. MPC reduces the structural strength caused by the shrinkage of pure sludge under the action of matric suction, but the incorporation of MPC significantly improved the strength when the sludge is eroded by water. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the sludge and MPC can form a dense solid body, forming various hydration products, and synergistically improve the mechanical properties of the sludge.展开更多
Wetland plants and their related environmental interfaces are colonized by a wide range of microbial communities,and the symbiotic system of plants and microorganisms can interact and cooperate with each other,playing...Wetland plants and their related environmental interfaces are colonized by a wide range of microbial communities,and the symbiotic system of plants and microorganisms can interact and cooperate with each other,playing an important role in environmental remediation of metal pollution,which has garnered significant attention.The dominant communities of wetland plants still have high treatment performance and survival rate under pollution conditions.Many studies show that hyperaccumulating metallophytes have the capacity to accumulate heavy metal up to several times higher than the plants in sterile soil,due to the interaction of microbes within the rhizosphere.Thus,biotechnological efforts are being explored to modify plants for heavy metal phytoremediation and to improve the adaptation of wetland plants,endophytes,and rhizospheric microorganisms to adverse environment.New phytoremediation techniques and enhanced symbiosis technique for endophytic bacteria inoculation with high efficiency are being pursued and utilized in heavy metal phytoremediation in wetland systems.Therefore,in this review,we systematically summarized the interface characteristics of wetland systems and the interaction of symbionts,with emphasis on the enhanced removal potential and regulation mechanisms of heavy metals by plant-microbe symbiosis in wetland systems,along with the applications of plant-microbiomes for heavy metal remediation in wetlands.Moreover,we explored the remediation mechanisms of combined endogenic-ecophytic microorganisms for wetland systems.In recent research,the exogeneous bacteria drastically remodeled the rhizospheric microbiome and further improved the activity of rhizospheric functional enzymes,with the metal removal at the rhizospheric region reaching up to 95%.In order to increase the effectiveness of plant-microbiome engineering in addressing wetland environmental pollution,the significance of incorporating synergistic techniques and taking a variety of environmental factors was discussed.展开更多
Hydraulic fracture(HF)formed in rock significantly helps with the development of geo-energy and georesources.The HF formation condition was challenging to understand,with obscure rock micro-cracking mechanisms being a...Hydraulic fracture(HF)formed in rock significantly helps with the development of geo-energy and georesources.The HF formation condition was challenging to understand,with obscure rock micro-cracking mechanisms being a key factor.The rock micro-cracking mechanism under gradient pore water pressure was analyzed on the scale of mineral particles and it was combined with macroscopic boundary conditions of rock hydraulic fracturing,obtaining the propagation criterion of HF in rock based on the rock micro-cracking mechanism which was verified by experiment.The results show that the disturbed skeleton stress induced by the disturbance of gradient pore water pressure in rock equals the pore water pressure difference.The overall range of the defined mechanical shape factor a/b is around 1,but greater than0.5.Under the combined influence of pore water pressure differences and macroscopic boundary stresses on the rock micro-cracking,micro-cracks form among rock mineral particles,micro-cracks connect to form micro-hydraulic fracture surfaces,and micro-hydraulic fracture surfaces open to form macrohydraulic fractures.HF begins to form at the micro-cracking initiation pressure(MCIP),which was tested by keeping the HF tip near the initiation point.The theoretical value of MCIP calculated by the proposed propagation criterion is close to MCIP tested.展开更多
When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highwa...When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highway construction.Combining three-dimensional physical model tests,numerical simulations and fi eld monitoring,with the Urumqi East Second Ring Road passing through acute inclined goafs as a background,the deformation and failure mechanism of the overlying rock and coal pillars in acute inclined goafs under expressway load were studied.And in accordance with construction requirements of subgrade,comprehensive consideration of the deformation and instability mechanism of acute inclined goafs,the treatment measures and suggestions for this type of geological disasters were put forward.The research results confi rmed the rationality of coal pillars in acute inclined goafs under the expressway through grouting.According to the ratio of diff erent overlying rock thickness to coal pillar height,the change trend and value of the required grouting range were summarized,which can provide reference for similar projects.展开更多
Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of l...Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.展开更多
Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability prese...Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability presents a significant challenge. Recent advances have demonstrated that optoelectronic devices based on monolayer nanoparticle films exhibit both high luminescence efficiency and long-term stability.Our research demonstrates that mobility limitations and anisotropic alignments in CsPbBr3nanocube monolayer films are key to their stabilization, hindering spontaneous growth through face-to-face fusion and resulting in the formation of connecting necks in a diagonal direction. Introducing laser irradiation confirmed this by significantly accelerating nanocubes growth, increasing mobility, and enhancing local structural ordering, leading to larger and more regularly shaped nanosheets. Fourier transform infrared spectroscopy and energy dispersive spectroscopy line-scan analyses indicated that laser irradiation did not disrupt the ligand structure. Transmission electron microscopy and correlative cathodoluminescence electron microscopy revealed the effects of post-growth and heterogeneous structures, including enhanced luminescence and inhomogeneous intensity in the nanosheets. These findings deepen the understanding of the post-growth mechanism of monolayer nanoparticles and the structure-emission correlation and highlight the unique role of laser irradiation in directing the formation of well-defined and regular nanostructures.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52074356)Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-06)+5 种基金the National Key R&D Program of China(No.2022YFC2904500)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC1183)Changsha Science and Technology Project,China(Outstanding Innovative Youth Training Program)Innovation driven program of Central South University(No.2023CXQD002)National 111 Project(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University Project(No.50621747)。
文摘The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite.
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFF0901300in part by the National Natural Science Foundation of China under Grant Nos.62173076 and 72271048.
文摘The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.
基金supported by PTDC-01778/2022-NeuroDev3D,iNOVA4Health(UIDB/04462/2020 and UIDP/04462/2020)LS4FUTURE(LA/P/0087/2020)。
文摘Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).
文摘The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.
基金supported by the Natural Science Foundation of Fujian Province,No.2021J02035(to WX).
文摘Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
文摘With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.
基金National Key Research and Development Program of China(2022YFB3708500,2023YFB3611000)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2020ZZ109)。
文摘Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering activity,it also presents challenges such as the necessity for high reaction temperatures and difficulties in achieving uniform mixing of its raw materials.This study presents a comprehensive investigation into preparation process of AlN nanopowders using a combination of hydrothermal synthesis and CRN.In the hydrothermal reaction,a homogeneous composite precursor consisting of carbon and boehmite(γ-AlOOH)is synthesized at 200℃using aluminum nitrate as the aluminum source,sucrose as the carbon source,and urea as the precipitant.During the hydrothermal process,the precursor develops a core-shell structure,with boehmite tightly coated with carbon(γ-AlOOH@C)due to electrostatic attraction.Compared with conventional precursor,the hydrothermal hybrid offers many advantages,such as ultrafine particles,uniform particle size distribution,good dispersion,high reactivity,and environmental friendliness.The carbon shell enhances thermodynamic stability of γ-Al_(2)O_(3) compared to the corundum phase(α-Al_(2)O_(3))by preventing the loss of the surface area in alumina.This stability enables γ-Al_(2)O_(3) to maintain high reactivity during CRN process,which initiates at 1300℃,and concludes at 1400℃.The underlying mechanisms are substantiated through experiments and thermodynamic calculations.This research provides a robust theoretical and experimental foundation for the hydrothermal combined carbothermal preparation of non-oxide ceramic nanopowders.
文摘This article discusses the coexistence of prostate adenocarcinoma and prostate urothelial carcinoma.Combining existing literature and research results,the potential mechanisms of the co-occurrence of these two cancers are explored,including the role of androgen receptor,gene mutations,and their complex interactions in cell signaling pathways,etc.Also,the hypothesis of prostate cancer transformation into urothelial carcinoma is explained from some perspectives,including tumor multipotent stem cell differentiation,epithelial-mesenchymal transition,mesenchymal-epithelial transition,and other mechanisms.Ultimately,the goal is to provide more accurate diagnoses and more personalized treatments in clinical practice,as well as to lay the foundation for improving patient prognoses in the future.
