期刊文献+
共找到25,359篇文章
< 1 2 250 >
每页显示 20 50 100
Resistance of Cement-based Grouting Materials with Nano- SiO_(2) Emulsion to Chloride Ion Penetration
1
作者 LI Shuiping CHENG Jian +2 位作者 WEI Chao YUAN Bin YU Chengxiao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期114-119,共6页
The chloride penetration resistance of cement-based grout materials was improved by nano-silica emulsion.Specimens of mixtures containing different nano-silica particles or emulsions were exposed in sodium chloride so... The chloride penetration resistance of cement-based grout materials was improved by nano-silica emulsion.Specimens of mixtures containing different nano-silica particles or emulsions were exposed in sodium chloride solutions of specific concentrations with different test ages.Hardened properties of the mixes were assessed in terms of weight loss and compressive strength.X-ray diffraction(XRD)and scanning electron microscopy(SEM)of mixes were performed to analysis the phase evolution and microstructure.The results demonstrated that the introduction of nano-SiO_(2) emulsion significantly decreased the compressive strength loss and calcium hydroxide(CH)crystal content of hydration production,and then enhanced the resistance of cement-based grouting materials to chloride ion penetration.This improvement derives from the filling and pozzolanic effects of nano-SiO_(2) particles,which were incorporated via an emulsion and attributed to a well dispersion in grouting matrix. 展开更多
关键词 grouting materials nano-SiO_(2)emulsion chloride ion penetration weight loss strength loss
在线阅读 下载PDF
Effects of Repair Grouting and Jacketing on Corrosion Concrete Using Ultrasonic Method
2
作者 Rivky Afanda Ahmad Zaki 《Structural Durability & Health Monitoring》 2025年第2期265-284,共20页
Concrete is one of the most important elements in building construction.However,concrete used in construction is susceptible to damage due to corrosion.The influence of corrosive substances causes changes in the reinf... Concrete is one of the most important elements in building construction.However,concrete used in construction is susceptible to damage due to corrosion.The influence of corrosive substances causes changes in the reinforcing steel and affects the strength of the structure.The repair method is one approach to overcome this problem.This research aims to determine the effect of grouting and jacketing repairs on corroded concrete.The concrete used has dimensions of 15 cm×15 cm×60 cm with planned corrosion variations of 50%,60%,and 70%.The test objects were tested using the Non-Destructive Testing(NDT)method using Ultrasonic Pulse Velocity(UPV).The test results show that the average speed of normal concrete is 5070 m/s,while the lowest average speed is 3070 m/s on the 70%planned corrosion test object.The test object was then given a load of 1600 kgf.At this stage,there is a decrease in speed and wave shape with the lowest average speed obtained at 2753 m/s.The repair method is an effort to restore concrete performance by using grouting and jacketing.Grouting is done by injecting mortar material into it.Jacketing involves adding thickness to the existing concrete layer with additional layers of concrete.After improvements were made,there was an improvement in the UPV test,with a peak speed value of 4910 m/s.Repairing concrete by filling cracks can improve concrete continuity and reduce waveform distortion,thereby increasing wave propagation speed. 展开更多
关键词 CORROSION CONCRETE REPAIR grouting JACKETING non-destructive testing(NDT) ultrasonic pulse velocity(UPV)
在线阅读 下载PDF
Research on the Performance and Diffusion Behavior of Geopolymer Grouting Material Made from Coal Roof Bottom Ash
3
作者 Xinxin Yu Haibo Zhang +1 位作者 Yu Liu Fengshun Zhang 《Journal of Architectural Research and Development》 2025年第1期8-20,共13页
As the cost of grouting treatment for water control in coal roofs during underground coal mining continues to rise,coupled with the accumulation of industrial solid waste resulting from rapid economic development in C... As the cost of grouting treatment for water control in coal roofs during underground coal mining continues to rise,coupled with the accumulation of industrial solid waste resulting from rapid economic development in China,the ecological environment is facing severe challenges.To address these issues,this study,based on a high water-to-cement ratio,uses mine overburden(OB)and furnace bottom ash(FBA)as the primary raw materials,with sodium silicate as the modifier,to develop a new type of geopolymer grouting material with high stability and compressive strength for coal roof water control.Additionally,COMSOL software was used to numerically simulate the diffusion process of the grout slurry in fractures under dynamic water flow.The results indicate that,with a sodium silicate modulus of 1.5 and a dosage of 4%,the stability of the slurry increased by 26.2%,and the 28-day compressive strength improved by 130.98%.Numerical simulations further show that the diffusion process of the slurry is closely related to slurry viscosity,grouting pressure,and grouting time and that the diffusion pattern in the fractures is similar to that of ultra-fine cement slurry.This study provides a theoretical basis for coal mine roof grouting water control projects. 展开更多
