The effects of fresh zucchini on nutritional status, and biological indicators for the prevention of cardiovascular disease in rats fed high-fat diets investigated in this study. Thirty Sprague Dawley rats were random...The effects of fresh zucchini on nutritional status, and biological indicators for the prevention of cardiovascular disease in rats fed high-fat diets investigated in this study. Thirty Sprague Dawley rats were randomly divided into two main groups the first, negative control group Co (-) (n = 6), fed basal diet, The second group (n = 24) fed high-fat diet (containing basal diet + 5% tallow + 1% cholesterol + 0.02% bile salt). This group was divided into four subgroups each group 6 rats: group positive control co (+) fed high-fat diet only, group 1 (G (1)) fed high-fat diet plus 10% zucchini, group 2 (G (2) fed high-fat diet plus 15% zucchini and group 3 (G (3)) fed high-fat diet plus 20% zucchini. The levels of serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were measured after eight wk. of experimental treatment. The pathologic changes of the heart, spleen and kidney were evaluated. SPSS, one way ANOVA was used to analyze the results. The results indicated that the mean values of body weight gain (BWG) and feed efficiency ratio (FIR) in G (2) and G (3) showed significant decrease compared to co (-), co (+) and G 1. The results showed that in groups (G1, G2 and G3) the relative weight of heart had significant increase when compared with control negative group. But liver and spleen weight had no significant difference when compared with control negative and positive group, the levels of TC, TG and LDL-C were significantly increased in co (+) (P < 0.05) Compared to co (-), all groups fed on high fat diet containing different levels of zucchini (10%, 15% and 20%) had significant decrease in TC and LDL-C compared with co (+), also G2 and G3 had improve significant in HDL-C when compared with co. (+). The groups fed on zucchini give results similar to group co. (-). The best treatment was zucchini (15% and 20%) which had lowest values of total lipid cholesterol and LDL-C, and the best values of HDL-C, HDL-C/TC % for all groups fed on high fat diet and zucchini increased non significantly (p ≤ 0.05) the HDL-C/TC % index compared to group co. (+). while, G2 and G3 gave significant decrease in LDL-C/HDL-C ratio compared to group co. (+). Morphologic changes of heart, spleen and kidney revealed that groups G2 and G3 had a similar preventive effect against CHD in this experimental model. In conclusion, results showed that zucchini had similar potential to attenuate CHD-related parameters in a mild oxidative stress induced by high-fat diet in rats.展开更多
Indicaxanthin is a betalain that is abundant in Opuntia ficus-indica orange fruit and has antioxidative and anti-inflammatory effects. Nevertheless, very little is known about the neuroprotective potential of indicaxa...Indicaxanthin is a betalain that is abundant in Opuntia ficus-indica orange fruit and has antioxidative and anti-inflammatory effects. Nevertheless, very little is known about the neuroprotective potential of indicaxanthin. This study investigated the impact of indicaxanthin on neuronal damage and gut microbiota dysbiosis induced by a high-fat diet in mice. The mice were divided into three groups according to different diets: the negative control group was fed a standard diet;the high-fat diet group was fed a high-fat diet;and the high-fat diet + indicaxanthin group was fed a high-fat diet and received indicaxanthin orally(0.86 mg/kg per day) for 4 weeks. Brain apoptosis, redox status, inflammation, and the gut microbiota composition were compared among the different animal groups. The results demonstrated that indicaxanthin treatment reduced neuronal apoptosis by downregulating the expression of proapoptotic genes and increasing the expression of antiapoptotic genes. Indicaxanthin also markedly decreased the expression of neuroinflammatory proteins and genes and inhibited high-fat diet–induced neuronal oxidative stress by reducing reactive oxygen and nitrogen species, malondialdehyde, and nitric oxide levels. In addition, indicaxanthin treatment improved the microflora composition by increasing the abundance of healthy bacterial genera, known as producers of short-chain fatty acids(Lachnospiraceae, Alloprovetella, and Lactobacillus), and by reducing bacteria related to unhealthy profiles(Blautia, Faecalibaculum, Romboutsia and Bilophila). In conclusion, indicaxanthin has a positive effect on high-fat diet–induced neuronal damage and on the gut microbiota composition in obese mice.展开更多
Aflatoxin B_1(AFB_1)is a common contaminant in cereals of global concern,and long-term low-dose exposure can adversely affect human health.Here,we showed that populations with dietary patterns characterized by high-fa...Aflatoxin B_1(AFB_1)is a common contaminant in cereals of global concern,and long-term low-dose exposure can adversely affect human health.Here,we showed that populations with dietary patterns characterized by high-fat diet(HFD)might have an increased risk of exposure to high levels of AFB_1.Our data indicated that chronic exposure of AFB_1 induced“gut-liver axis”injury in mice under HFD and normal diet(ND)patterns.AFB_1 further aggravated hepatic and intestinal injury,and intestinal microbiota disruption in HFD mice.Bifidobacterium breve BAA-2849 intervention analysis showed that liver injury and lipid disorders caused by AFB_1 exposure were alleviated by regulating the proportions of different gut microbes.We demonstrated through a mice model that the populations with a dietary pattern of HFD might be more susceptible to AFB_1 exposure and adverse effects on the gut-liver axis,and the toxicity of AFB_1 exposure can be alleviated by regulating the gut microbiota.展开更多
Oat avenanthramides(AVNs)have been found to exhibit novel lipid-lowering effects.However,the mechanism remains unclear.In this study,the effect of avenanthramide B(AVN B),as one of the major AVNs,on highfat diet(HFD)-...Oat avenanthramides(AVNs)have been found to exhibit novel lipid-lowering effects.However,the mechanism remains unclear.In this study,the effect of avenanthramide B(AVN B),as one of the major AVNs,on highfat diet(HFD)-induced mice was investigated.Results showed that AVN B significantly inhibited weight gain and improved hepatic and serum lipid biochemical indices.Hepatic RNA-sequencing analysis suggested that AVN B significantly modulates fatty acid(FA)metabolism.Hepatic real-time qualitative polymerase chain reaction(RT-q PCR)and Western blot results indicated that AVN B could alleviate FA synthesis by activating the adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)-sterol regulatory element binding protein-1c(SREBP1c)-fatty acid synthase(FAS),and increase FA oxidation by activating the AMPK/carnitine palmitoyltransferase 1A(CPT1A)and peroxisome proliferator-activated receptorα(PPARα).Additionally,AVN B had a regulating effect on ileum lipid metabolism by inhibiting intestinal cell differentiation and downregulating the expression levels of FA absorption-related protein and gene.Moreover,AVN B promoted the growth of beneficial bacteria and fungi such as Coriobacteriaceae_UCG-002,Parvibacter,Enterococcus,and Aspergillus,while decreasing the abundance of Roseburia,unclassified_f_Lachnospiraceae,Cladosporium,Eurotium,unclassified_f_Aspergillaceae and unclassified_f_Ceratocystidaceae.All these results provided new points of the lipid-lowing mechanism of AVNs and oats via the gut-liver axis.展开更多
High-fat diet(HFD)consumption induces gut microbiota dysbiosis and neuropsychiatric disorders,including anxiety.Previous research found that Tremella polysaccharide(TP)exhibited neuroprotective effects in vitro and in...High-fat diet(HFD)consumption induces gut microbiota dysbiosis and neuropsychiatric disorders,including anxiety.Previous research found that Tremella polysaccharide(TP)exhibited neuroprotective effects in vitro and in vivo.This study aimed to investigate the beneficial effects of TP on HFD-induced anxiety-like behaviors and elucidate the underlying mechanisms from the point view of the microbiota-gut-brain axis.Two groups of HFD-induced obese mice were orally gavaged with low dose(TPL,40 mg/kg)and high dose(TPH,400 mg/kg)of TP.A 12-week administration of TPH could significantly improve anxiety-like behaviors in HFD mice.In the hippocampus,microglia activation,the expression of blood-brain barrier(BBB)markers,and the levels of two neurotransmitters(serotonin and norepinephrine)were countered by TPH in mice consuming HFD.Furthermore,TPH improved the intestinal permeability and immune response of the enterocytes in HFD-fed mice.The gut microbiota dysbiosis induced by HFD was also rebalanced by TP treatments,especially in Proteobacteria and its lower taxa.The correlational analysis also suggested that shifts of some microbial genera were closely associated with body weight and the parameters of behavioral tests.Interestingly,fecal microbiota transplantation(FMT)results indicated that fecal microbiota from TPH-treated obese mice could prevent HFD-induced anxiety-like behaviors,suppressed microglia activation and intestinal permeability.In conclusion,the present study indicated that TP intake is a promising dietary intervention strategy to prevent HFD-induced anxiety via the microbiota-gut-brain axis.展开更多
