The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious int...The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.展开更多
Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-...Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-performance solid-state electrolyte thorough D–A-linked covalent organic frameworks(COFs)based on intramolecular charge transfer interactions.Unlike other reported COFbased solid-state electrolyte,the developed concept with D–A-linked COFs not only achieves electronic modulation to promote highly-selective Li^(+)migration and inhibit Li dendrite,but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries.The introduced strong electronegativity F-based ligand in COF electrolyte results in highlyselective Li^(+)(transference number 0.83),high ionic conductivity(6.7×10^(-4)S cm^(−1)),excellent cyclic ability(1000 h)in Li metal symmetric cell and high-capacity retention in Li/LiFePO_(4)cell(90.8%for 300 cycles at 5C)than substituted C-and N-based ligands.This is ascribed to outstanding D–A interaction between donor porphyrin and acceptor F atoms,which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li^(+)kinetics.Consequently,we anticipate that this work creates insight into the strategy for accelerating Li^(+)conduction in high-performance solid-state Li metal batteries through D–A system.展开更多
Porous organic cages(POCs)with permanent porosity and excellent host–vip property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testifie...Porous organic cages(POCs)with permanent porosity and excellent host–vip property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.展开更多
To explore ambient strengthening and high temperature ductility,a combined forming approach of multidirectional forging and asymmetric rolling was proposed.A novel multicomponent ultralight Mg-3.11Li-2.31Al-1.95Sn-0.9...To explore ambient strengthening and high temperature ductility,a combined forming approach of multidirectional forging and asymmetric rolling was proposed.A novel multicomponent ultralight Mg-3.11Li-2.31Al-1.95Sn-0.94Y-0.45Er alloy was fabricated.The microstructural evolution and mechanical properties were investigated by microstructural characterization and tensile test.The combined forming results in remarkable grain refinement.The ultimate tensile strength and elongation of(255±7)MPa and 24.9%,respectively,were obtained at room temperature.The contribution of various strengthening mechanisms of the rolled alloy was obtained.Microstructural examination revealed the occurrence of dynamic recrystallization at 473-573 K and dynamic grain growth at 573-623 K.The maximum elongation of 293.9% was demonstrated at 623 K and 5×10^(-4) s^(-1).The dominate deformation mechanism at elevated temperatures is dislocation viscous glide.展开更多
In order to accurately evaluate the creep-fatigue lifetime of GH720Li superalloy,a lifetime prediction model was established,reflecting the interaction between creep damage and low-cycle fatigue damage.The creep-fatig...In order to accurately evaluate the creep-fatigue lifetime of GH720Li superalloy,a lifetime prediction model was established,reflecting the interaction between creep damage and low-cycle fatigue damage.The creep-fatigue lifetime prediction results of GH720Li superalloy with an average grain size of 17.3μm were essentially within a scatter band of 2 times,indicating a strong agreement between the predicted lifetimes and experimental data.Then,considering that the grain size of the dual-property turbine disc decreases from the rim to the center,a grain-size-sensitive lifetime prediction model for creep-fatigue was established by introducing the ratio of grain boundary area.The improved model overcame the limitation of most traditional prediction methods,which failed to reflect the relationship between grain size and creep-fatigue lifetime.展开更多
The impact of cryorolling(CR)and room temperature rolling(RTR)followed by artificial aging on the corrosion characteristics of 2195 Al−Li alloy(AA2195)was studied.Transmission electron microscope,scanning electron mic...The impact of cryorolling(CR)and room temperature rolling(RTR)followed by artificial aging on the corrosion characteristics of 2195 Al−Li alloy(AA2195)was studied.Transmission electron microscope,scanning electron microscope,optical microscope,intergranular corrosion experiment,and electrochemical experiment were used.Throughout different stages of aging treatment,the corrosion behavior of both CR and RTR samples exhibited a sequential progression of pitting corrosion,followed by intergranular corrosion,and then pitting corrosion again.The corrosion rates of both samples initially showed an increase,followed by a gradual stabilization over time.The size and density of T1 phase significantly influenced the corrosion performance of the alloy.During the peak aging and over-aging stages,the CR sample exhibited superior corrosion resistance to the RTR sample,attributed to its finer T1 phase.展开更多