关键词 Coal mine top grouting Regional management Numerical simulation Comprehensive utilization Solid waste
在线阅读 下载PDF
An extended discontinuous deformation analysis for simulation of grouting reinforcement in a water-rich fractured rock tunnel
4
作者 Jingyao Gao Siyu Peng +1 位作者 Guangqi Chen Hongyun Fan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期168-186,共19页
Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numer... Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numerical tools for assessing the grouting effectiveness in water-rich fractured strata.In this study,the hydro-mechanical coupled discontinuous deformation analysis(HM-DDA)is inaugurally extended to simulate the grouting process in a water-rich discrete fracture network(DFN),including the slurry migration,fracture dilation,water plugging in a seepage field,and joint reinforcement after coagulation.To validate the capabilities of the developed method,several numerical examples are conducted incorporating the Newtonian fluid and Bingham slurry.The simulation results closely align with the analytical solutions.Additionally,a set of compression tests is conducted on the fresh and grouted rock specimens to verify the reinforcement method and calibrate the rational properties of reinforced joints.An engineering-scale model based on a real water inrush case of the Yonglian tunnel in a water-rich fractured zone has been established.The model demonstrates the effectiveness of grouting reinforcement in mitigating water inrush disaster.The results indicate that increased grouting pressure greatly affects the regulation of water outflow from the tunnel face and the prevention of rock detachment face after excavation. 展开更多
关键词 Discontinuous deformation analysis(DDA) Water-rich fractured rock tunnel grouting reinforcement Water inrush disaster
在线阅读 下载PDF
Assessment of compressive strength of jet grouting by machine learning 被引量:1
5
作者 Esteban Diaz Edgar Leonardo Salamanca-Medina Roberto Tomas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期102-111,共10页
Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the prope... Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns. 展开更多
关键词 Jet grouting Ground improvement Compressive strength Machine learning
在线阅读 下载PDF
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane 被引量:1
6
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope grouting Slope protection Large-scale model test
在线阅读 下载PDF
Numerical Simulation of Surrounding Rock Deformation and Grouting Reinforcement of Cross-Fault Tunnel under Different Excavation Methods 被引量:1
7
作者 Duan Zhu Zhende Zhu +2 位作者 Cong Zhang LunDai Baotian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2445-2470,共26页
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a... Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels. 展开更多
关键词 Cross-fault tunnel finite element analysis excavation methods surrounding rock deformation grouting reinforcement
在线阅读 下载PDF
Pre-reinforcement grout in fractured rock masses and numerical simulation for optimizing shrinkage stoping configuration 被引量:6
8
作者 YU Shao-feng WU Ai-xiang +1 位作者 WANG Yi-ming LI Tao 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2924-2931,共8页
Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines. The rock masses of Tangdan copper mine of China are fractured, ... Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines. The rock masses of Tangdan copper mine of China are fractured, which needs much reinforcement and support prior to mining. Cement-sodium silicate grout technology was selected, then its related parameters such as grout pressure, diffusion radius and time were calculated and proposed. In order to test the effect of the pressured grout in the fractured No.4 ore block, field experiments were conducted. To optimize stoping configuration, three-dimensional numerical simulation with ANSYS and FLAC 3 D softwares was proposed. The results show that the drilling porosity and mechanical properties of the rock masses are increased obviously. After grout, ore recovery rate is increased by 10.2 % employing the newly designed stoping configuration compared with the previous. Last, analyzed from the surface movements, roof subsidence and the maximum principal stress of the pillars, the mining safety is probable of being ensured. 展开更多
关键词 SHRINKAGE STOPING mining cement-sodium SILICATE grout effect of pressured grout STOPING CONFIGURATION three-dimensional numerical simulation
在线阅读 下载PDF
Stability behavior of the Lanxi ancient flood control levee after reinforcement with upside-down hanging wells and grouting curtain
9
作者 QIN Zipeng TIAN Yan +4 位作者 GAO Siyuan ZHOU Jianfen HE Xiaohui HE Weizhong GAO Jingquan 《Journal of Mountain Science》 SCIE CSCD 2024年第1期84-99,共16页