Maternal consumption of a high-fat diet has been linked to increased risks of obesity and impaired glucose metabolism in offspring.However,the precise epigenetic mechanisms governing these intergenerational effects,pa...Maternal consumption of a high-fat diet has been linked to increased risks of obesity and impaired glucose metabolism in offspring.However,the precise epigenetic mechanisms governing these intergenerational effects,particularly during the early stages of offspring development,remain poorly understood.In this study,female C57BL/6J mice were randomly assigned to either a high-fat diet or normal chow diet throughout gestation and lactation.Methylated DNA immunoprecipitation(MeDIP)coupled with microarray analysis was employed to identify differentially methylated genes in the livers of offspring at weaning age.We found that maternal high-fat diet feeding predisposes offspring to obesity and impaired glucose metabolism as early as the weaning period.DNA methylation profile analysis unveiled a significant enrichment of differentially methylated genes within the natural killer(NK)cell-mediated cytotoxicity pathway.MeDIP-PCR validated reduced methylation levels of specific genes within this pathway,including tumour necrosis factorα(TNF-α),phosphoinositide 3-kinase(PI3K),and SHC adaptor protein 1(SHC1).Consistently,the expressions of TNF-α,PI3K,and SHC1 were significantly upregulated,accompanied by elevated serum TNF-αand interleukin-6(IL-6)levels in offspring from dams fed with high-fat diet.Moreover,we assessed the expressions of genes associated with NK cell activities,uncovering a notable rise in hepatic granzyme B levels and a trend towards increased CD107a expression in offspring from dams fed a high-fat diet.In addition,methylation levels of TNF-α,PI3K,and SHC1 promoters were inversely correlated with glucose response during glucose tolerance testing.In conclusion,our findings underscore the critical role of the NK cell-mediated cytotoxicity signaling pathway in mediating DNA methylation patterns,thereby contributing to the programming effects of maternal high-fat diet consumption on offspring glucose metabolism as early as the weaning period.展开更多
Background Research on low-protein-level diets has indicated that even though the profiles of essential amino acids(EAAs)follow the recommendation for a normal-protein-level diet,broilers fed low-protein diets failed ...Background Research on low-protein-level diets has indicated that even though the profiles of essential amino acids(EAAs)follow the recommendation for a normal-protein-level diet,broilers fed low-protein diets failed to achieve pro-ductive performance compared to those fed normal diets.Therefore,it is imperative to reassess the optimum profile of EAAs in low-protein diets and establish a new ideal pattern for amino acid balance.Furthermore,identifying novel sensitive biomarkers for assessing amino acid balance will greatly facilitate the development of amino acid nutrition and application technology.In this study,12 dietary treatments[Con(+),Con(-),L&A(-),L&A(+),M&C(-),M&C(+),BCAA(-),BCAA(+),Thr(-),Thr(+),Trp(-)and Trp(+)]were established by combining different EAAs including lysine and argi-nine,methionine and cysteine,branched-chain amino acid(BCAA),threonine,and tryptophan to observe the growth and development of the broiler chickens fed with low-protein-level diets.Based on the biochemical parameters and untargeted metabolomic analysis of animals subjected to different treatments,biomarkers associated with opti-mal and suboptimal amino acid balance were identified.Results Growth performance,carcass characteristics,hepatic enzyme activity,serum biochemical parameters,and breast muscle mRNA expression differed significantly between male and female broilers under different dietary amino acid patterns.Male broilers exhibited higher sensitivity to the adjustment of amino acid patterns than female broilers.For the low-protein diet,the dietary concentrations of lysine,arginine,and tryptophan,but not of methionine,cystine,or threonine,needed to be increased.Therefore,further research on individual BCAA is required.For untar-geted metabolomic analysis,Con(+)was selected as a normal diet(NP)while Con(-)represented a low-protein diet(LP).L&A(+)denotes a low-protein amino acid balanced diet(LPAB)and Thr(+)represents a low-protein amino acid imbalance diet(LPAI).The metabolites oxypurinol,pantothenic acid,and D-octopine in birds were significantly influ-enced by different dietary amino acid patterns.Conclusion Adjusting the amino acid profile of low-protein diets is required to achieve normal growth performance in broiler chickens fed normal-protein diets.Oxypurinol,pantothenic acid,and D-octopine have been identified as potentially sensitive biomarkers for assessing amino acid balance.展开更多
The Nyctereutes procyonoides is highly regarded in the farming and leather industries because of the high value of its fur,which renders artificial feeding a crucial aspect.However,high-fat diets have always been asso...The Nyctereutes procyonoides is highly regarded in the farming and leather industries because of the high value of its fur,which renders artificial feeding a crucial aspect.However,high-fat diets have always been associated with a variety of digestive disorders.This study aimed to investigate the impact of high-fat diets on the gut microbiota and the mechanisms of gut damage in Nyctereutes procyonoides.16S rRNA sequencing demonstrated that high-fat diets caused diarrhea and intestinal damage through alterations in the gut microbiota:a decrease in the abundance of Firmicutes,an increase in the abundance of Proteobacteria and Actinobacteria,and an increase in the abundance of Enterococcaceae,Escherichia coli-Shigella,Clostridium and Lactobacillus.Subsequently,changes in metabolic path-ways,such as amino and fatty acid pathways,were identified by KEGG and COG enrichment analysis,and the TLR4/NF-κB/NLRP3 inflammatory signaling pathway was shown to be activated by high-fat diets.In addition,high-fat diets lead to the accumulation of ROS and MDA and reduce the activity of the antioxidant enzymes GSH-PX and SOD.C orrespondingly,the levels of proinflammatory cytokines(IL-6,IL-1βand TNF-α)were significantly increased,and the apoptosis and necrosis signaling pathways of colonic cells were detected,causing a dramatic decrease in the expression of intestinal tight junction proteins(Occludin,E-cadherin,ZO-1 and ZO-2).In conclusion,high-fat diets altered the structure of the Nyctereutes procyonoides gut microbiota community and led to colon damage.This study provides new insights into the intestinal health of Nyctereutes procyonoides.展开更多
Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running o...Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice.展开更多
Forsythia suspensa,belonging to the deciduous shrubs of the Luteaceae family,a traditional Chinese medicine,has effects of alleviating swelling,clearing heat,detoxification and promoting blood circulation.The leaves o...Forsythia suspensa,belonging to the deciduous shrubs of the Luteaceae family,a traditional Chinese medicine,has effects of alleviating swelling,clearing heat,detoxification and promoting blood circulation.The leaves of F.suspensa contain multiple chemical components and have a long history of use in folk medicines and health foods.The purpose of this study was to explore the effects of forsythin extract from F.suspensa leaves on intestinal microbiota and short-chain fatty acid(SCFA)content in rats with obesity induced by a high-fat diet.Forsythin extract in F.suspensa leaves increased the abundance of the intestinal microbiota,ameliorated intestinal microbiota disorders and inhibited the increase in total SCFA content in the intestinal tract in rats with obesity induced by a high-fat diet.These results suggested that forsythin extract in F.suspensa leaves may slow the development of obesity induced by a high-fat diet;thus,its active components and efficacy are worthy of further study.展开更多
BACKGROUND Excessive saturated fat intake compromises the integrity of the intestinal mucosa,leading to low-grade inflammation,impaired mucosal integrity,and increased intestinal permeability,resulting in the migratio...BACKGROUND Excessive saturated fat intake compromises the integrity of the intestinal mucosa,leading to low-grade inflammation,impaired mucosal integrity,and increased intestinal permeability,resulting in the migration of lipopolysaccharide(LPS)to other tissues.AIM To evaluate the chronic effects(at 10 and 16 wk)of a high-fat diet(HFD)(with 50%energy as fat)on the phylogenetic gut microbiota distribution and intestinal barrier structure and protection in C57BL/6 mice.METHODS Forty adult male mice were divided into four nutritional groups,where the letters refer to the type of diet(control and HFD or HF)and the numbers refer to the period(in weeks)of diet administration:Control diet for 10 wk,HFD for 10 wk,control diet for 16 wk,and HFD for 16 wk.After sacrifice,biochemical,molecular,and stereological analyses were performed.RESULTS The HF groups were overweight,had gut dysbiosis,had a progressive decrease in occludin immunostaining,and had increased LPS concentrations.Dietary progression reduced the number of goblet cells per large intestine area and Mucin2 expression in the HF16 group,consistent with a completely disarranged intestinal ultrastructure after 16 wk of HFD intake.CONCLUSION Chronic HFD intake causes overweight,gut dysbiosis,and morphological and functional alterations of the intestinal barrier after 10 or 16 wk.Time-dependent reductions in goblet cell numerical density and mucus production have emerged as targets for countering obesity-driven intestinal damage.展开更多