The repeated volume variation of lithium(Li)metal anode(LMA)upon Li^(+) plating/stripping,the volatile interface between Li and the electrolyte,and the incessant growth of Li dendrites on Li metal surface have severel...The repeated volume variation of lithium(Li)metal anode(LMA)upon Li^(+) plating/stripping,the volatile interface between Li and the electrolyte,and the incessant growth of Li dendrites on Li metal surface have severely hindered the practical application of Li in constructing high energy-density Li metal batteries(LMBs).Herein,a novel Li host(3D ZnO/CNTs/Cu)featuring ordered microchannels and lithiophilic ZnO species on the inner walls of the microchannels is introduced,which induces the uniform Li^(+) deposition into the microchannels and finally suppresses the formation of Li dendrites.The stable structure of the fabricated 3D Li host can adapt to volume variations upon Li^(+) plating/stripping,thereby enhancing electrochemical performances.Symmetric cells with the 3D ZnO/CNTs/Cu@Li anode exhibited long cycle stability at areal current densities of 0.5 and 2 mA cm^(-2);Full cells maintained a reversible discharge capacity of 105 mAh g^(-1) after 400 cycles at 1C with a capacity retention of 70%.Meanwhile,ex-situ SEM observations proved that the 3D ZnO/CNTs/Cu@Li anode can keep the structural integrity during charging/discharging(or plating/stripping).This work suggested that lithiophilic nanochannels in the Li host can significantly improve the electrochemical performance and safety of LMBs.展开更多
The influence of pouring temperature and mold temperature on the fluidity and hot tearing behavior of Al-2Li-2Cu-0.5Mg-0.15Sc-0.1Zr-0.1Ti alloys was investigated by experimental investigation and simulation assessment...The influence of pouring temperature and mold temperature on the fluidity and hot tearing behavior of Al-2Li-2Cu-0.5Mg-0.15Sc-0.1Zr-0.1Ti alloys was investigated by experimental investigation and simulation assessment.The results showed that the length of the spiral fluidity sample increases from 302 to 756 mm as the pouring temperature increases from 680 to 740℃,and from 293 to 736 mm as the mold temperature increases from 200 to 400℃.The hot tearing susceptibility(HTS)firstly decreases and then increases with increasing pouring and mold temperatures,which is mainly caused by the oxide inclusion originating from the high activity of Li at excessive pouring temperature.Excessive pouring and mold temperatures easily produce oxide inclusions and holes,leading to a reduction in fluidity and an increase in HTS of the alloy.Combining the experimental and simulation results,the optimized pouring and mold temperatures are~720℃ and~300℃ for the cast Al-Li alloy,respectively.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52172214,52272221,52171182)the Postdoctoral Innovation Project of Shandong Province(No.202102003)+2 种基金The Key Research and Development Program of Shandong Province(2021ZLGX01)the Qilu Young Scholar ProgramHPC Cloud Platform of Shandong University are also thanked.
文摘The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.
基金financial support provided by National Natural Science Foundation of China(52303283,52372232,52064049)the Major Science and Technology Projects of Yunnan Province(202302AB080019-3)+2 种基金National Natural Science Foundation of Yunnan Province(202301AS070040,202401AU070201)the Analysis and Measurements Center of Yunnan University for the sample testing servicethe Electron Microscope Center of Yunnan University for the support of this work.
文摘Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-performance solid-state electrolyte thorough D–A-linked covalent organic frameworks(COFs)based on intramolecular charge transfer interactions.Unlike other reported COFbased solid-state electrolyte,the developed concept with D–A-linked COFs not only achieves electronic modulation to promote highly-selective Li^(+)migration and inhibit Li dendrite,but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries.The introduced strong electronegativity F-based ligand in COF electrolyte results in highlyselective Li^(+)(transference number 0.83),high ionic conductivity(6.7×10^(-4)S cm^(−1)),excellent cyclic ability(1000 h)in Li metal symmetric cell and high-capacity retention in Li/LiFePO_(4)cell(90.8%for 300 cycles at 5C)than substituted C-and N-based ligands.This is ascribed to outstanding D–A interaction between donor porphyrin and acceptor F atoms,which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li^(+)kinetics.Consequently,we anticipate that this work creates insight into the strategy for accelerating Li^(+)conduction in high-performance solid-state Li metal batteries through D–A system.
基金supported by the National Natural Science Foundation of China(No.92372123)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012057,2022B1515020005,2023B1515130004)Guangzhou Basic and Applied Basic Research Foundation(No.202201011342).
文摘Porous organic cages(POCs)with permanent porosity and excellent host–vip property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.
基金supported by the National Natural Science Foundation of China(No.51334006)。
文摘To explore ambient strengthening and high temperature ductility,a combined forming approach of multidirectional forging and asymmetric rolling was proposed.A novel multicomponent ultralight Mg-3.11Li-2.31Al-1.95Sn-0.94Y-0.45Er alloy was fabricated.The microstructural evolution and mechanical properties were investigated by microstructural characterization and tensile test.The combined forming results in remarkable grain refinement.The ultimate tensile strength and elongation of(255±7)MPa and 24.9%,respectively,were obtained at room temperature.The contribution of various strengthening mechanisms of the rolled alloy was obtained.Microstructural examination revealed the occurrence of dynamic recrystallization at 473-573 K and dynamic grain growth at 573-623 K.The maximum elongation of 293.9% was demonstrated at 623 K and 5×10^(-4) s^(-1).The dominate deformation mechanism at elevated temperatures is dislocation viscous glide.