基金funded by the National Natural Science Foundation of China (Grant No. 42304072)。
文摘On December 18, 2023, an M_(s) 6.2 earthquake jolted Jishishan County in the Linxia Hui Autonomous Prefecture in Northwest China's Gansu Province, causing substantial casualties and building collapses. The earthquake occurred in the Qilian Block on the northeastern border of the Qinghai-Tibet Plateau, where faults are highly active and the geological structure is complex. In this study, we utilized methods such as relocation, focal mechanism solutions, and earthquake rupture processes to describe seismogenic faults. The results indicated that the majority of aftershocks occurred at a depth of 12 km. The centroid depth of the main shock and the depth of the maximum rupture point during the rupture process were also 12 km. Various geophysical methods exhibited a high degree of consistency in depth exploration. Aftershocks were distributed mainly to the west and north of the main shock and extended in the NNW direction, primarily through unilateral rupture. The main shock was a reverse thrust event with a small dextral strike-slip component. In this study, more regional data, such as previous GPS observations, field geological observations, and the distributions of the primary stress states in the region, were also incorporated. We inferred that the main shock was triggered by the main fault at the northern margin of the Lajishan Fault and that the movement of the main fault also activated some secondary faults. The compressive forces on both sides of the Lajishan Fault Zone led to the uplift of mountain areas, accompanied by some landslides, leading to this catastrophic earthquake event. In this article, the activity relationships among the 2022 M_(s) 6.9 Menyuan earthquake, the 2019 M_(s) 5.7 Xiahe earthquake,and the Jishishan earthquake under the action of regional stress are also discussed. This study provides additional evidence and new ideas for exploring the seismogenic process of the Lajishan Fault Zone and has implications for future in-depth research on underground activity in this region.
基金supported by the Guangdong Provincial Key Laboratory IRADS(2022B1212010006,R0400001-22)。
文摘Obesity has become a significant global public health issue.Previous studies have found that the Chenpi has the anti-obesity activity.However,the anti-obesity phytochemicals and their mechanisms are still unclear.This study investigated the anti-obesity phytochemicals and molecular mechanisms involved in treating obesity by Chenpi through network pharmacology and molecular docking.A total of 17 bioactive phytochemicals from Chenpi and its 475 related anti-obesity targets have been identified.The KEGG pathway analysis showed that the PI3K/Akt signaling pathway,MAPK signaling pathway,AMPK signaling pathway,and nuclear factor kappa B signaling pathway are the main signaling pathways involved in the anti-obesity effect of Chenpi.According to molecular docking analysis,the phytochemicals of Chenpi can bind to central anti-obesity targets.Based on the ADMET analysis and network pharmacology results,tangeretin exhibited the lowest predicted toxicity and potential for anti-obesity effects.In the in vitro lipid accumulation model,tangeretin effectively suppressed the free fatty acid-induced lipid in Hep G2 cells by upregulating the PI3K/Akt/GSK3βsignaling pathway based on the result of q-PCR and Western blotting.The outcomes of this research give insights for future research on the anti-obesity phytochemicals and molecular mechanisms derived from Chenpi,also providing the theoretical basis for developing anti-obesity functional foods based on Chenpi.
