Abscisic acid(ABA)plays a key role in promoting the growth and development of plants,as well as mediating the responses of plants to adverse environmental conditions.Here,we measured the photosynthetic capacity of wil...Abscisic acid(ABA)plays a key role in promoting the growth and development of plants,as well as mediating the responses of plants to adverse environmental conditions.Here,we measured the photosynthetic capacity of wild-type RR,mutant sitiens(sit),and ABA-pretreated sit tomato seedlings following exposure to low-temperature(LT)stress.We found that the net photosynthetic rate,intercellular carbon dioxide concentration,transpiration rate,and stomatal conductance of sit seedlings were lower than those of RR seedlings under LT stress.The chloroplast width,area,and number of osmiophilic granules were significantly larger in sit seedlings than in RR seedlings,while the chloroplast length/width ratio was significantly lower in sit seedlings than in RR seedlings.The photochemical activity of sit seedlings was lower,and the expression of photosynthesis-related genes in sit seedlings was altered following exposure to LT stress.ABA pretreatment significantly alleviated the above phenomenon.We also conducted an RNA sequencing analysis and characterized the expression patterns of genes in tomato seedlings following exposure to LT stress.We constructed 15 cDNA libraries and identified several differentially expressed genes involved in photosynthesis,plant hormone signaling transduction,and primary and secondary metabolism.Additional analyses of genes encoding transcription factors and proteins involved in photosynthesis-related processes showed pronounced changes in expression under LT stress.Luciferase reporter assay and electrophoretic mobility shift assay revealed that WRKY22 regulates the expression of PsbA.The PSII of WRKY22 and PsbA-silenced plants was inhibited.Our findings indicate that ABA plays a role in regulating the process of photosynthesis and protecting PSII in tomato under LT stress through the WRKY22-PsbA complex.展开更多
In this study,we analyzed the agronomic and physiological indicators of the leaves and roots of 60 hulless barley varieties under low-temperature treatment,identified the crucial indicators that can reflect the ability ...In this study,we analyzed the agronomic and physiological indicators of the leaves and roots of 60 hulless barley varieties under low-temperature treatment,identified the crucial indicators that can reflect the ability of hulless barley to tolerate low-temperature,and evaluated the ability of different hulless barley varieties to tolerate low-temperature.The results indicated significant differences in the agronomic and physiological indicators of 60 hul-less barley varieties subjected to low-temperature treatment.Most of the agronomic indicators significantly decreased,whereas most of the physiological indicators significantly increased.However,the magnitude of changes in each agronomic and physiological indicator differed among the varieties.A comprehensive analysis of the agronomic and physiological indicators revealed that the antioxidant enzyme activity,soluble sugar(SSC)and free proline(FPRO)could be used as a crucial indicator to evaluate the low-temperature tolerance of hulless barley.Compared with those of agronomic indicators,the physiological indicators of the hulless variety barley better reflected its resistance to low-temperature stress.Thefinal comprehensive evaluation showed that Himalaya 22 was the most tolerant to low-temperature,whereas Changmanglan qingke was the most sensitive to low-temperature.In this study,we assessed various agronomic and physiological indicators of hulless barley plants under low-temperature stress.We also identified essential agronomic and physiological indicators for screening low-temperature-tolerant varieties.The research results thus provide a reference for screening low-tem-perature-tolerant hulless barley resources.展开更多
Prunus mume is an important woody plant that has high ornamental and economic value, widely distributed and used in landscape architecture in East Asia. In plants, basic(region) leucine zipper(bZIP) transcription fact...Prunus mume is an important woody plant that has high ornamental and economic value, widely distributed and used in landscape architecture in East Asia. In plants, basic(region) leucine zipper(bZIP) transcription factors play important regulatory roles in growth, development,dormancy and abiotic stress. To date, bZIP transcription factors have not been systematically studied in P. mume. In this study, 49 bZIP genes were first identified in P. mume, and the PmbZIP family was divided into 12 groups according to the grouping principles for the Arabidopsis thaliana bZIP family. For the first time, we constructed a detailed model of the PmbZIP domains(R-x_(3)–N-(x)_7-R/K-x_(2)-K-x_(6)-L-x_(6)-L-_(6)-L). Phylogenetic and synteny analyses showed that PmbZIPs duplication events might have occurred during the large-scale genome duplication events. A relatively short time of speciation and the finding that 91.84% of the bZIP genes formed orthologous pairs between P. mume and Prunus armeniaca provided evidence of a close relationship. Gene expression patterns were analysed in different tissues and periods, indicating that PmbZIP genes with the same motifs exhibited similar expression patterns. The gene expression results showed that PmbZIP31/36/41 genes played a more prominent role in the response to freezing stress than cold stress. The expression level of almost all subset Ⅲ genes was upregulated under freezing treatment, especially after cold exposure. We analysed the gene expression patterns of PmbZIP12/31/36/41/48 and their responses to low-temperature stress, which provided useful resources for future studies on the cold/freezing-tolerant molecular breeding of P. mume.展开更多