Inflammatory bowel disease(IBD)is the consequence of a complex interplay between environmental factors,like dietary habits,that alter intestinal microbiota in response to luminal antigens in genetically susceptible in...Inflammatory bowel disease(IBD)is the consequence of a complex interplay between environmental factors,like dietary habits,that alter intestinal microbiota in response to luminal antigens in genetically susceptible individuals.Epigenetics represents an auspicious area for the discovery of how environmental factors influence the pathogenesis of inflammation,prognosis,and response to therapy.Consequently,it relates to gene expression control in response to environmental influences.The increasing number of patients with IBD globally is indicative of the negative effects of a food supply rich in trans and saturated fats,refined su-gars,starches and additives,as well as other environmental factors like seden-tarism and excess bodyweight,influencing the promotion of gene expression and increasing DNA hypomethylation in IBD.As many genetic variants are now associated with Crohn's disease(CD),new therapeutic strategies targeting modi-fiable environmental triggers,such as the implementation of an anti-inflammatory diet that involves the removal of potential food antigens,are of growing interest in the current literature.Diet,as a strong epigenetic factor in the pathogenesis of inflammatory disorders like IBD,provides novel insights into the pathophysio-logy of intestinal and extraintestinal inflammatory disorders.展开更多
Lactobacillus spp.can be beneficial for the prevention or treatment of ulcerative colitis(UC).In this study,153 participants who followed vegan,omnivorous,or high-meat diet were recruited.Compositional analysis of the...Lactobacillus spp.can be beneficial for the prevention or treatment of ulcerative colitis(UC).In this study,153 participants who followed vegan,omnivorous,or high-meat diet were recruited.Compositional analysis of the Lactobacillus community in feces revealed that Lactobacillus fermentum strains were significantly affected by diet.Administration of mixed L.fermentum strains from vegans significantly improved inflammation compared to that from omnivores and high-meat consumers,as evidenced by a significant reduction in colonic tissue damage,improvement in inflammatory cytokines,enhanced expression of ZO-1,occludin,and claudin-3,and a significant increase in short chain fatty acids concentration.The effect of a single strain of L.fermentum was similar to that of a mixed strains of L.fermentum group.Genomic analysis suggested that L.fermentum strains from the guts of vegans possessed a higher prevalence of genes involved in carbohydrate catabolism than those from the guts of omnivores and high-meat eaters.In particular,the ME2 gene is involved in the biosynthesis of acetate,a compound considered to possess anti-inflammatory properties.In conclusion,this study indicates strain-specific differences in the ability of L.fermentum strains to alleviate UC in mice,influenced by habitual diets。展开更多
Background The development of a sustainable business model with social acceptance,makes necessary to develop new strategies to guarantee the growth,health,and well-being of farmed animals.Debaryomyces hansenii is a ye...Background The development of a sustainable business model with social acceptance,makes necessary to develop new strategies to guarantee the growth,health,and well-being of farmed animals.Debaryomyces hansenii is a yeast species that can be used as a probiotic in aquaculture due to its capacity to i)promote cell proliferation and differen-tiation,ii)have immunostimulatory effects,iii)modulate gut microbiota,and/or iv)enhance the digestive function.To provide inside into the effects of D.hansenii on juveniles of gilthead seabream(Sparus aurata)condition,we inte-grated the evaluation of the main key performance indicators coupled with the integrative analysis of the intestine condition,through histological and microbiota state,and its transcriptomic profiling.Results After 70 days of a nutritional trial in which a diet with low levels of fishmeal(7%)was supplemented with 1.1%of D.hansenii(17.2×10^(5) CFU),an increase of ca.12%in somatic growth was observed together with an improve-ment in feed conversion in fish fed a yeast-supplemented diet.In terms of intestinal condition,this probiotic modu-lated gut microbiota without affecting the intestine cell organization,whereas an increase in the staining intensity of mucins rich in carboxylated and weakly sulphated glycoconjugates coupled with changes in the affinity for certain lectins were noted in goblet cells.Changes in microbiota were characterized by the reduction in abundance of several groups of Proteobacteria,especially those characterized as opportunistic groups.The microarrays-based transcrip-tomic analysis found 232 differential expressed genes in the anterior-mid intestine of S.aurata,that were mostly related to metabolic,antioxidant,immune,and symbiotic processes.Conclusions Dietary administration of D.hansenii enhanced somatic growth and improved feed efficiency param-eters,results that were coupled to an improvement of intestinal condition as histochemical and transcriptomic tools indicated.This probiotic yeast stimulated host-microbiota interactions without altering the intestinal cell organization nor generating dysbiosis,which demonstrated its safety as a feed additive.At the transcriptomic level,D.hansenii pro-moted metabolic pathways,mainly protein-related,sphingolipid,and thymidylate pathways,in addition to enhance antioxidant-related intestinal mechanisms,and to regulate sentinel immune processes,potentiating the defensive capacity meanwhile maintaining the homeostatic status of the intestine.展开更多
Background Pink bollworm,Pectinophora gossypiella(Saunders)(Lepidoptera:Gelechiidae)has become a poten-tial pest of cotton by causing substantial yield losses around the world including Pakistan.Keeping in view the fa...Background Pink bollworm,Pectinophora gossypiella(Saunders)(Lepidoptera:Gelechiidae)has become a poten-tial pest of cotton by causing substantial yield losses around the world including Pakistan.Keeping in view the facts like limited research investigations,unavailability,and high cost of artificial diet’s constituents and their premixes,the present research investigations on the dietary aspect of P.gossypiella were conducted.The larvae of P.gossypiella were reared on different diets that were prepared using indigenous elements.The standard/laboratory diet com-prised of wheat germ meal 34.5 g,casein 30.0 g,agar–agar 20.0 g,sucrose 10.0 g,brewer’s yeast 5.0 g,α-cellulose 1.0 g,potassium-sorbate1.5 g,niplagin 0.5 g,decavitamin 0.01 g,choline-chloride 0.06 g,maize-oil 3.30 g,honey 2.0 g,and water 730.0 mL.Alternatives to cotton bolls and wheat germ meal were okra seed sprouts,okra fruit,cottonseed meal,and okra seed meals,which were included in the study to introduce an efficient and economic mass-rearing system.Results The larval development completed in 19.68d±0.05 d with a weight of 20.18mg±0.20 mg at the fourth instar fed on the cottonseed meal-based diet instead of wheat germ meal based diet.On the same diet,84.00%±4.00%,17.24 mg±0.03 mg,and 7.76d±0.06 d were recorded as pupae formation,pupal weight,and pupal duration,respectively.Adult emergence,76.00%±1.00%was recorded from pupae collected from larvae raised on cottonseed meal-based diet.These male and female moths lived for 40.25d±0.10 d,and 44.34d±0.11 d,respectively.Females deposited 21.28±0.04 eggs per day with the viability of 65.78%±0.14%.The larval mortal-ity at the fourth instar was 37.20%±1.36%and malformed pupation of 12.00%±1.41%was recorded.Replacement of wheat germ meal with that of local meals(cottonseed and okra seed)in the standard laboratory diet has saved 463.80 to 467.10 PKR with 1.62 to 1.63 cost economic returns,respectively.Conclusion This research is of novel nature as it provides a concise and workable system for the economic and suc-cessful rearing of P.gossypiella under laboratory conditions.展开更多
BACKGROUND Lingguizhugan(LGZG)decoction is a widely used classic Chinese medicine formula that was recently shown to improve high-fat diet(HFD)-induced insulin resistance(IR)in animal studies.AIM To assess the therape...BACKGROUND Lingguizhugan(LGZG)decoction is a widely used classic Chinese medicine formula that was recently shown to improve high-fat diet(HFD)-induced insulin resistance(IR)in animal studies.AIM To assess the therapeutic effect of LGZG decoction on HFD-induced IR and explore the potential underlying mechanism.METHODS To establish an IR rat model,a 12-wk HFD was administered,followed by a 4-wk treatment with LGZG.The determination of IR status was achieved through the use of biochemical tests and oral glucose tolerance tests.Using a targeted metabolomics platform to analyze changes in serum metabolites,quantitative real-time PCR(qRT-PCR)was used to assess the gene expression of the ribosomal protein S6 kinase beta 1(S6K1).RESULTS In IR rats,LGZG decreased body weight and indices of hepatic steatosis.It effectively controlled blood glucose and food intake while protecting islet cells.Metabolite analysis revealed significant differences between the HFD and HFDLGZG groups.LGZG intervention reduced branched-chain amino acid levels.Levels of IR-related metabolites such as tryptophan,alanine,taurine,and asparagine decreased significantly.IR may be linked to amino acids due to the contemporaneous increase in S6K1 expression,as shown by qRT-PCR.CONCLUSIONS Our study strongly suggests that LGZG decoction reduces HFD-induced IR.LGZG may activate S6K1 via metabolic pathways.These findings lay the groundwork for the potential of LGZG as an IR treatment.展开更多