文摘Methyl methoxyacetate(MMAc)and methyl formate(MF)can be produced directly by heterogeneous zeolite-catalyzed carbonylation and disproportionation of dimethoxymethane(DMM),with near 100%selectivity for each process.Despite continuous research efforts,the insight into the reaction mechanism and kinetics theory are still in their nascent stage.In this study,ZEO-1 material,a zeolite with up to now the largest cages comprising 16×16-MRs,16×12-MRs,and 12×12-MRs,was explored for DMM carbonylation and disproportionation reactions.The rate of MMAc formation based on accessible Brönsted acid sites is 2.5 times higher for ZEO-1(Si/Al=21)relative to the previously investigated FAU(Si/Al=15),indicating the positive effect of spatial separation of active sites in ZEO-1 on catalytic activity.A higher MF formation rate is also observed over ZEO-1 with lower activation energy(79.94 vs.95.19 kJ/mol)compared with FAU(Si/Al=30).Two types of active sites are proposed within ZEO-1 zeolite:Site 1 located in large cages formed by 16×16-MRs and 16×12-MRs,which is active predominantly for MMAc formation,and Site 2 located in smaller cages for methyl formate/dimethyl ether formation.Kinetics investigation of DMM carbonylation over ZEO-1 exhibit a first-order dependence on CO partial pressure and a slightly inverse-order dependence on DMM partial pressure.The DMM disproportionation is nearly first-order dependence on DMM partial pressure,while it reveals a strongly inverse dependence with increasing CO partial pressure.Furthermore,ZEO-1 exhibits good catalytic stability,and almost no deactivation is observed during the more than 70 h test with high carbonylation selectivity of above 89%,due to the well-enhanced diffusion property demonstrated by intelligent-gravimetric analysis.
基金Supported by Clinical Key Project of Peking University Third Hospital,No.BYSY2023049Funding from State Key Laboratory of Female Fertility Promotion,Center for Reproductive Medicine,Department of Obstetrics and Gynecology,Peking University Third Hospital,No.BYSYSZKF2023027.
文摘Postoperative ileus(POI)remains a prevalent and significant challenge following abdominal surgeries,precipitating patient distress,prolonged hospital stays,and escalated medical expenditures.Conventionally addressed via pharmacological interventions,POI is increasingly being explored through adjunctive therapeutic strategies,with acupuncture gaining recognition as a promising option.Acupuncture has demonstrated encouraging potential in promoting gastrointestinal motility in patients with POI.Moreover,recent research has shed light on the therapeutic mechanisms underlying its efficacy.This article aims to present a comprehensive overview of acupuncture as a treatment for POI,highlighting advancements in clinical research and recent elucidations of its mechanistic underpinnings.It aspires to contribute a pivotal reference point for scholars and enthusiasts keen on garnering a deeper understanding of acupuncture’s role in managing POI.
基金supported by the Ministry of Science and Technology of China(2023YFF1304900 and 2022YFC2105003)Guangxi Key Research and Development Program(AB24010109)+5 种基金the National Natural Science Foundation of China(31930015 and 32370538)Chinese Academy of Sciences(KFJ-BRP-008)Yunnan Province(202003AD150008 and 202305AH340006)Kunming Science and Technology Bureau(2022SCP007)Shenzhen New Cornerstone Science Foundation(NCI202238)the University Chinese Academy of Sciences and Alliance of International Science Organization(ANSO)through 2022A8010415002.
文摘In 2023,the World Obesity Atlas Federation concluded that more than 50%of the world’s population would be overweight or obese within the next 12 years.At the heart of this epidemic lies the gut microbiota,a complex ecosystem that profoundly influences obesity-related metabolic health.Its multifaced role encompasses energy harvesting,inflammation,satiety signaling,gut barrier function,gut-brain communication,and adipose tissue homeostasis.Recognizing the complexities of the cross-talk between host physiology and gut microbiota is crucial for developing cutting-edge,microbiome-targeted therapies to address the global obesity crisis and its alarming health and economic repercussions.This narrative review analyzed the current state of knowledge,illuminating emerging research areas and their implications for leveraging gut microbial manipulations as therapeutic strategies to prevent and treat obesity and related disorders in humans.By elucidating the complex relationship between gut microflora and obesity,we aim to contribute to the growing body of knowledge underpinning this critical field,potentially paving the way for novel interventions to combat the worldwide obesity epidemic.