Three varieties were employed as materials to study changes of photosynthetic traits under low-temperature stress. The results showed that Pn, Gs and Tr decreased under low-temperature treatment. Ci decreased under lo...Three varieties were employed as materials to study changes of photosynthetic traits under low-temperature stress. The results showed that Pn, Gs and Tr decreased under low-temperature treatment. Ci decreased under low-temperature treatment 18℃/ 9℃, and 16℃/7℃, and it decreased in earlier stage after increased under 14℃/5℃. WUE was increased in earlier stage and after stabilized. The order of the three varieties of cold resistance were Jinyu 5〉Xingken 3〉Jidan 198. They could make self-regulation through adjusting Gs, Tr, Ci and WUE.展开更多
Stress induced by low temperature, which represents a widespread environmental factor,strongly affects maize growth and yield. However, the physiological characteristics and molecular regulatory mechanisms of maize se...Stress induced by low temperature, which represents a widespread environmental factor,strongly affects maize growth and yield. However, the physiological characteristics and molecular regulatory mechanisms of maize seedlings in response to cold remain poorly understood. In this study, using RNA-seq, we investigated the transcriptome profiles of two sweet com inbred lines, "Richao"(RC) and C5, under cold stress. A total of 357 and 455 differentially expressed genes(DEGs) were identified in the RC and C5 lines, respectively, 94 DEGs were detected as common DEGs related to cold response in both genotypes, and a total of 589 DEGs were detected as cold tolerance-associated genes. By combining protein function clustering analysis and significantly enriched Gene Ontology(GO) terms analysis,we suggest that transcription factors may play a dominating role in the cold stress response and tolerance of sweet com. Furthermore, 74 differentially expressed transcription factors were identified, of those many genes involved in the metabolism and regulation of hormones. These results expand our understanding of the complex mechanisms involved in chilling tolerance in maize, and provide a set of candidate genes for further genetic analyses.展开更多
The changes of plasmalemma permeability and some primary inorganic ions of Antarctic ice microalgae ( Chlamydomonas sp. ICE-L) in the low-temperature stress were examined. The plasmalemma of 1CE-L could maintain the...The changes of plasmalemma permeability and some primary inorganic ions of Antarctic ice microalgae ( Chlamydomonas sp. ICE-L) in the low-temperature stress were examined. The plasmalemma of 1CE-L could maintain the stability at the freezing condition of -6 ℃. That signifies that it could maintain the proper function of plasmalemma and stability of the intracellular environment during sea ice formation. The function of inorganic ions on low-temperature adaptation of ICE-L was investigated by using the X-ray microanalysis method. Low temperature (0 - -6 ℃ ) induces Ca^2 + concentration increment of cytoplasm, but after 24 h the content decrease quickly to normal value. As a matter of fact, Ca^2 + plays an important role as the second messenger in the low temperature adaptation of ICE-L. In addition, low temperature also influences on the other primary inorganic ions transfer and the cell maintains activity by keeping ratio balance among different ions. Above all, it is necessary for Antarctic ice microalgae to survive and breed by maintaining the stability of K^ + content and the balance of Na^ +/Cl^ -.展开更多
In this study, cDNA microarrays were developed from 3569 mRNA reads to analyze the expression profiles of the transcriptomes of Synechocystis sp. PCC6803 under low temperature (LT) stress. Among the genes on the cDN...In this study, cDNA microarrays were developed from 3569 mRNA reads to analyze the expression profiles of the transcriptomes of Synechocystis sp. PCC6803 under low temperature (LT) stress. Among the genes on the cDNA microarrays, 899 LT-affected genes exhibited a 1.5-fold (or greater) difference in expression compared with the genes from normal unstressed Synechocystis sp. PCC6803. Of the differentially expressed genes, 353 were up-regulated and 246 were down-regulated. The results showed that genes involved in photosynthesis were activated at LT (10℃), including genes for photosystem I, photosystem II, photosynthetic electron transport, and cytochrome b6/f complex. Moreover, desg, one of four genes that encode the fatty acid desaturases, was also induced by LT. However, the LT conditions to some degree enhanced the transcription of some genes. In addition, LT (10℃) may reduce cellular motility by regulating the transcription of spkA (sll1575), a serine/threonine protein kinase. The results reported in this study may contribute to a better understanding of the responses of the Synechocystis cell to LT, including pathways involved in photosynthesis and repair.展开更多
Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aq...Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs.展开更多
Electrochemical metallurgy at low temperature(<473 K)shows promise for the extraction and refinement of metals and alloys in a green and sustainable manner.However,the kinetics of the electrodeposition process is g...Electrochemical metallurgy at low temperature(<473 K)shows promise for the extraction and refinement of metals and alloys in a green and sustainable manner.However,the kinetics of the electrodeposition process is generally slow at low temperature,resulting in large overpotential and low current efficiency.Thus,the application of external physical fields has emerged as an effective strategy for improving the mass and charge transfer processes during electrochemical reactions.This review highlights the challenges associated with low-temperature electrochemical processes and briefly discusses recent achievements in optimizing electrodeposition processes through the use of external physical fields.The regulating effects on the optimization of the electrodeposition process and the strategies for select-ing various external physical fields,including magnetic,supergravity,and ultrasonic fields are summarized from the perspectives of equipment and mechanisms.Finally,advanced methods for in-situ characterization of external physical field-assisted electrodeposition processes are reviewed to gain a deeper understanding of metallic electrodeposition.An in-depth exploration of the mechanism by which external physical fields affect the electrode process is essential for enhancing the efficiency of metal extraction at low temperatures.展开更多
The occurrence of tetragonal to monoclinic phase(t→m)transformation in zirconia ceramics under humid ambient conditions induces the low-temperature degradation(LTD).Such t→m transformation could be suppressed by gra...The occurrence of tetragonal to monoclinic phase(t→m)transformation in zirconia ceramics under humid ambient conditions induces the low-temperature degradation(LTD).Such t→m transformation could be suppressed by grain size refinement or/and doping small amounts of alumina.Fine-grained dense 3mol%yttria-doped tetragonal zirconia polycrystal(3Y-TZP)ceramics were prepared by pressureless sintering a zirconia powder doped with 0.25wt%alumina.The LTD behaviors of as-prepared 3Y-TZP ceramics were evaluated by accelerated aging at 134℃in water.The samples sintered at 1300℃for 2 h achieve the relative density higher than 99.9%with the average grain size of 147 nm.The 3Y-TZP ceramic exhibits excellent LTD resistance that no t→m transformation takes place after 125 h accelerated aging.Large amounts of defects were observed inside grains evidenced by the high-resolution transmission electron microscopic(HRTEM)analysis.It is proposed that the presence of defects enhances the sintering kinetics and favors the present low-temperature densification.Possible reasons for defects formation were discussed and the mechanical properties of the 3Y-TZP ceramic were reported as well.展开更多
The design and development of high-performance anodes pose significant challenges in the construction of next-generation rechargeable lithium-ion batteries(LIBs).Sodium molybdate dihydrate(Na_(2)MoO_(4)·2H_(2)O)h...The design and development of high-performance anodes pose significant challenges in the construction of next-generation rechargeable lithium-ion batteries(LIBs).Sodium molybdate dihydrate(Na_(2)MoO_(4)·2H_(2)O)has garnered increasing attention due to its cost-effectiveness,non-toxicity and earth abundance.To enhance the Li storage performance of Na_(2)MoO_(4)·2H_(2)O,a crystallographic orientation regulation strategy is proposed in this work.Initially,density functional theory calculations are carried out to demonstrate that the(020)crystal plane of Na_(2)MoO_(4)·2H_(2)O offers the lowest energy barrier for Li^(+)migration.Subsequently,the preferred crystallographic orientation of Na_(2)MoO_(4)·2H_(2)O crystal is tuned through a low-temperature recrystallization method.Furthermore,the microstructure and phase changes of Na_(2)MoO_(4)·2H_(2)O during the lithiation/de-lithiation process are studied using in situ and ex situ XRD tests,ex situ XPS and cyclic voltammetry to unravel its Li^(+)storage mechanism.Upon application as LIBs anode,the Na_(2)MoO_(4)·2H_(2)O single-crystal particles with a preferred(020)surface exhibit superior reversible capacity,high-capacity retention and high cycling stability.The enhanced Li storage performance should be attributed to the regulated crystallographic orientation and small changes in the crystal microstructure during the charge/discharge process,which facilitates Li^(+)migration and bolsters structural stability.Notably,this study introduces a novel concept and a simple synthesis method for the advancement of electrodes in rechargeable batteries.展开更多
