Vertical layered space-time codes have demonstrated the enormous potential to accommodate rapid flow data. Thus far, vertical layered space-time codes assumed that perfect estimates of current channel fading condition...Vertical layered space-time codes have demonstrated the enormous potential to accommodate rapid flow data. Thus far, vertical layered space-time codes assumed that perfect estimates of current channel fading conditions are available at the receiver. However, increasing the number of transmit antennas increases the required training interval and reduces the available time in which data may be transmitted before the fading coefficients change. In this paper, a vertical layered space-time code is proposed. By applying the subspace method to the layered space-time code, the symbols can be detected without training symbols and channel estimates at the transmitter or the receiver. Monte Carlo simulations show that performance can approach that of the detection method with the knowledge of the channel.展开更多
Focusing on the space-time coded multiuser mobile communication systems in the frequency-selective fading environment, this paper proposes a Vertical Bell labs LAyered Space-Time (V-BLAST) coded Multicarrier Code-Divi...Focusing on the space-time coded multiuser mobile communication systems in the frequency-selective fading environment, this paper proposes a Vertical Bell labs LAyered Space-Time (V-BLAST) coded Multicarrier Code-Division Multiple-Access (MC-CDMA) scheme and its blind channel identification algorithm. This algorithm employs an ESPRIT-like method and the singular value decomposition, and the channels between every transmit antenna of every user and every receive antenna of the base station are blindly estimated with a closed-form solution. Based on it, an equivalent Minimum Mean-Squared Error (MMSE) time-domain multiuser detector is derived. Moreover, the proposed scheme exploits the precoding in the transmitter in order to eliminate the constraint of more receive antennas than transmit ones, required by most conventional V-BLAST codec schemes. Computer simulation results demonstrate the validity of this proposed scheme.展开更多
In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,w...In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.展开更多
The pure cubic GaN(c-GaN) has been grown on (001)GaAs substrates by ECR-PAMOCVD technique at low temperature using TMGa and high pure N2 as Ga and N sources, respectively. The effects of substrate pretreatment conditi...The pure cubic GaN(c-GaN) has been grown on (001)GaAs substrates by ECR-PAMOCVD technique at low temperature using TMGa and high pure N2 as Ga and N sources, respectively. The effects of substrate pretreatment conditions on quality of cubic GaN epilayer are investigated by the measurements of TEM and XRD.It is found that hydrogen plasma cleaning, nitridation and buffer layer growth are very important for quality of cubic GaN epilayer.展开更多
This article studies the scalable broadcast scheme realized with the joint application of layered source coding,unequal error protection (UEP) and random network coding from the theoretical point of view.The success...This article studies the scalable broadcast scheme realized with the joint application of layered source coding,unequal error protection (UEP) and random network coding from the theoretical point of view.The success probability for any non-source node in a heterogeneous network to recover the most important layers of the source data is deduced.This probability proves that in this broadcast scheme every non-source node with enough capacity can always recover the source data partially or entirely as long as the finite field size is sufficiently large.Furthermore,a special construction for the local encoding kernel at the source node is proposed.With this special construction,an increased success probability for partial decoding at any non-source node is achieved,i.e.,the partial decodability offered by the scalable broadcast scheme is improved.展开更多
Systems are always designed and optimized based on full traffic load in the current literatures. However, practical systems are seldom operating at full load, even at peak traffic hours. Instead of maximizing system r...Systems are always designed and optimized based on full traffic load in the current literatures. However, practical systems are seldom operating at full load, even at peak traffic hours. Instead of maximizing system rate to achieve the full load, an optimal energy-efficient scheme to minimize the transmit power with required rates is investigated in this article. The considered scenario is a two-way relay channel using amplify-and-forward protocol of physical layer network coding, where two end nodes exchange messages via multiple relay nodes within two timeslots. A joint power allocation and relay selection scheme is designed to achieve the minimum transmit power. Through convex optimization theory, we firstly prove that single relay selection scheme is the most energy-efficient way for physical layer network coding. The closed-form expressions of power allocation are also given. Numerical simulations demonstrate the performance of the designed scheme as well as the comparison among different schemes.展开更多
Previous research on security of network coding focused on the protection of data dissemination procedures and the detection of malicious activities such as pollution attacks. The capabilities of network coding to det...Previous research on security of network coding focused on the protection of data dissemination procedures and the detection of malicious activities such as pollution attacks. The capabilities of network coding to detect other attacks have not been fully explored. In this paper, we propose a new mechanism based on physical layer network coding to detect wormhole attacks. When two signal sequences collide at the receiver, the starting point of the collision is determined by the distances between the receiver and the senders. Therefore, by comparing the starting points of the collisions at two receivers, we can estimate the distance between them and detect fake neighbor connections via wormholes. While the basic idea is clear, we have proposed several schemes at both physical and network layers to transform the idea into a practical approach. Simulations using BPSK modulation at the physical layer show that the wireless nodes can effectively detect fake neighbor connections without the adoption of special hardware or time synchronization.展开更多
基金Partially supported by the National Natural Sciences Foundation (No.69872029) and the Research Fund for Doctoral Program of Higher Education (No.1999069808) of China
文摘Vertical layered space-time codes have demonstrated the enormous potential to accommodate rapid flow data. Thus far, vertical layered space-time codes assumed that perfect estimates of current channel fading conditions are available at the receiver. However, increasing the number of transmit antennas increases the required training interval and reduces the available time in which data may be transmitted before the fading coefficients change. In this paper, a vertical layered space-time code is proposed. By applying the subspace method to the layered space-time code, the symbols can be detected without training symbols and channel estimates at the transmitter or the receiver. Monte Carlo simulations show that performance can approach that of the detection method with the knowledge of the channel.