The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the e... The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the evolution laws of its seepage, displacement and stability before and after reinforcement with the upside-down hanging wells and grouting curtain through numerical simulation methods combined with experiments and observations. The study results indicate that the filled soil is less affected by water level fluctuations and groundwater concentration after reinforcement. A high groundwater level is detrimental to the levee's long-term stability, and the drainage issues need to be fully considered. The deformation of the reinforced levee is effectively controlled since the fill deformation is mainly borne by the upside-down hanging wells. The safety factors of the levee before reinforcement vary significantly with the water level. The minimum value of the safety factors is 0.886 during the water level decreasing period, indicating a very high risk of the instability. While it reached 1.478 after reinforcement, the stability of the ancient levee is improved by a large margin. 展开更多
关键词 Stability analysis Multiple factors Antiseepage reinforcement Upside-down hanging well grouting curtain Ancient levee
在线阅读 下载PDF
Research on Sleeve Grouting Density Detection Based on the Impact Echo Method
10
作者 Pu Zhang Yingjun Li +5 位作者 Xinyu Zhu Shizhan Xu Pinwu Guan Wei Liu Yanwei Guo Haibo Wang 《Structural Durability & Health Monitoring》 EI 2024年第2期143-159,共17页
Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the ... Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the detection of grouting anomalies within connections,enhancing its precision through the integration of wavelet packet energy principles for damage identification purposes.A series of grouting completeness assessments were meticulously conducted,taking into account variables such as the divergent material properties of the sleeves and the configuration of adjacent reinforcement.The findings revealed that:(i)the energy distribution for the highstrength concrete cohort predominantly occupied the frequency bands 42,44,45,and 47,whereas for other groups,it was concentrated within the 37 to 40 frequency band;(ii)the delineation of empty sleeves was effectively discernible by examining the wavelet packet energy ratios across the spectrum of frequencies,albeit distinguishing between sleeves with 50%and full grouting density proved challenging;and(iii)the wavelet packet energy analysis yielded variable detection outcomes contingent on the material attributes of the sleeves,demonstrating heightened sensitivity when applied to ultrahigh-performance concrete matrices and GFRP-reinforced steel bars. 展开更多
关键词 Prefabricated building steel grouting sleeve impact echo method wavelet packet energy grouted defect
在线阅读 下载PDF
Numerical investigation of geostress influence on the grouting reinforcement effectiveness of tunnel surrounding rock mass in fault fracture zones
11
作者 Xiangyu Xu Zhijun Wu +3 位作者 Lei Weng Zhaofei Chu Quansheng Liu Yuan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期81-101,共21页
Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.I... Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed. 展开更多
关键词 Numerical manifold method(NMM) grouting reinforcement Geostress condition Fault fracture zone Tunnel excavation
在线阅读 下载PDF
An Overview of Soil Improvement through Ground Grouting
12
作者 Md Ratan Bhuiyan Salequr Rahman Masum +1 位作者 Md Tushar Parvej S M Sanuwar 《Journal of Geoscience and Environment Protection》 2024年第1期51-63,共13页
Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical iss... Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical issues such as inadequate bearing capacity, excessive settlement, and liquefaction susceptibility. Through improving the engineering qualities of soil, such as strength, permeability, and stability, ground grouting is a specific geotechnical method used. Using a fluid grout mixture injected into the subsurface, holes are filled and weak or loose strata are solidified as the material seeps into the soil matrix. The approach’s adaptability in addressing soil-related issues has made it more well-known in the fields of civil engineering and construction. In the end, this has improved groundwater management, foundation support, and overall geotechnical performance. 展开更多
关键词 grouting Soil Improvement Permeation grouting Compaction grouting and Jet grouting
在线阅读 下载PDF
Mechanical properties of anti-seepage grouting materials for heavy metal contaminated soil 被引量:3
13
作者 杨宇友 王建强 豆海军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3316-3323,共8页
Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed ... Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed with water glass in different ways to produce three composite grouting materials. In order to investigate the effect of water glass mixing ratio, Baume degree, fly ash and slag contents on the mechanical properties of the composite grouting materials, particularly their gel time and compressive strength, the beaker-to-beaker method of gel time test and unconfined compressive strength test were conducted. In addition, the phase composition and microstructure of the composite grouting materials were analyzed by the X-ray diffraction(XRD) and scanning electron microscope(SEM) techniques. The test results show that their gel time increases when water glass mixing ratio and Baume degree increase. The gel time increases dramatically when fly ash is added, but decreases slightly if fly ash is partly replaced by slag. When the mixing ratio of water glass is below 20%, their compressive strength increases with the increases of the ratio; when the ratio is above 20%, it significantly decreases. The compressive strength also tends to increase as Baume degree increases, and improves if fly ash and slag are added. 展开更多