The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma g...The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma generation system depending on the duty rate,as well as the pulse repetition rate,are presented.The operating modes of the system have been established,in which a minimum of energy consumption is achieved.The issues of evaluating the interaction of plasma with objects based on the analysis of changes in signal parameters in the high-voltage circuit of the generator are also considered.展开更多
Critical temperature is one of the most important parameters for the control of crop frost protection through airflow disturbance.It changes with complex weather conditions,thus it is difficult to be determined.A meth...Critical temperature is one of the most important parameters for the control of crop frost protection through airflow disturbance.It changes with complex weather conditions,thus it is difficult to be determined.A method of testing electrical property of tea leaves under cold stress was put forward to indicate critical temperature.The testing system was established to measure the capacitance,impedance,resistance and reactance of the samples under different air temperatures,air humidities and airflow velocities.The variation of the electrical property was also analyzed.The results show that at humidity below 70%and airflow velocity of 0 m/s the impedance and resistance increased slowly,while the reactance kept steady when air temperature decreased from 8.0°C to around−6.3°C,and then increased rapidly from around−6.3°C to−15.0°C.There were no significant differences of the above parameters and variation trend under different airflow velocities.There was an exponential relationship between the impedance and the temperature.The capacitance was rather small and almost no change occurred with air temperature under different conditions of air velocity and humidity,except a few abrupt peaks.The maximum peak capacitance was representative of its response at certain humidity and airflow velocity.The typical temperatures were close to a range,where the other three parameters began to increase rapidly.The typical temperature dropped to the lowest of−7.8°C at the airflow velocity of 0 m/s.Therefore,the characteristic response of the capacitance could indicate critical temperature of tea leaves.展开更多
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut...The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.展开更多
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista...Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.展开更多
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ...It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.展开更多
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d...CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.展开更多
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice ...Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.展开更多
With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a h...With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs.展开更多
基金supported by the National Natural Science Foundation of China(32272791 and 32072651)the earmarked fund for CARS(CARS-23)+1 种基金the Joint Fund for Innovation Enhancement of Liaoning Province,China(2021-NLTS-11-01)the support program for Young and Middle-aged Scientific and Technological Innovation Talents,China(RC210293)。
文摘Abscisic acid(ABA)plays a key role in promoting the growth and development of plants,as well as mediating the responses of plants to adverse environmental conditions.Here,we measured the photosynthetic capacity of wild-type RR,mutant sitiens(sit),and ABA-pretreated sit tomato seedlings following exposure to low-temperature(LT)stress.We found that the net photosynthetic rate,intercellular carbon dioxide concentration,transpiration rate,and stomatal conductance of sit seedlings were lower than those of RR seedlings under LT stress.The chloroplast width,area,and number of osmiophilic granules were significantly larger in sit seedlings than in RR seedlings,while the chloroplast length/width ratio was significantly lower in sit seedlings than in RR seedlings.The photochemical activity of sit seedlings was lower,and the expression of photosynthesis-related genes in sit seedlings was altered following exposure to LT stress.ABA pretreatment significantly alleviated the above phenomenon.We also conducted an RNA sequencing analysis and characterized the expression patterns of genes in tomato seedlings following exposure to LT stress.We constructed 15 cDNA libraries and identified several differentially expressed genes involved in photosynthesis,plant hormone signaling transduction,and primary and secondary metabolism.Additional analyses of genes encoding transcription factors and proteins involved in photosynthesis-related processes showed pronounced changes in expression under LT stress.Luciferase reporter assay and electrophoretic mobility shift assay revealed that WRKY22 regulates the expression of PsbA.The PSII of WRKY22 and PsbA-silenced plants was inhibited.Our findings indicate that ABA plays a role in regulating the process of photosynthesis and protecting PSII in tomato under LT stress through the WRKY22-PsbA complex.