基金supported by the National Natural Science Foundation of China(No.32122069)Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201910011025)China Postdoctoral Science Foundation(No.2023M730134)。
文摘Globally,hyperuricemia is a growing health,social,and economic problem which could cause gout,chronic kidney diseases and other diseases.There are increasing evidences that a sensible diet makes sense to reduce the risk of hyperuricemia.This review aims to explore the metabolic mechanism of dietary factors and effects of dietary types associated with hyperuricemia.Recommendations for dietary modification to prevent hyperuricemia are as following:decreasing intake of animal organs,seafood,sugar-sweetened,and alcohol beverages is essential;choosing water or unsweetened tea and coffee instead of sweetened beverages is beneficial;and increasing intake of vegetables,reduced-fat dairy products,foods containing fiber,micronutrients and unsaturated fatty acids is helpful.In addition,consumption of fruits and legumes in moderation is advantageous,and low-fructose of fruits and low-purine of non-soy beans are recommended.Moreover,personalized diet needs to be emphasized for hyperuricemic patients accompanied with diverse metabolic diseases.
基金This research work was financially supported by the National Natural Science Foundation of China(Grant No.51972209).
文摘This paper investigated the use of magnesium phosphate cement (MPC) for solidifying sludge with different humic acid (HA) content (ranging from 0 to 4.5%) and explored the solidification mechanism. Fluidity, setting time, unconfined compressive strength (UCS), the strength formation mechanism, and the spontaneous imbibition process of solidified sludge (SS) were studied. The results indicate that MPC can be used as a low-alkalinity curing agent. As the HA content increases, fluidity and setting time also increase, while hydration temperature and strength decrease. Additionally, the failure mode of SS transitions from brittleness to ductility. The strength of SS is composed of the cementation strength provided by MPC hydration products, matric suction, osmotic suction, and the structural strength of the sludge. MPC reduces the structural strength caused by the shrinkage of pure sludge under the action of matric suction, but the incorporation of MPC significantly improved the strength when the sludge is eroded by water. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the sludge and MPC can form a dense solid body, forming various hydration products, and synergistically improve the mechanical properties of the sludge.
基金financially supported by the Natural Science Foundation of Hebei Province for Youth,China(No.D2021201003)the Key Research and Development(R&D)Project of Hebei Province,China(No.21373601D)+3 种基金the Science and Technology Planning Project of Shijiazhuang,China(No.221240223A)the Natural Science Interdisciplinary Research Program of Hebei University,China(No.DXK202106)the Hebei Provincial 3-3-3 Talent Project,China(No.A202101120)the Collaborative Innovation Center for Baiyangdian Basin Ecological Protection and Beijing-Tianjin-Hebei Sustainable Development,China。
文摘Wetland plants and their related environmental interfaces are colonized by a wide range of microbial communities,and the symbiotic system of plants and microorganisms can interact and cooperate with each other,playing an important role in environmental remediation of metal pollution,which has garnered significant attention.The dominant communities of wetland plants still have high treatment performance and survival rate under pollution conditions.Many studies show that hyperaccumulating metallophytes have the capacity to accumulate heavy metal up to several times higher than the plants in sterile soil,due to the interaction of microbes within the rhizosphere.Thus,biotechnological efforts are being explored to modify plants for heavy metal phytoremediation and to improve the adaptation of wetland plants,endophytes,and rhizospheric microorganisms to adverse environment.New phytoremediation techniques and enhanced symbiosis technique for endophytic bacteria inoculation with high efficiency are being pursued and utilized in heavy metal phytoremediation in wetland systems.Therefore,in this review,we systematically summarized the interface characteristics of wetland systems and the interaction of symbionts,with emphasis on the enhanced removal potential and regulation mechanisms of heavy metals by plant-microbe symbiosis in wetland systems,along with the applications of plant-microbiomes for heavy metal remediation in wetlands.Moreover,we explored the remediation mechanisms of combined endogenic-ecophytic microorganisms for wetland systems.In recent research,the exogeneous bacteria drastically remodeled the rhizospheric microbiome and further improved the activity of rhizospheric functional enzymes,with the metal removal at the rhizospheric region reaching up to 95%.In order to increase the effectiveness of plant-microbiome engineering in addressing wetland environmental pollution,the significance of incorporating synergistic techniques and taking a variety of environmental factors was discussed.