关键词 heavy metal contaminated soil composite grouting material gel time compressive strength MICROSTRUCTURE
在线阅读 下载PDF
Testing Analysis of Composite Ground with Grouting Piles and Deep Mixing Piles
14
作者 邵俐 刘松玉 邵信发 《Journal of Southeast University(English Edition)》 EI CAS 2001年第2期65-68,共4页
This paper discusses a new technique to improve soft ground with grouting piles and deep mixing piles. The bearing capacity of composite ground and the stress ratio between piles and soil is discussed by means of the ... This paper discusses a new technique to improve soft ground with grouting piles and deep mixing piles. The bearing capacity of composite ground and the stress ratio between piles and soil is discussed by means of the static test. Based on Mindlin solution and Boussinesq solution, the additional stress and settlement of the composite ground are acquired.Compared the practical value with calculation, a better calculating method is confirmed. 展开更多
关键词 grouting piles Mindlin solution Boussinesq solution deep mixing piles
在线阅读 下载PDF
Grouting diffusion of chemical fluid flow in soil with fractal characteristics 被引量:6
15
作者 ZHOU Zi-long DU Xue-ming +1 位作者 CHEN Zhao ZHAO Yun-long 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1190-1196,共7页
The chemical fluid property and the capillary structure of soil are important factors that affect grouting diffusion. Ignoring either factor will produce large errors in understanding the inherent laws of the diffusio... The chemical fluid property and the capillary structure of soil are important factors that affect grouting diffusion. Ignoring either factor will produce large errors in understanding the inherent laws of the diffusion process. Based on fractal geometry and the constitutive equation of Herschel-Bulkley fluid, an analytical model for Herschel-Bulkley fluid flowing in a porous geo-material with fractal characteristics is derived. The proposed model provides a theoretical basis for grouting design and helps to understand the chemical fluid flow in soil in real environments. The results indicate that the predictions from the proposed model show good consistency with the literature data and application results. Grouting pressure decreases with increasing diffusion distance. Under the condition that the chemical fluid flows the same distance, the grouting pressure undergoes almost no change at first and then decreases nonlinearly with increasing tortuosity dimension. With increasing rheological index, the pressure difference first decreases linearly, then presents a trend of nonlinear decrease, and then decreases linearly again. The pressure difference gradually increases with increasing viscosity and yield stress of the chemical fluid. The decreasing trend of the grouting pressure difference is non-linear and rapid for porosity Φ>0.4, while there is a linear and slow decrease in pressure difference for high porosity. 展开更多
关键词 grouting DIFFUSION Herschel-Bulkley fluid POROUS MEDIA FRACTAL grouting pressure
在线阅读 下载PDF
Compressive Strength of Polymer Grouting Material at Different Temperatures 被引量:10
16
作者 石明生 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第6期962-965,共4页
In order to study the influence of temperature on compressive strength of polymer grouting material,the compression specimen injection mold is self-made,and the uniaxial compressive test was carried out in the tempera... In order to study the influence of temperature on compressive strength of polymer grouting material,the compression specimen injection mold is self-made,and the uniaxial compressive test was carried out in the temperature control box under different temperatures.The change regularity of compressive strength of polymer grouting material under different temperatures and the law of volume changes of polymer samples were obtained.The experimental results show that:the compressive strength of polymer material increases with the increase of density;the temperature change has a certain influence on the compressive strength of polymer grouting material;the compressive strength decreases with temperature increases under the same density,but the compressive strength is not significantly affected by temperature when the density is less than 0.4 g/cm3;the volume change of the samples accords with the law of thermal expansion and contraction when temperature changes,and the increase of the volume is obvious when it is under high temperature.The achievements will provide an important basis to the application of the polymer grouting material. 展开更多
关键词 polymer grouting material compressive strength DENSITY TEMPERATURE VOLUME
在线阅读 下载PDF
Establishment and application of drilling sealing model in the spherical grouting mode based on the loosing-circle theory 被引量:6
17
作者 Hao Zhiyong Lin Baiquan +1 位作者 Gao Yabin Cheng Yanying 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期882-885,共4页