基金This research was supported by National Natural Science Foundation of China(NSFC)(32060423)the Open Project of State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University(2023-ZZ-01)+2 种基金National Natural Science Foundation of China(NSFC),Key Program of Regional Innovation and Development Joint Fund(U22A20453)Qinghai University Natural Science Foundation for Young Scholars(2022-QNY-3)Innovation Fund of Qinghai Academy of Agricultural and Forestry Sciences(2022-NKY-04).
文摘In this study,we analyzed the agronomic and physiological indicators of the leaves and roots of 60 hulless barley varieties under low-temperature treatment,identified the crucial indicators that can reflect the ability of hulless barley to tolerate low-temperature,and evaluated the ability of different hulless barley varieties to tolerate low-temperature.The results indicated significant differences in the agronomic and physiological indicators of 60 hul-less barley varieties subjected to low-temperature treatment.Most of the agronomic indicators significantly decreased,whereas most of the physiological indicators significantly increased.However,the magnitude of changes in each agronomic and physiological indicator differed among the varieties.A comprehensive analysis of the agronomic and physiological indicators revealed that the antioxidant enzyme activity,soluble sugar(SSC)and free proline(FPRO)could be used as a crucial indicator to evaluate the low-temperature tolerance of hulless barley.Compared with those of agronomic indicators,the physiological indicators of the hulless variety barley better reflected its resistance to low-temperature stress.Thefinal comprehensive evaluation showed that Himalaya 22 was the most tolerant to low-temperature,whereas Changmanglan qingke was the most sensitive to low-temperature.In this study,we assessed various agronomic and physiological indicators of hulless barley plants under low-temperature stress.We also identified essential agronomic and physiological indicators for screening low-temperature-tolerant varieties.The research results thus provide a reference for screening low-tem-perature-tolerant hulless barley resources.
基金supported by the National Natural Science Foundation of China (Grant No. 32071816)the Opening Preject of State Key Laboratory of Tree Genetics and Breeding (Grant No. K2021101)Special Fund for Beijing Common Construction Project。
文摘Prunus mume is an important woody plant that has high ornamental and economic value, widely distributed and used in landscape architecture in East Asia. In plants, basic(region) leucine zipper(bZIP) transcription factors play important regulatory roles in growth, development,dormancy and abiotic stress. To date, bZIP transcription factors have not been systematically studied in P. mume. In this study, 49 bZIP genes were first identified in P. mume, and the PmbZIP family was divided into 12 groups according to the grouping principles for the Arabidopsis thaliana bZIP family. For the first time, we constructed a detailed model of the PmbZIP domains(R-x_(3)–N-(x)_7-R/K-x_(2)-K-x_(6)-L-x_(6)-L-_(6)-L). Phylogenetic and synteny analyses showed that PmbZIPs duplication events might have occurred during the large-scale genome duplication events. A relatively short time of speciation and the finding that 91.84% of the bZIP genes formed orthologous pairs between P. mume and Prunus armeniaca provided evidence of a close relationship. Gene expression patterns were analysed in different tissues and periods, indicating that PmbZIP genes with the same motifs exhibited similar expression patterns. The gene expression results showed that PmbZIP31/36/41 genes played a more prominent role in the response to freezing stress than cold stress. The expression level of almost all subset Ⅲ genes was upregulated under freezing treatment, especially after cold exposure. We analysed the gene expression patterns of PmbZIP12/31/36/41/48 and their responses to low-temperature stress, which provided useful resources for future studies on the cold/freezing-tolerant molecular breeding of P. mume.