Potentilla anserina L.(PA)belongs to the Rosaceae family,is a common edible plant in the Qinghai-Tibet Plateau areas of China.This study elucidates the mechanism upon which crude polysaccharide of PA(PAP)on fat accumu...Potentilla anserina L.(PA)belongs to the Rosaceae family,is a common edible plant in the Qinghai-Tibet Plateau areas of China.This study elucidates the mechanism upon which crude polysaccharide of PA(PAP)on fat accumulation in HepG2 cells stimulated by oleic acid(OA)and high fat high sugar induced mice.The result revealed that PAP inhibited lipid accumulation in obese mice and ameliorated the degree of damage in OA-induced HepG2 cells.Specifically,compared to the control group,the TG and TC levels were decreased in cells and mice serum,the aspartate transaminase and alamine aminotransferase contents were declined in liver of obese mice by PAP treatment.The expressions of adipogenic genes of SREBP-1c,C/EBPα,PPARγ,and FAS were inhibited after PAP treatment.Moreover,PAP increased the mRNA levels of CPT-1 and PPARα,which were involved in fatty acid oxidation.The present results indicated the PAP could alleviate the damage of liver associated with obesity and PAP treatment might provide a dietary therapeutic option for the treatment of hyperlipidemia.展开更多
Gut microbiota regulate the activation of adipose browning,which promote energy dissipation and combat diet-induced obesity.Pomegranate peel polyphenols(PPPs)have been shown to reduce obesity,regulate lipid metabolism...Gut microbiota regulate the activation of adipose browning,which promote energy dissipation and combat diet-induced obesity.Pomegranate peel polyphenols(PPPs)have been shown to reduce obesity,regulate lipid metabolism in adipose tissue,and modulate the composition of gut microbiota in animal fed high-fat diet(HFD).However,the role of gut microbiota in the improvement of obesity by PPPs has not been elucidated.In current study,we applied antibiotics to inhibit gut microbiota in mice fed HFD and treated with PPPs.The results showed that the inhibition of gut microbiota impair the effect of PPPs on reducing obesity and promoting adipose browning,and change the fecal metabolomic profiles in respond to PPPs.Moreover,the inhibition of gut microbiota supressed the promotive effects of PPPs on the levels of Akkermansia and microbiota-related metabolites,such as urolithin A,short-chain fatty acids(SCFAs),and bile acids(BAs),which were associated with activating adipose browning.Therefore,our results suggested that the presence of gut microbiota is essential for PPPs to ameliorate HFD-induced obesity.The related bacteria or metabolites generated by the interaction between PPPs and microbiota promote adipose browning and facilitate the beneficial effects of PPPs.展开更多
BACKGROUND Picky eating is a commonly observed behavior among children globally,negatively impacting their physical and mental growth.Although common characteristics distinguish peaky eaters,including food selectivity...BACKGROUND Picky eating is a commonly observed behavior among children globally,negatively impacting their physical and mental growth.Although common characteristics distinguish peaky eaters,including food selectivity,food neophobia,and food avoidance,there is no clear definition to assess this behavior.Due to the unavailability of data regarding picky eating,it wasn’t easy to estimate its prevalence.AIM To develop a regional protocol to help healthcare professionals identify and manage mild and moderate picky eating cases.METHODS A virtual roundtable discussion was held in April 2021 to gather the opinions of seven pediatricians and two pediatric dietitians from eight Middle Eastern countries who had great experience in the management of picky eating.The discussion covered different topics,including clearly defining mild and moderate picky eating,identifying the role of diet fortification in these cases,and the possibility of developing a systematic approach to diet fortification.RESULTS The panel identified picky eating as consuming an inadequate amount and variety of foods by rejecting familiar and unfamiliar food.Most of the time,moderate picky eating cases had micronutrient deficiencies with over-or undernutrition;the mild cases only showed inadequate food consumption and/or poor diet quality.Paying attention to the organic red flags like growth faltering and development delay and behavioral red flags,including food fixation and anticipatory gagging,will help healthcare professionals evaluate the picky eaters and the caregivers to care for their children.Although dietary supplementation and commercial food fortification play an important role in picky eating,they were no benefit in the Middle East.CONCLUSION The panel agreed that food fortification through a food-first approach and oral nutritional supplements would be the best for Middle Eastern children.These recommendations would facilitate identifying and managing picky-eating children in the Middle East.展开更多
Purpose: In super-aging societies, prosthodontists will have a growing role and will need to improve their nutrition knowledge. This study aimed to evaluate the effectiveness of a workshop-based model for increasing d...Purpose: In super-aging societies, prosthodontists will have a growing role and will need to improve their nutrition knowledge. This study aimed to evaluate the effectiveness of a workshop-based model for increasing dysphagia diet awareness among prosthodontists working with head and neck cancer patients. Methods: The study had a post-intervention design and included 10 maxillofacial prosthetic educators from eight countries who participated in a 120-minute workshop focused on theoretical and practical training in nutrition support for patients with dysphagia. Sessions were held in a specialized restaurant in Tokyo and included lectures, observation of Japanese cooking techniques, hands-on preparation of dysphagia-friendly foods, and cross-cultural comparisons. Knowledge, confidence, and practical application were assessed using a post-workshop questionnaire. Descriptive statistics and thematic analysis were used to evaluate outcomes. Results: Seven of the 10 prosthodontists completed the post-intervention questionnaire. All respondents reported overall satisfaction with the workshop. Session content was regarded as easy to understand by 57.14%, appropriate by 28.57%, and easy by 14.29%. Most respondents (85.71%) were “very satisfied” with the instructors’ explanations, and 100% were “very satisfied” with the workshop’s length and structure;71.42% felt they could apply the knowledge in clinical practice, while 28.58% anticipated challenges. The respondents appreciated the workshop’s focus on dysphagia, particularly in elderly patients, and valued the insights into Japanese dysphagia diets and culture. Conclusions: Workshops on nutrition provide an interactive platform for prosthodontists to enhance their knowledge and improve comprehensive patient care, highlighting the importance for prosthodontists to stay updated on developments in nutrition, particularly in dysphagia.展开更多
文摘The effects of fresh zucchini on nutritional status, and biological indicators for the prevention of cardiovascular disease in rats fed high-fat diets investigated in this study. Thirty Sprague Dawley rats were randomly divided into two main groups the first, negative control group Co (-) (n = 6), fed basal diet, The second group (n = 24) fed high-fat diet (containing basal diet + 5% tallow + 1% cholesterol + 0.02% bile salt). This group was divided into four subgroups each group 6 rats: group positive control co (+) fed high-fat diet only, group 1 (G (1)) fed high-fat diet plus 10% zucchini, group 2 (G (2) fed high-fat diet plus 15% zucchini and group 3 (G (3)) fed high-fat diet plus 20% zucchini. The levels of serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were measured after eight wk. of experimental treatment. The pathologic changes of the heart, spleen and kidney were evaluated. SPSS, one way ANOVA was used to analyze the results. The results indicated that the mean values of body weight gain (BWG) and feed efficiency ratio (FIR) in G (2) and G (3) showed significant decrease compared to co (-), co (+) and G 1. The results showed that in groups (G1, G2 and G3) the relative weight of heart had significant increase when compared with control negative group. But liver and spleen weight had no significant difference when compared with control negative and positive group, the levels of TC, TG and LDL-C were significantly increased in co (+) (P < 0.05) Compared to co (-), all groups fed on high fat diet containing different levels of zucchini (10%, 15% and 20%) had significant decrease in TC and LDL-C compared with co (+), also G2 and G3 had improve significant in HDL-C when compared with co. (+). The groups fed on zucchini give results similar to group co. (-). The best treatment was zucchini (15% and 20%) which had lowest values of total lipid cholesterol and LDL-C, and the best values of HDL-C, HDL-C/TC % for all groups fed on high fat diet and zucchini increased non significantly (p ≤ 0.05) the HDL-C/TC % index compared to group co. (+). while, G2 and G3 gave significant decrease in LDL-C/HDL-C ratio compared to group co. (+). Morphologic changes of heart, spleen and kidney revealed that groups G2 and G3 had a similar preventive effect against CHD in this experimental model. In conclusion, results showed that zucchini had similar potential to attenuate CHD-related parameters in a mild oxidative stress induced by high-fat diet in rats.
基金funding from the European Union -NextGenerationEU through the Italian Ministry of University and Research under PRIN PNRR REG D.R.1718-2022– Project number PRJ-1575 INDICA。
文摘Indicaxanthin is a betalain that is abundant in Opuntia ficus-indica orange fruit and has antioxidative and anti-inflammatory effects. Nevertheless, very little is known about the neuroprotective potential of indicaxanthin. This study investigated the impact of indicaxanthin on neuronal damage and gut microbiota dysbiosis induced by a high-fat diet in mice. The mice were divided into three groups according to different diets: the negative control group was fed a standard diet;the high-fat diet group was fed a high-fat diet;and the high-fat diet + indicaxanthin group was fed a high-fat diet and received indicaxanthin orally(0.86 mg/kg per day) for 4 weeks. Brain apoptosis, redox status, inflammation, and the gut microbiota composition were compared among the different animal groups. The results demonstrated that indicaxanthin treatment reduced neuronal apoptosis by downregulating the expression of proapoptotic genes and increasing the expression of antiapoptotic genes. Indicaxanthin also markedly decreased the expression of neuroinflammatory proteins and genes and inhibited high-fat diet–induced neuronal oxidative stress by reducing reactive oxygen and nitrogen species, malondialdehyde, and nitric oxide levels. In addition, indicaxanthin treatment improved the microflora composition by increasing the abundance of healthy bacterial genera, known as producers of short-chain fatty acids(Lachnospiraceae, Alloprovetella, and Lactobacillus), and by reducing bacteria related to unhealthy profiles(Blautia, Faecalibaculum, Romboutsia and Bilophila). In conclusion, indicaxanthin has a positive effect on high-fat diet–induced neuronal damage and on the gut microbiota composition in obese mice.
基金supported by grants from the National Natural Science Foundation of China(32125031)the Fundamental Research Funds for the Central Universities(JUSRP222001)Collaborative Innovation Center for Food Safety and Quality Control,China。
文摘Aflatoxin B_1(AFB_1)is a common contaminant in cereals of global concern,and long-term low-dose exposure can adversely affect human health.Here,we showed that populations with dietary patterns characterized by high-fat diet(HFD)might have an increased risk of exposure to high levels of AFB_1.Our data indicated that chronic exposure of AFB_1 induced“gut-liver axis”injury in mice under HFD and normal diet(ND)patterns.AFB_1 further aggravated hepatic and intestinal injury,and intestinal microbiota disruption in HFD mice.Bifidobacterium breve BAA-2849 intervention analysis showed that liver injury and lipid disorders caused by AFB_1 exposure were alleviated by regulating the proportions of different gut microbes.We demonstrated through a mice model that the populations with a dietary pattern of HFD might be more susceptible to AFB_1 exposure and adverse effects on the gut-liver axis,and the toxicity of AFB_1 exposure can be alleviated by regulating the gut microbiota.
基金financially supported by the Major Project of Inner Mongolia Science and Technology Department,China(2021ZD0002)National Natural Science Foundation of China,China(32202054)Project Supported by the Shanghai Committee of Science and Technology,China(20DZ2202700)。
文摘Oat avenanthramides(AVNs)have been found to exhibit novel lipid-lowering effects.However,the mechanism remains unclear.In this study,the effect of avenanthramide B(AVN B),as one of the major AVNs,on highfat diet(HFD)-induced mice was investigated.Results showed that AVN B significantly inhibited weight gain and improved hepatic and serum lipid biochemical indices.Hepatic RNA-sequencing analysis suggested that AVN B significantly modulates fatty acid(FA)metabolism.Hepatic real-time qualitative polymerase chain reaction(RT-q PCR)and Western blot results indicated that AVN B could alleviate FA synthesis by activating the adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)-sterol regulatory element binding protein-1c(SREBP1c)-fatty acid synthase(FAS),and increase FA oxidation by activating the AMPK/carnitine palmitoyltransferase 1A(CPT1A)and peroxisome proliferator-activated receptorα(PPARα).Additionally,AVN B had a regulating effect on ileum lipid metabolism by inhibiting intestinal cell differentiation and downregulating the expression levels of FA absorption-related protein and gene.Moreover,AVN B promoted the growth of beneficial bacteria and fungi such as Coriobacteriaceae_UCG-002,Parvibacter,Enterococcus,and Aspergillus,while decreasing the abundance of Roseburia,unclassified_f_Lachnospiraceae,Cladosporium,Eurotium,unclassified_f_Aspergillaceae and unclassified_f_Ceratocystidaceae.All these results provided new points of the lipid-lowing mechanism of AVNs and oats via the gut-liver axis.
基金supported by the Seed Fund of Research Institute of Future Food(1-CD54)。
文摘High-fat diet(HFD)consumption induces gut microbiota dysbiosis and neuropsychiatric disorders,including anxiety.Previous research found that Tremella polysaccharide(TP)exhibited neuroprotective effects in vitro and in vivo.This study aimed to investigate the beneficial effects of TP on HFD-induced anxiety-like behaviors and elucidate the underlying mechanisms from the point view of the microbiota-gut-brain axis.Two groups of HFD-induced obese mice were orally gavaged with low dose(TPL,40 mg/kg)and high dose(TPH,400 mg/kg)of TP.A 12-week administration of TPH could significantly improve anxiety-like behaviors in HFD mice.In the hippocampus,microglia activation,the expression of blood-brain barrier(BBB)markers,and the levels of two neurotransmitters(serotonin and norepinephrine)were countered by TPH in mice consuming HFD.Furthermore,TPH improved the intestinal permeability and immune response of the enterocytes in HFD-fed mice.The gut microbiota dysbiosis induced by HFD was also rebalanced by TP treatments,especially in Proteobacteria and its lower taxa.The correlational analysis also suggested that shifts of some microbial genera were closely associated with body weight and the parameters of behavioral tests.Interestingly,fecal microbiota transplantation(FMT)results indicated that fecal microbiota from TPH-treated obese mice could prevent HFD-induced anxiety-like behaviors,suppressed microglia activation and intestinal permeability.In conclusion,the present study indicated that TP intake is a promising dietary intervention strategy to prevent HFD-induced anxiety via the microbiota-gut-brain axis.