There are quite a few studies that have been done on borehole sealing theory both domestically and internationally.The existing researches usually consider drilling of the surroundings as a dense homogeneous elastic b... There are quite a few studies that have been done on borehole sealing theory both domestically and internationally.The existing researches usually consider drilling of the surroundings as a dense homogeneous elastic body which does not meet the characteristics of real drilling of the fractured body.Based on the loosing-circle theory and analyses of the surrounding rock stress field,cracks and seepage fields,combined with Newtonian fluid spherical grouting model,we deduced the dynamic relationship between the seepage coefficient and rock or grouting parameters of the drilling sealing fluid mode of spherical fissure grouting.In this experiment,mucus was injected in the simulated coal seam and the permeability coefficient of the sealing body was calculated by using the model.To verify the validity of the model,the calculated sealing body number was compared with the extreme negative pressure that the sealing body could withstand.The theoretical model revealed the drilling sealing fluid mechanism,provided a method for the quantitative calculation of the drilling sealing fluid effect by grouting mode and a reference for the subsequent research of sealing mechanism. 展开更多
关键词 DRILLING SEALING Loosing-circle grouting
在线阅读 下载PDF
Unified analytical solution for deep circular tunnel with consideration of seepage pressure,grouting and lining 被引量:5
18
作者 LI Xue-feng DU Shou-ji CHEN Bing 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1483-1493,共11页
A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone... A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone and lining are assumed as elastic-perfectly plastic and governed by the unified strength theory(UST). This new solution has made it possible to consider the interaction between seepage pressure, lining, grouting and rock mass, and the intermediate principal stress effect together. Moreover, parametric analysis is carried out to identify the influence of the related parameters on the plastic zone radius. Under the given conditions, the results show that the plastic zone radius decreases with an increasing cohesion, internal friction angle and hydraulic conductivity of lining and unified failure criterion parameter, respectively; whereas the plastic zone radius increases with the growth of elasticity modulus of lining. Comparison of results from the new solution and the other published one shows well agreement and provides confidence in the new solution proposed. 展开更多
关键词 UNIFIED strength theory (UST) INTERMEDIATE principal stress SEEPAGE pressure grouting LINING analytical solution
在线阅读 下载PDF
Comparative experimental investigation of chemical grouting into a fracture with flowing and static water 被引量:8
19
作者 Zhang Gailing Zhan Kaiyu +1 位作者 Gao Yue Wang Wenxue 《Mining Science and Technology》 EI CAS 2011年第2期201-205,共5页
We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagati... We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagation were compared in our investigation.The results show that flowing water results in drops of seepage pressure,development of penetration radii in the upstream side and drops of propagation area during the same period,compared with grouting in static water.The propagation area in static water is always round before grouts reach the joint boundaries.However,the propagation shape changes from round to an elliptic shape for grouting into a fracture with flowing water.A theoretical model for the grout penetration radius in a fracture considering flowing velocity was developed and validated by our experimental results.These results are helpful in improving understanding of fracture grouting mechanism and in guiding engineering practices. 展开更多
关键词 Rock fracture Chemical grouting Flowing water grouting Static water grouting Scale model test
在线阅读 下载PDF
A new clay-cement composite grouting material for tunnelling in underwater karst area 被引量:11
20
作者 ZHANG Cong YANG Jun-sheng +4 位作者 FU Jin-yang OU Xue-feng XIE Yi-peng DAI Yong LEI Jin-shan 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1863-1873,共11页
A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable for... A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable formation mechanism of the material was proposed based on a series of experimental tests. The results show that with an optimal mass ratio (2:1:1:0.024) for water, cement, clay and additives, the obtained CCGM displayed an excellent grouting performance for karst in an underwater condition. Compared with neat cement grouts and clay-cement grouts, CCGM has faster gel time, lower bleeding rate and bulk shrinkage rate, greater initial viscosity, and a strong resistance to water dispersion. A successful engineering application indicates that CCGM not only fulfils a better grouting performance for karst in underwater conditions but also reduces the engineering cost and environmental pollution. 展开更多
关键词 tunnel karst UNDERWATER new grouting material clay-cement composite
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部