基金Supported by the Science and Technology Foundation(2008BADB3B09-03)
文摘Three varieties were employed as materials to study changes of photosynthetic traits under low-temperature stress. The results showed that Pn, Gs and Tr decreased under low-temperature treatment. Ci decreased under low-temperature treatment 18℃/ 9℃, and 16℃/7℃, and it decreased in earlier stage after increased under 14℃/5℃. WUE was increased in earlier stage and after stabilized. The order of the three varieties of cold resistance were Jinyu 5〉Xingken 3〉Jidan 198. They could make self-regulation through adjusting Gs, Tr, Ci and WUE.
基金supported by the Sciences and Technology Project of Guangdong Province (Nos. 20148070706012, 20158020202006)the Foundation of the President of the Guangdong Academy of Agricultural Sciences (No. 201509)the Science and Information Technology Bureau of Guangzhou (No. 2013J2200083)
文摘Stress induced by low temperature, which represents a widespread environmental factor,strongly affects maize growth and yield. However, the physiological characteristics and molecular regulatory mechanisms of maize seedlings in response to cold remain poorly understood. In this study, using RNA-seq, we investigated the transcriptome profiles of two sweet com inbred lines, "Richao"(RC) and C5, under cold stress. A total of 357 and 455 differentially expressed genes(DEGs) were identified in the RC and C5 lines, respectively, 94 DEGs were detected as common DEGs related to cold response in both genotypes, and a total of 589 DEGs were detected as cold tolerance-associated genes. By combining protein function clustering analysis and significantly enriched Gene Ontology(GO) terms analysis,we suggest that transcription factors may play a dominating role in the cold stress response and tolerance of sweet com. Furthermore, 74 differentially expressed transcription factors were identified, of those many genes involved in the metabolism and regulation of hormones. These results expand our understanding of the complex mechanisms involved in chilling tolerance in maize, and provide a set of candidate genes for further genetic analyses.
文摘The changes of plasmalemma permeability and some primary inorganic ions of Antarctic ice microalgae ( Chlamydomonas sp. ICE-L) in the low-temperature stress were examined. The plasmalemma of 1CE-L could maintain the stability at the freezing condition of -6 ℃. That signifies that it could maintain the proper function of plasmalemma and stability of the intracellular environment during sea ice formation. The function of inorganic ions on low-temperature adaptation of ICE-L was investigated by using the X-ray microanalysis method. Low temperature (0 - -6 ℃ ) induces Ca^2 + concentration increment of cytoplasm, but after 24 h the content decrease quickly to normal value. As a matter of fact, Ca^2 + plays an important role as the second messenger in the low temperature adaptation of ICE-L. In addition, low temperature also influences on the other primary inorganic ions transfer and the cell maintains activity by keeping ratio balance among different ions. Above all, it is necessary for Antarctic ice microalgae to survive and breed by maintaining the stability of K^ + content and the balance of Na^ +/Cl^ -.