基金sponsored by National Natural Science Foundation of China(81800703)Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(GZC20231088)+8 种基金Beijing Nova Program(Z201100006820117 and 20220484181)Beijing Municipal Natural Science Foundation(7184252)the Fundamental Research Funds for the Central Universitiesthe Fundamental Research Funds for the Central Universities(BMU2021MX013)Peking University Clinical Scientist Training Program(BMU2023PYJH022)Peking University Medicine Seed Fund for Interdisciplinary ResearchChina Endocrine and Metabolism Young Scientific Talent Research Project(2022-N-02-01)China Diabetes Young Scientific Talent Research ProjectBethune-Merck Diabetes Research Fund of Bethune Charitable Foundation。
文摘Maternal consumption of a high-fat diet has been linked to increased risks of obesity and impaired glucose metabolism in offspring.However,the precise epigenetic mechanisms governing these intergenerational effects,particularly during the early stages of offspring development,remain poorly understood.In this study,female C57BL/6J mice were randomly assigned to either a high-fat diet or normal chow diet throughout gestation and lactation.Methylated DNA immunoprecipitation(MeDIP)coupled with microarray analysis was employed to identify differentially methylated genes in the livers of offspring at weaning age.We found that maternal high-fat diet feeding predisposes offspring to obesity and impaired glucose metabolism as early as the weaning period.DNA methylation profile analysis unveiled a significant enrichment of differentially methylated genes within the natural killer(NK)cell-mediated cytotoxicity pathway.MeDIP-PCR validated reduced methylation levels of specific genes within this pathway,including tumour necrosis factorα(TNF-α),phosphoinositide 3-kinase(PI3K),and SHC adaptor protein 1(SHC1).Consistently,the expressions of TNF-α,PI3K,and SHC1 were significantly upregulated,accompanied by elevated serum TNF-αand interleukin-6(IL-6)levels in offspring from dams fed with high-fat diet.Moreover,we assessed the expressions of genes associated with NK cell activities,uncovering a notable rise in hepatic granzyme B levels and a trend towards increased CD107a expression in offspring from dams fed a high-fat diet.In addition,methylation levels of TNF-α,PI3K,and SHC1 promoters were inversely correlated with glucose response during glucose tolerance testing.In conclusion,our findings underscore the critical role of the NK cell-mediated cytotoxicity signaling pathway in mediating DNA methylation patterns,thereby contributing to the programming effects of maternal high-fat diet consumption on offspring glucose metabolism as early as the weaning period.
基金Shenyang Governmental Science and Technology Program(Project No.22-316-2-02)China Agriculture Research System Program(Project No.CARS-41-G04).
文摘Background Research on low-protein-level diets has indicated that even though the profiles of essential amino acids(EAAs)follow the recommendation for a normal-protein-level diet,broilers fed low-protein diets failed to achieve pro-ductive performance compared to those fed normal diets.Therefore,it is imperative to reassess the optimum profile of EAAs in low-protein diets and establish a new ideal pattern for amino acid balance.Furthermore,identifying novel sensitive biomarkers for assessing amino acid balance will greatly facilitate the development of amino acid nutrition and application technology.In this study,12 dietary treatments[Con(+),Con(-),L&A(-),L&A(+),M&C(-),M&C(+),BCAA(-),BCAA(+),Thr(-),Thr(+),Trp(-)and Trp(+)]were established by combining different EAAs including lysine and argi-nine,methionine and cysteine,branched-chain amino acid(BCAA),threonine,and tryptophan to observe the growth and development of the broiler chickens fed with low-protein-level diets.Based on the biochemical parameters and untargeted metabolomic analysis of animals subjected to different treatments,biomarkers associated with opti-mal and suboptimal amino acid balance were identified.Results Growth performance,carcass characteristics,hepatic enzyme activity,serum biochemical parameters,and breast muscle mRNA expression differed significantly between male and female broilers under different dietary amino acid patterns.Male broilers exhibited higher sensitivity to the adjustment of amino acid patterns than female broilers.For the low-protein diet,the dietary concentrations of lysine,arginine,and tryptophan,but not of methionine,cystine,or threonine,needed to be increased.Therefore,further research on individual BCAA is required.For untar-geted metabolomic analysis,Con(+)was selected as a normal diet(NP)while Con(-)represented a low-protein diet(LP).L&A(+)denotes a low-protein amino acid balanced diet(LPAB)and Thr(+)represents a low-protein amino acid imbalance diet(LPAI).The metabolites oxypurinol,pantothenic acid,and D-octopine in birds were significantly influ-enced by different dietary amino acid patterns.Conclusion Adjusting the amino acid profile of low-protein diets is required to achieve normal growth performance in broiler chickens fed normal-protein diets.Oxypurinol,pantothenic acid,and D-octopine have been identified as potentially sensitive biomarkers for assessing amino acid balance.
文摘The Nyctereutes procyonoides is highly regarded in the farming and leather industries because of the high value of its fur,which renders artificial feeding a crucial aspect.However,high-fat diets have always been associated with a variety of digestive disorders.This study aimed to investigate the impact of high-fat diets on the gut microbiota and the mechanisms of gut damage in Nyctereutes procyonoides.16S rRNA sequencing demonstrated that high-fat diets caused diarrhea and intestinal damage through alterations in the gut microbiota:a decrease in the abundance of Firmicutes,an increase in the abundance of Proteobacteria and Actinobacteria,and an increase in the abundance of Enterococcaceae,Escherichia coli-Shigella,Clostridium and Lactobacillus.Subsequently,changes in metabolic path-ways,such as amino and fatty acid pathways,were identified by KEGG and COG enrichment analysis,and the TLR4/NF-κB/NLRP3 inflammatory signaling pathway was shown to be activated by high-fat diets.In addition,high-fat diets lead to the accumulation of ROS and MDA and reduce the activity of the antioxidant enzymes GSH-PX and SOD.C orrespondingly,the levels of proinflammatory cytokines(IL-6,IL-1βand TNF-α)were significantly increased,and the apoptosis and necrosis signaling pathways of colonic cells were detected,causing a dramatic decrease in the expression of intestinal tight junction proteins(Occludin,E-cadherin,ZO-1 and ZO-2).In conclusion,high-fat diets altered the structure of the Nyctereutes procyonoides gut microbiota community and led to colon damage.This study provides new insights into the intestinal health of Nyctereutes procyonoides.
基金sponsored by National Natural Science Foundation of China (81800703 and 81970701)Beijing Nova Program (Z201100006820117 and 20220484181)+7 种基金Beijing Municipal Natural Science Foundation (7184252 and 7214258)the Fundamental Research Funds for the Central Universitiesthe Fundamental Research Funds for the Central Universities (BMU2021MX013)Peking University Clinical Scientist Training Program (BMU2023PYJH022)China Endocrine and Metabolism Young Scientific Talent Research Project (2022-N-02-01)Peking University Medicine Seed Fund for Interdisciplinary ResearchChina Diabetes Young Scientific Talent Research ProjectBethune-Merck Diabetes Research Fund of Bethune Charitable Foundation (G2018030)。
文摘Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice.
基金funded by grants from the National Key R&D Program of China(2016YFD0500604)。
文摘Forsythia suspensa,belonging to the deciduous shrubs of the Luteaceae family,a traditional Chinese medicine,has effects of alleviating swelling,clearing heat,detoxification and promoting blood circulation.The leaves of F.suspensa contain multiple chemical components and have a long history of use in folk medicines and health foods.The purpose of this study was to explore the effects of forsythin extract from F.suspensa leaves on intestinal microbiota and short-chain fatty acid(SCFA)content in rats with obesity induced by a high-fat diet.Forsythin extract in F.suspensa leaves increased the abundance of the intestinal microbiota,ameliorated intestinal microbiota disorders and inhibited the increase in total SCFA content in the intestinal tract in rats with obesity induced by a high-fat diet.These results suggested that forsythin extract in F.suspensa leaves may slow the development of obesity induced by a high-fat diet;thus,its active components and efficacy are worthy of further study.