基金supported by the National Key Research and Development Program of China (No.2021YFC2902102)the National Natural Science Foundation of China (Nos.52374103 and 52274013)。
文摘Hydraulic fracture(HF)formed in rock significantly helps with the development of geo-energy and georesources.The HF formation condition was challenging to understand,with obscure rock micro-cracking mechanisms being a key factor.The rock micro-cracking mechanism under gradient pore water pressure was analyzed on the scale of mineral particles and it was combined with macroscopic boundary conditions of rock hydraulic fracturing,obtaining the propagation criterion of HF in rock based on the rock micro-cracking mechanism which was verified by experiment.The results show that the disturbed skeleton stress induced by the disturbance of gradient pore water pressure in rock equals the pore water pressure difference.The overall range of the defined mechanical shape factor a/b is around 1,but greater than0.5.Under the combined influence of pore water pressure differences and macroscopic boundary stresses on the rock micro-cracking,micro-cracks form among rock mineral particles,micro-cracks connect to form micro-hydraulic fracture surfaces,and micro-hydraulic fracture surfaces open to form macrohydraulic fractures.HF begins to form at the micro-cracking initiation pressure(MCIP),which was tested by keeping the HF tip near the initiation point.The theoretical value of MCIP calculated by the proposed propagation criterion is close to MCIP tested.
基金Science and Technology Major Project of Xinjiang Uygur Autonomous Region(2020A03003-7)Fundamental Research on Natural Science Program of Shaanxi Province(2021JM-180)+2 种基金Fundamental Research Funds for the Central Universities,CHD(Project for Leading Talents)(300102211302)Tianshan Cedar Plan of Science and Technology Department of Xinjiang Uygur Autonomous Region(2017XS13)Shaanxi Province Young Talent Lifting Program(CLGC202219).
文摘When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highway construction.Combining three-dimensional physical model tests,numerical simulations and fi eld monitoring,with the Urumqi East Second Ring Road passing through acute inclined goafs as a background,the deformation and failure mechanism of the overlying rock and coal pillars in acute inclined goafs under expressway load were studied.And in accordance with construction requirements of subgrade,comprehensive consideration of the deformation and instability mechanism of acute inclined goafs,the treatment measures and suggestions for this type of geological disasters were put forward.The research results confi rmed the rationality of coal pillars in acute inclined goafs under the expressway through grouting.According to the ratio of diff erent overlying rock thickness to coal pillar height,the change trend and value of the required grouting range were summarized,which can provide reference for similar projects.
基金supported by The National Natural Science Foundation of China(Grant No.12362034)The Scientific Research Project of Inner Mongolia University of Technology(Grant Nos.DC2200000913+1 种基金DC2300001439)The Science and Technology Plan Project of Inner Mongolia Autonomous Region(Grant No.2022YFSH0047)。
文摘Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.
基金National Key Research and Development Program of China(2023YFA1507602)National Natural Science Foundation of China (22171010, 62174011)。
文摘Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability presents a significant challenge. Recent advances have demonstrated that optoelectronic devices based on monolayer nanoparticle films exhibit both high luminescence efficiency and long-term stability.Our research demonstrates that mobility limitations and anisotropic alignments in CsPbBr3nanocube monolayer films are key to their stabilization, hindering spontaneous growth through face-to-face fusion and resulting in the formation of connecting necks in a diagonal direction. Introducing laser irradiation confirmed this by significantly accelerating nanocubes growth, increasing mobility, and enhancing local structural ordering, leading to larger and more regularly shaped nanosheets. Fourier transform infrared spectroscopy and energy dispersive spectroscopy line-scan analyses indicated that laser irradiation did not disrupt the ligand structure. Transmission electron microscopy and correlative cathodoluminescence electron microscopy revealed the effects of post-growth and heterogeneous structures, including enhanced luminescence and inhomogeneous intensity in the nanosheets. These findings deepen the understanding of the post-growth mechanism of monolayer nanoparticles and the structure-emission correlation and highlight the unique role of laser irradiation in directing the formation of well-defined and regular nanostructures.