基金Supported by the National Natural Science Foundation of China(No.40876082)the International Innovation Partnership Program:Typical Environmental Process and Effects on Resources in Coastal Zone Area+3 种基金the Public Science and Technology Research Funds Projects of the Ocean(Nos.200905021,201205027)the Outstanding Young Scholars Fellowship of Shandong Province(Molecular Phycology,No.JQ200914)the Natural Science Foundation of Shandong Province(No.ZR2012DQ015)the Guangdong Province Comprehensive Strategic Cooperation Project of the Chinese Academy of Sciences(No.2011A090100040)
文摘In this study, cDNA microarrays were developed from 3569 mRNA reads to analyze the expression profiles of the transcriptomes of Synechocystis sp. PCC6803 under low temperature (LT) stress. Among the genes on the cDNA microarrays, 899 LT-affected genes exhibited a 1.5-fold (or greater) difference in expression compared with the genes from normal unstressed Synechocystis sp. PCC6803. Of the differentially expressed genes, 353 were up-regulated and 246 were down-regulated. The results showed that genes involved in photosynthesis were activated at LT (10℃), including genes for photosystem I, photosystem II, photosynthetic electron transport, and cytochrome b6/f complex. Moreover, desg, one of four genes that encode the fatty acid desaturases, was also induced by LT. However, the LT conditions to some degree enhanced the transcription of some genes. In addition, LT (10℃) may reduce cellular motility by regulating the transcription of spkA (sll1575), a serine/threonine protein kinase. The results reported in this study may contribute to a better understanding of the responses of the Synechocystis cell to LT, including pathways involved in photosynthesis and repair.
基金partially supported by the National Natural Science Foundation of China(22479022)Liaoning Revitalization Talents Program(XLYC2007129)。
文摘Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs.
基金supported by Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2023SP243)the National Key Research and Development Program of China(No.2022YFC2906100)the National Natural Science Foundation of China(No.92475202)are acknowledged.
文摘Electrochemical metallurgy at low temperature(<473 K)shows promise for the extraction and refinement of metals and alloys in a green and sustainable manner.However,the kinetics of the electrodeposition process is generally slow at low temperature,resulting in large overpotential and low current efficiency.Thus,the application of external physical fields has emerged as an effective strategy for improving the mass and charge transfer processes during electrochemical reactions.This review highlights the challenges associated with low-temperature electrochemical processes and briefly discusses recent achievements in optimizing electrodeposition processes through the use of external physical fields.The regulating effects on the optimization of the electrodeposition process and the strategies for select-ing various external physical fields,including magnetic,supergravity,and ultrasonic fields are summarized from the perspectives of equipment and mechanisms.Finally,advanced methods for in-situ characterization of external physical field-assisted electrodeposition processes are reviewed to gain a deeper understanding of metallic electrodeposition.An in-depth exploration of the mechanism by which external physical fields affect the electrode process is essential for enhancing the efficiency of metal extraction at low temperatures.
基金financially supported by the Foundation of Hubei Province Key Laboratory of Green Materials for Light Industry,Hubei University of Technology。
文摘The occurrence of tetragonal to monoclinic phase(t→m)transformation in zirconia ceramics under humid ambient conditions induces the low-temperature degradation(LTD).Such t→m transformation could be suppressed by grain size refinement or/and doping small amounts of alumina.Fine-grained dense 3mol%yttria-doped tetragonal zirconia polycrystal(3Y-TZP)ceramics were prepared by pressureless sintering a zirconia powder doped with 0.25wt%alumina.The LTD behaviors of as-prepared 3Y-TZP ceramics were evaluated by accelerated aging at 134℃in water.The samples sintered at 1300℃for 2 h achieve the relative density higher than 99.9%with the average grain size of 147 nm.The 3Y-TZP ceramic exhibits excellent LTD resistance that no t→m transformation takes place after 125 h accelerated aging.Large amounts of defects were observed inside grains evidenced by the high-resolution transmission electron microscopic(HRTEM)analysis.It is proposed that the presence of defects enhances the sintering kinetics and favors the present low-temperature densification.Possible reasons for defects formation were discussed and the mechanical properties of the 3Y-TZP ceramic were reported as well.
基金supported by the Natural Science Foundation of Guizhou Province(No.ZK 2022-044)the Platform of Science and Technology and Talent Team Plan of Guizhou Province(No.GCC[2023]007)+1 种基金the National Science Foundation of China(Nos.52101010 and 11964006)the Fund of Natural Science Special(Special Post)Research Foundation of Guizhou University(No.2021-018).