文摘BACKGROUND Excessive saturated fat intake compromises the integrity of the intestinal mucosa,leading to low-grade inflammation,impaired mucosal integrity,and increased intestinal permeability,resulting in the migration of lipopolysaccharide(LPS)to other tissues.AIM To evaluate the chronic effects(at 10 and 16 wk)of a high-fat diet(HFD)(with 50%energy as fat)on the phylogenetic gut microbiota distribution and intestinal barrier structure and protection in C57BL/6 mice.METHODS Forty adult male mice were divided into four nutritional groups,where the letters refer to the type of diet(control and HFD or HF)and the numbers refer to the period(in weeks)of diet administration:Control diet for 10 wk,HFD for 10 wk,control diet for 16 wk,and HFD for 16 wk.After sacrifice,biochemical,molecular,and stereological analyses were performed.RESULTS The HF groups were overweight,had gut dysbiosis,had a progressive decrease in occludin immunostaining,and had increased LPS concentrations.Dietary progression reduced the number of goblet cells per large intestine area and Mucin2 expression in the HF16 group,consistent with a completely disarranged intestinal ultrastructure after 16 wk of HFD intake.CONCLUSION Chronic HFD intake causes overweight,gut dysbiosis,and morphological and functional alterations of the intestinal barrier after 10 or 16 wk.Time-dependent reductions in goblet cell numerical density and mucus production have emerged as targets for countering obesity-driven intestinal damage.
文摘Inflammatory bowel disease(IBD)is the consequence of a complex interplay between environmental factors,like dietary habits,that alter intestinal microbiota in response to luminal antigens in genetically susceptible individuals.Epigenetics represents an auspicious area for the discovery of how environmental factors influence the pathogenesis of inflammation,prognosis,and response to therapy.Consequently,it relates to gene expression control in response to environmental influences.The increasing number of patients with IBD globally is indicative of the negative effects of a food supply rich in trans and saturated fats,refined su-gars,starches and additives,as well as other environmental factors like seden-tarism and excess bodyweight,influencing the promotion of gene expression and increasing DNA hypomethylation in IBD.As many genetic variants are now associated with Crohn's disease(CD),new therapeutic strategies targeting modi-fiable environmental triggers,such as the implementation of an anti-inflammatory diet that involves the removal of potential food antigens,are of growing interest in the current literature.Diet,as a strong epigenetic factor in the pathogenesis of inflammatory disorders like IBD,provides novel insights into the pathophysio-logy of intestinal and extraintestinal inflammatory disorders.
基金supported by the National Natural Science Foundation of China(31820103010,32122067)the Natural Science Foundation of Jiangsu Province(BK20200084)the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province.
文摘Lactobacillus spp.can be beneficial for the prevention or treatment of ulcerative colitis(UC).In this study,153 participants who followed vegan,omnivorous,or high-meat diet were recruited.Compositional analysis of the Lactobacillus community in feces revealed that Lactobacillus fermentum strains were significantly affected by diet.Administration of mixed L.fermentum strains from vegans significantly improved inflammation compared to that from omnivores and high-meat consumers,as evidenced by a significant reduction in colonic tissue damage,improvement in inflammatory cytokines,enhanced expression of ZO-1,occludin,and claudin-3,and a significant increase in short chain fatty acids concentration.The effect of a single strain of L.fermentum was similar to that of a mixed strains of L.fermentum group.Genomic analysis suggested that L.fermentum strains from the guts of vegans possessed a higher prevalence of genes involved in carbohydrate catabolism than those from the guts of omnivores and high-meat eaters.In particular,the ME2 gene is involved in the biosynthesis of acetate,a compound considered to possess anti-inflammatory properties.In conclusion,this study indicates strain-specific differences in the ability of L.fermentum strains to alleviate UC in mice,influenced by habitual diets。
基金financed through the DIETAplus project of JACUMAR(Junta de Cultivos Marinos,MAPAMASpanish government),which is cofunded with FEMP funds(EU)+3 种基金funded by means of grants from the Spanish Government:PID2019-106878RB-I00 and IS was granted with a Postdoctoral fellowship(FJC2020-043933-I)support of Fondecyt iniciación(project number 11221308)Fondecyt regular(project number 11221308)grants(Agencia Nacional de Investigacióny Desarrollo de Chile,Government of Chile),respectivelythe framework of the network LARVAplus“Strategies for the development and im-provement of fish larvae production in Ibero-America”(117RT0521)funded by the Ibero-American Program of Science and Technology for Development(CYTED,Spain)。
文摘Background The development of a sustainable business model with social acceptance,makes necessary to develop new strategies to guarantee the growth,health,and well-being of farmed animals.Debaryomyces hansenii is a yeast species that can be used as a probiotic in aquaculture due to its capacity to i)promote cell proliferation and differen-tiation,ii)have immunostimulatory effects,iii)modulate gut microbiota,and/or iv)enhance the digestive function.To provide inside into the effects of D.hansenii on juveniles of gilthead seabream(Sparus aurata)condition,we inte-grated the evaluation of the main key performance indicators coupled with the integrative analysis of the intestine condition,through histological and microbiota state,and its transcriptomic profiling.Results After 70 days of a nutritional trial in which a diet with low levels of fishmeal(7%)was supplemented with 1.1%of D.hansenii(17.2×10^(5) CFU),an increase of ca.12%in somatic growth was observed together with an improve-ment in feed conversion in fish fed a yeast-supplemented diet.In terms of intestinal condition,this probiotic modu-lated gut microbiota without affecting the intestine cell organization,whereas an increase in the staining intensity of mucins rich in carboxylated and weakly sulphated glycoconjugates coupled with changes in the affinity for certain lectins were noted in goblet cells.Changes in microbiota were characterized by the reduction in abundance of several groups of Proteobacteria,especially those characterized as opportunistic groups.The microarrays-based transcrip-tomic analysis found 232 differential expressed genes in the anterior-mid intestine of S.aurata,that were mostly related to metabolic,antioxidant,immune,and symbiotic processes.Conclusions Dietary administration of D.hansenii enhanced somatic growth and improved feed efficiency param-eters,results that were coupled to an improvement of intestinal condition as histochemical and transcriptomic tools indicated.This probiotic yeast stimulated host-microbiota interactions without altering the intestinal cell organization nor generating dysbiosis,which demonstrated its safety as a feed additive.At the transcriptomic level,D.hansenii pro-moted metabolic pathways,mainly protein-related,sphingolipid,and thymidylate pathways,in addition to enhance antioxidant-related intestinal mechanisms,and to regulate sentinel immune processes,potentiating the defensive capacity meanwhile maintaining the homeostatic status of the intestine.
基金Punjab Agriculture Research Board funds for the project "A comprehensive integrated scientific approach for the development of sustainable management strategies of pink bollworm(Pectinophora gossypiella)".
文摘Background Pink bollworm,Pectinophora gossypiella(Saunders)(Lepidoptera:Gelechiidae)has become a poten-tial pest of cotton by causing substantial yield losses around the world including Pakistan.Keeping in view the facts like limited research investigations,unavailability,and high cost of artificial diet’s constituents and their premixes,the present research investigations on the dietary aspect of P.gossypiella were conducted.The larvae of P.gossypiella were reared on different diets that were prepared using indigenous elements.The standard/laboratory diet com-prised of wheat germ meal 34.5 g,casein 30.0 g,agar–agar 20.0 g,sucrose 10.0 g,brewer’s yeast 5.0 g,α-cellulose 1.0 g,potassium-sorbate1.5 g,niplagin 0.5 g,decavitamin 0.01 g,choline-chloride 0.06 g,maize-oil 3.30 g,honey 2.0 g,and water 730.0 mL.Alternatives to cotton bolls and wheat germ meal were okra seed sprouts,okra fruit,cottonseed meal,and okra seed meals,which were included in the study to introduce an efficient and economic mass-rearing system.Results The larval development completed in 19.68d±0.05 d with a weight of 20.18mg±0.20 mg at the fourth instar fed on the cottonseed meal-based diet instead of wheat germ meal based diet.On the same diet,84.00%±4.00%,17.24 mg±0.03 mg,and 7.76d±0.06 d were recorded as pupae formation,pupal weight,and pupal duration,respectively.Adult emergence,76.00%±1.00%was recorded from pupae collected from larvae raised on cottonseed meal-based diet.These male and female moths lived for 40.25d±0.10 d,and 44.34d±0.11 d,respectively.Females deposited 21.28±0.04 eggs per day with the viability of 65.78%±0.14%.The larval mortal-ity at the fourth instar was 37.20%±1.36%and malformed pupation of 12.00%±1.41%was recorded.Replacement of wheat germ meal with that of local meals(cottonseed and okra seed)in the standard laboratory diet has saved 463.80 to 467.10 PKR with 1.62 to 1.63 cost economic returns,respectively.Conclusion This research is of novel nature as it provides a concise and workable system for the economic and suc-cessful rearing of P.gossypiella under laboratory conditions.