基金financially supported by the National Natural Science Foundation of China(Nos.52306183,12272245,11832007,12172238)the Natural Science Foundation of Zhejiang Province,China(No.LQ23E050022)+1 种基金the Natural Science Foundation of Sichuan Province,China(Nos.2022NSFSC0324,2022JDJQ0011)the Open Project of Failure Mechanics and Engineering Disaster Prevention,Key Laboratory of Sichuan Province,China(No.FMEDP202305)。
文摘In order to accurately evaluate the creep-fatigue lifetime of GH720Li superalloy,a lifetime prediction model was established,reflecting the interaction between creep damage and low-cycle fatigue damage.The creep-fatigue lifetime prediction results of GH720Li superalloy with an average grain size of 17.3μm were essentially within a scatter band of 2 times,indicating a strong agreement between the predicted lifetimes and experimental data.Then,considering that the grain size of the dual-property turbine disc decreases from the rim to the center,a grain-size-sensitive lifetime prediction model for creep-fatigue was established by introducing the ratio of grain boundary area.The improved model overcame the limitation of most traditional prediction methods,which failed to reflect the relationship between grain size and creep-fatigue lifetime.
基金supported by the High-tech Industry Technology Innovation Leading Plan of Hunan Province,China(No.2022GK4032)the State Key Laboratory of Precision Manufacturing for Extreme Service Performance at Central South University,China.
文摘The impact of cryorolling(CR)and room temperature rolling(RTR)followed by artificial aging on the corrosion characteristics of 2195 Al−Li alloy(AA2195)was studied.Transmission electron microscope,scanning electron microscope,optical microscope,intergranular corrosion experiment,and electrochemical experiment were used.Throughout different stages of aging treatment,the corrosion behavior of both CR and RTR samples exhibited a sequential progression of pitting corrosion,followed by intergranular corrosion,and then pitting corrosion again.The corrosion rates of both samples initially showed an increase,followed by a gradual stabilization over time.The size and density of T1 phase significantly influenced the corrosion performance of the alloy.During the peak aging and over-aging stages,the CR sample exhibited superior corrosion resistance to the RTR sample,attributed to its finer T1 phase.
基金supported by the Science Foundation of Zhejiang Sci-Tech University(18062299-Y)。
文摘The repeated volume variation of lithium(Li)metal anode(LMA)upon Li^(+) plating/stripping,the volatile interface between Li and the electrolyte,and the incessant growth of Li dendrites on Li metal surface have severely hindered the practical application of Li in constructing high energy-density Li metal batteries(LMBs).Herein,a novel Li host(3D ZnO/CNTs/Cu)featuring ordered microchannels and lithiophilic ZnO species on the inner walls of the microchannels is introduced,which induces the uniform Li^(+) deposition into the microchannels and finally suppresses the formation of Li dendrites.The stable structure of the fabricated 3D Li host can adapt to volume variations upon Li^(+) plating/stripping,thereby enhancing electrochemical performances.Symmetric cells with the 3D ZnO/CNTs/Cu@Li anode exhibited long cycle stability at areal current densities of 0.5 and 2 mA cm^(-2);Full cells maintained a reversible discharge capacity of 105 mAh g^(-1) after 400 cycles at 1C with a capacity retention of 70%.Meanwhile,ex-situ SEM observations proved that the 3D ZnO/CNTs/Cu@Li anode can keep the structural integrity during charging/discharging(or plating/stripping).This work suggested that lithiophilic nanochannels in the Li host can significantly improve the electrochemical performance and safety of LMBs.
基金financially supported by the National Natural Science Foundation of China(Nos.51871148,51821001)。
文摘The influence of pouring temperature and mold temperature on the fluidity and hot tearing behavior of Al-2Li-2Cu-0.5Mg-0.15Sc-0.1Zr-0.1Ti alloys was investigated by experimental investigation and simulation assessment.The results showed that the length of the spiral fluidity sample increases from 302 to 756 mm as the pouring temperature increases from 680 to 740℃,and from 293 to 736 mm as the mold temperature increases from 200 to 400℃.The hot tearing susceptibility(HTS)firstly decreases and then increases with increasing pouring and mold temperatures,which is mainly caused by the oxide inclusion originating from the high activity of Li at excessive pouring temperature.Excessive pouring and mold temperatures easily produce oxide inclusions and holes,leading to a reduction in fluidity and an increase in HTS of the alloy.Combining the experimental and simulation results,the optimized pouring and mold temperatures are~720℃ and~300℃ for the cast Al-Li alloy,respectively.