基金Partially supported by the National Natural Science Foundation of China (No.60502022)the Research Fund for Doctoral Program of Higher Education of China (No. 20020698024, No.20030698027)
文摘Focusing on the space-time coded multiuser mobile communication systems in the frequency-selective fading environment, this paper proposes a Vertical Bell labs LAyered Space-Time (V-BLAST) coded Multicarrier Code-Division Multiple-Access (MC-CDMA) scheme and its blind channel identification algorithm. This algorithm employs an ESPRIT-like method and the singular value decomposition, and the channels between every transmit antenna of every user and every receive antenna of the base station are blindly estimated with a closed-form solution. Based on it, an equivalent Minimum Mean-Squared Error (MMSE) time-domain multiuser detector is derived. Moreover, the proposed scheme exploits the precoding in the transmitter in order to eliminate the constraint of more receive antennas than transmit ones, required by most conventional V-BLAST codec schemes. Computer simulation results demonstrate the validity of this proposed scheme.
基金the National Natural Science Foundation of China under Grant 61502411Natural Science Foundation of Jiangsu Province under Grant BK20150432 and BK20151299+7 种基金Natural Science Research Project for Universities of Jiangsu Province under Grant 15KJB520034China Postdoctoral Science Foundation under Grant 2015M581843Jiangsu Provincial Qinglan ProjectTeachers Overseas Study Program of Yancheng Institute of TechnologyJiangsu Provincial Government Scholarship for Overseas StudiesTalents Project of Yancheng Institute of Technology under Grant KJC2014038“2311”Talent Project of Yancheng Institute of TechnologyOpen Fund of Modern Agricultural Resources Intelligent Management and Application Laboratory of Huzhou Normal University.
文摘In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.
文摘The pure cubic GaN(c-GaN) has been grown on (001)GaAs substrates by ECR-PAMOCVD technique at low temperature using TMGa and high pure N2 as Ga and N sources, respectively. The effects of substrate pretreatment conditions on quality of cubic GaN epilayer are investigated by the measurements of TEM and XRD.It is found that hydrogen plasma cleaning, nitridation and buffer layer growth are very important for quality of cubic GaN epilayer.
基金supported by the National Natural Science Foundation of China (60832001)the Science and Technology Planning Project of Qinhuangdao, Hebei Province of China (201001A052)
文摘This article studies the scalable broadcast scheme realized with the joint application of layered source coding,unequal error protection (UEP) and random network coding from the theoretical point of view.The success probability for any non-source node in a heterogeneous network to recover the most important layers of the source data is deduced.This probability proves that in this broadcast scheme every non-source node with enough capacity can always recover the source data partially or entirely as long as the finite field size is sufficiently large.Furthermore,a special construction for the local encoding kernel at the source node is proposed.With this special construction,an increased success probability for partial decoding at any non-source node is achieved,i.e.,the partial decodability offered by the scalable broadcast scheme is improved.
基金supported by the International Scientific and Technological Cooperation Program (S2010GR0902)
文摘Systems are always designed and optimized based on full traffic load in the current literatures. However, practical systems are seldom operating at full load, even at peak traffic hours. Instead of maximizing system rate to achieve the full load, an optimal energy-efficient scheme to minimize the transmit power with required rates is investigated in this article. The considered scenario is a two-way relay channel using amplify-and-forward protocol of physical layer network coding, where two end nodes exchange messages via multiple relay nodes within two timeslots. A joint power allocation and relay selection scheme is designed to achieve the minimum transmit power. Through convex optimization theory, we firstly prove that single relay selection scheme is the most energy-efficient way for physical layer network coding. The closed-form expressions of power allocation are also given. Numerical simulations demonstrate the performance of the designed scheme as well as the comparison among different schemes.
基金Supported in part by the NSF CNS Award (No. 1143602)
文摘Previous research on security of network coding focused on the protection of data dissemination procedures and the detection of malicious activities such as pollution attacks. The capabilities of network coding to detect other attacks have not been fully explored. In this paper, we propose a new mechanism based on physical layer network coding to detect wormhole attacks. When two signal sequences collide at the receiver, the starting point of the collision is determined by the distances between the receiver and the senders. Therefore, by comparing the starting points of the collisions at two receivers, we can estimate the distance between them and detect fake neighbor connections via wormholes. While the basic idea is clear, we have proposed several schemes at both physical and network layers to transform the idea into a practical approach. Simulations using BPSK modulation at the physical layer show that the wireless nodes can effectively detect fake neighbor connections without the adoption of special hardware or time synchronization.