基金Supported by the Preresearch Project of the National Natural Science Foundation of China,No.ZRYY1906the Applied Basic Research Project of the Science and Technology Department of Sichuan Province,No.2021YJ0154+1 种基金the Talent Research Promotion Plan of Xinglin Scholars of Chengdu University of Traditional Chinese Medicine,No.QNXZ2019035the Chengdu University of Traditional Chinese Medicine‘Xinglin Scholars'subject talent research promotion Program(young scholars),No.QNXZ2019037.
文摘BACKGROUND Lingguizhugan(LGZG)decoction is a widely used classic Chinese medicine formula that was recently shown to improve high-fat diet(HFD)-induced insulin resistance(IR)in animal studies.AIM To assess the therapeutic effect of LGZG decoction on HFD-induced IR and explore the potential underlying mechanism.METHODS To establish an IR rat model,a 12-wk HFD was administered,followed by a 4-wk treatment with LGZG.The determination of IR status was achieved through the use of biochemical tests and oral glucose tolerance tests.Using a targeted metabolomics platform to analyze changes in serum metabolites,quantitative real-time PCR(qRT-PCR)was used to assess the gene expression of the ribosomal protein S6 kinase beta 1(S6K1).RESULTS In IR rats,LGZG decreased body weight and indices of hepatic steatosis.It effectively controlled blood glucose and food intake while protecting islet cells.Metabolite analysis revealed significant differences between the HFD and HFDLGZG groups.LGZG intervention reduced branched-chain amino acid levels.Levels of IR-related metabolites such as tryptophan,alanine,taurine,and asparagine decreased significantly.IR may be linked to amino acids due to the contemporaneous increase in S6K1 expression,as shown by qRT-PCR.CONCLUSIONS Our study strongly suggests that LGZG decoction reduces HFD-induced IR.LGZG may activate S6K1 via metabolic pathways.These findings lay the groundwork for the potential of LGZG as an IR treatment.
基金supported by the Natural Science Foundation of Tibet Autonomous Region(XZ202201ZR0012G)Quality Evaluation and Efficient Utilization of Effective Components of Potentilla anserine Resources in Tibet(XZ202201ZD0001N).
文摘Potentilla anserina L.(PA)belongs to the Rosaceae family,is a common edible plant in the Qinghai-Tibet Plateau areas of China.This study elucidates the mechanism upon which crude polysaccharide of PA(PAP)on fat accumulation in HepG2 cells stimulated by oleic acid(OA)and high fat high sugar induced mice.The result revealed that PAP inhibited lipid accumulation in obese mice and ameliorated the degree of damage in OA-induced HepG2 cells.Specifically,compared to the control group,the TG and TC levels were decreased in cells and mice serum,the aspartate transaminase and alamine aminotransferase contents were declined in liver of obese mice by PAP treatment.The expressions of adipogenic genes of SREBP-1c,C/EBPα,PPARγ,and FAS were inhibited after PAP treatment.Moreover,PAP increased the mRNA levels of CPT-1 and PPARα,which were involved in fatty acid oxidation.The present results indicated the PAP could alleviate the damage of liver associated with obesity and PAP treatment might provide a dietary therapeutic option for the treatment of hyperlipidemia.
基金supported by the National Natural Science Foundation of China(32001679 and 31871801)the Science and Technology Research of Shaanxi Province(2021QFY07-03)+1 种基金supported by the Fundamental Research Funds for the Central Universities(GK202103098)the Scientific and Technological Achievements Commercialization Program of Shaanxi(2023-YDCGZH-13)。
文摘Gut microbiota regulate the activation of adipose browning,which promote energy dissipation and combat diet-induced obesity.Pomegranate peel polyphenols(PPPs)have been shown to reduce obesity,regulate lipid metabolism in adipose tissue,and modulate the composition of gut microbiota in animal fed high-fat diet(HFD).However,the role of gut microbiota in the improvement of obesity by PPPs has not been elucidated.In current study,we applied antibiotics to inhibit gut microbiota in mice fed HFD and treated with PPPs.The results showed that the inhibition of gut microbiota impair the effect of PPPs on reducing obesity and promoting adipose browning,and change the fecal metabolomic profiles in respond to PPPs.Moreover,the inhibition of gut microbiota supressed the promotive effects of PPPs on the levels of Akkermansia and microbiota-related metabolites,such as urolithin A,short-chain fatty acids(SCFAs),and bile acids(BAs),which were associated with activating adipose browning.Therefore,our results suggested that the presence of gut microbiota is essential for PPPs to ameliorate HFD-induced obesity.The related bacteria or metabolites generated by the interaction between PPPs and microbiota promote adipose browning and facilitate the beneficial effects of PPPs.
文摘BACKGROUND Picky eating is a commonly observed behavior among children globally,negatively impacting their physical and mental growth.Although common characteristics distinguish peaky eaters,including food selectivity,food neophobia,and food avoidance,there is no clear definition to assess this behavior.Due to the unavailability of data regarding picky eating,it wasn’t easy to estimate its prevalence.AIM To develop a regional protocol to help healthcare professionals identify and manage mild and moderate picky eating cases.METHODS A virtual roundtable discussion was held in April 2021 to gather the opinions of seven pediatricians and two pediatric dietitians from eight Middle Eastern countries who had great experience in the management of picky eating.The discussion covered different topics,including clearly defining mild and moderate picky eating,identifying the role of diet fortification in these cases,and the possibility of developing a systematic approach to diet fortification.RESULTS The panel identified picky eating as consuming an inadequate amount and variety of foods by rejecting familiar and unfamiliar food.Most of the time,moderate picky eating cases had micronutrient deficiencies with over-or undernutrition;the mild cases only showed inadequate food consumption and/or poor diet quality.Paying attention to the organic red flags like growth faltering and development delay and behavioral red flags,including food fixation and anticipatory gagging,will help healthcare professionals evaluate the picky eaters and the caregivers to care for their children.Although dietary supplementation and commercial food fortification play an important role in picky eating,they were no benefit in the Middle East.CONCLUSION The panel agreed that food fortification through a food-first approach and oral nutritional supplements would be the best for Middle Eastern children.These recommendations would facilitate identifying and managing picky-eating children in the Middle East.
文摘Purpose: In super-aging societies, prosthodontists will have a growing role and will need to improve their nutrition knowledge. This study aimed to evaluate the effectiveness of a workshop-based model for increasing dysphagia diet awareness among prosthodontists working with head and neck cancer patients. Methods: The study had a post-intervention design and included 10 maxillofacial prosthetic educators from eight countries who participated in a 120-minute workshop focused on theoretical and practical training in nutrition support for patients with dysphagia. Sessions were held in a specialized restaurant in Tokyo and included lectures, observation of Japanese cooking techniques, hands-on preparation of dysphagia-friendly foods, and cross-cultural comparisons. Knowledge, confidence, and practical application were assessed using a post-workshop questionnaire. Descriptive statistics and thematic analysis were used to evaluate outcomes. Results: Seven of the 10 prosthodontists completed the post-intervention questionnaire. All respondents reported overall satisfaction with the workshop. Session content was regarded as easy to understand by 57.14%, appropriate by 28.57%, and easy by 14.29%. Most respondents (85.71%) were “very satisfied” with the instructors’ explanations, and 100% were “very satisfied” with the workshop’s length and structure;71.42% felt they could apply the knowledge in clinical practice, while 28.58% anticipated challenges. The respondents appreciated the workshop’s focus on dysphagia, particularly in elderly patients, and valued the insights into Japanese dysphagia diets and culture. Conclusions: Workshops on nutrition provide an interactive platform for prosthodontists to enhance their knowledge and improve comprehensive patient care, highlighting the importance for prosthodontists to stay updated on developments in nutrition, particularly in dysphagia.