文摘The design and development of high-performance anodes pose significant challenges in the construction of next-generation rechargeable lithium-ion batteries(LIBs).Sodium molybdate dihydrate(Na_(2)MoO_(4)·2H_(2)O)has garnered increasing attention due to its cost-effectiveness,non-toxicity and earth abundance.To enhance the Li storage performance of Na_(2)MoO_(4)·2H_(2)O,a crystallographic orientation regulation strategy is proposed in this work.Initially,density functional theory calculations are carried out to demonstrate that the(020)crystal plane of Na_(2)MoO_(4)·2H_(2)O offers the lowest energy barrier for Li^(+)migration.Subsequently,the preferred crystallographic orientation of Na_(2)MoO_(4)·2H_(2)O crystal is tuned through a low-temperature recrystallization method.Furthermore,the microstructure and phase changes of Na_(2)MoO_(4)·2H_(2)O during the lithiation/de-lithiation process are studied using in situ and ex situ XRD tests,ex situ XPS and cyclic voltammetry to unravel its Li^(+)storage mechanism.Upon application as LIBs anode,the Na_(2)MoO_(4)·2H_(2)O single-crystal particles with a preferred(020)surface exhibit superior reversible capacity,high-capacity retention and high cycling stability.The enhanced Li storage performance should be attributed to the regulated crystallographic orientation and small changes in the crystal microstructure during the charge/discharge process,which facilitates Li^(+)migration and bolsters structural stability.Notably,this study introduces a novel concept and a simple synthesis method for the advancement of electrodes in rechargeable batteries.
文摘The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma generation system depending on the duty rate,as well as the pulse repetition rate,are presented.The operating modes of the system have been established,in which a minimum of energy consumption is achieved.The issues of evaluating the interaction of plasma with objects based on the analysis of changes in signal parameters in the high-voltage circuit of the generator are also considered.
基金The authors are grateful to the financial support by National High Technology Research and Development Program of China(2012AA10A508)National Natural Science Foundation of China(31101089)Priority Academic Program Development of Jiangsu Higher Education Institutions(2014-37).
文摘Critical temperature is one of the most important parameters for the control of crop frost protection through airflow disturbance.It changes with complex weather conditions,thus it is difficult to be determined.A method of testing electrical property of tea leaves under cold stress was put forward to indicate critical temperature.The testing system was established to measure the capacitance,impedance,resistance and reactance of the samples under different air temperatures,air humidities and airflow velocities.The variation of the electrical property was also analyzed.The results show that at humidity below 70%and airflow velocity of 0 m/s the impedance and resistance increased slowly,while the reactance kept steady when air temperature decreased from 8.0°C to around−6.3°C,and then increased rapidly from around−6.3°C to−15.0°C.There were no significant differences of the above parameters and variation trend under different airflow velocities.There was an exponential relationship between the impedance and the temperature.The capacitance was rather small and almost no change occurred with air temperature under different conditions of air velocity and humidity,except a few abrupt peaks.The maximum peak capacitance was representative of its response at certain humidity and airflow velocity.The typical temperatures were close to a range,where the other three parameters began to increase rapidly.The typical temperature dropped to the lowest of−7.8°C at the airflow velocity of 0 m/s.Therefore,the characteristic response of the capacitance could indicate critical temperature of tea leaves.
基金supported by the National Key Research and Development Program of China(No.2019YFA0705601)the National Natural Science Foundation of China(No.U23A20122,52101267)the Key Science and Technology Special Project of Henan Province(No.201111311400).
文摘The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.
基金funded by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.N2023J053).
文摘Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.
基金financially supported by the National Natural Science Foundation of China(52372191)the Natural Science Foundation of Xiamen,China(3502Z202372036)+1 种基金the China Postdoctoral Science Foundation(2022TQ0282)the support of the High-Performance Computing Center(HPCC)at Harbin Institute of Technology on first-principles calculations。
文摘It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金financially supported by the Guangzhou Basic and Applied Basic Research Foundation,China(No.303523)。
文摘CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.
基金supported financially by the National Natural Science Foundation of China,No.82071272(to YZ).
文摘Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK20220618)the National Natural Science Foundation of China(Nos.22078028 and 21978026)。
文摘With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs.