The sink strength of developing ovaries in wheat determines the grain weight potential.The period from booting to the grain setting stage is critical for ovary growth and development and potential sink capacity determ...The sink strength of developing ovaries in wheat determines the grain weight potential.The period from booting to the grain setting stage is critical for ovary growth and development and potential sink capacity determination.However,the underlying regulatory mechanism during this period by which the wheat plant balances and coordinates the floret number and ovary/grain weight under water stress has not been clarified.Therefore,we designed two irrigation treatments of W0(no seasonal irrigation)and W1(additional 75 mm of irrigation at the jointing stage)and analyzed the responses of the ovary/grain weight to water stress at the phenotypic,metabolomic,and transcriptomic levels.The results showed that the W0 irrigation treatment reduced the soil water content,plant height,and green area of the flag leaf,thus reducing grain number,especially for the inferior grains.However,it improved the grain weight of the superior and inferior grains as well as average grain weight at maturity,while the average ovary/grain weight and volume during–3 to 10 days after anthesis(DAA)also increased.Transcriptomic analysis indicated that the genes involved in both sucrose metabolism and phytohormone signal transduction were prominently accelerated by the W0 treatment,accompanied by greater enzymatic activities of soluble acid invertase(SAI)and sucrose synthase(Sus)and elevated abscisic acid(ABA)and indole-3-acetic acid(IAA)levels.Thus,the sucrose content decreased,while the glucose and fructose contents increased.In addition,several TaTPP genes(especially TaTPP-6)were down-regulated and the IAA biosynthesis genes TaTAR1 and TaTAR2 were up-regulated under the W0 treatment before anthesis,which further increased the IAA level.Collectively,water stress reduced the growth of vegetative organs and eliminated most of the inferior grains,but increased the ABA and IAA levels of the surviving ovaries/grains,promoting the enzymatic activity of Sus and degrading sucrose into glucose and fructose.As a result,the strong sucrose utilization ability,the enhanced enzymatic activity of SAI and the ABA-and IAA-mediated signaling jointly increased the weight and volume of the surviving ovaries/grains,and ultimately achieved the tradeoff between ovary/grain weight and number in wheat under water stress.展开更多
In order to explore the effect of spraying fertilizers after flowering on grain weight and nutritional quality of different winter wheat cultivars, twenty wheat culti- vars in wheat zones along Yellow River and Huai R...In order to explore the effect of spraying fertilizers after flowering on grain weight and nutritional quality of different winter wheat cultivars, twenty wheat culti- vars in wheat zones along Yellow River and Huai River, were used to investigate the change of thousand kernel weight (TKW), phytic acid content (PAC), contents of Fe, Zn and Mg and bioavailability by spraying zinc and nitrogen fertilizers after flowering. The results showed that both of TKW and protein content in grains in- creased by spraying Zn and N fertilizers, and the effect of N fertilizer proved more significant. The PAC decreased significantly after Zn treatment, for example, PAC of "955159", a wheat cultivar, decreased by 27.95%. However, PAC was in- significantly influenced by N fertilizer. On the other hand, Zn content in wheat grains were improved after spraying Zn fertilizer and the increase aveaged 54.38%. Furthermore, Fe and Zn contents grew significantly after spraying N fertilizer, and the increase averaged 36.88% and 11.25% respectively. However, Mg content in grains declined by N fertilizer. Still, the bioavailability of zinc in grains was enhanced after spraying Zn fertilizer, and of Fe was also increased greatly after spraying N fertilizer. In conclusion, grain weight, and content and effectiveness of mineral ele-ments can be improved simultaneously by rational spraying of N and Zn fertilizers to improve quality of grains.展开更多
[Objective] This study was to investigate the effect of enhanced UV-B radiation on seed setting rate and 1 000-grain weight of hybrid rice combinations. [Method] The seed setting rate and 1 000-grain weight of 10 new ...[Objective] This study was to investigate the effect of enhanced UV-B radiation on seed setting rate and 1 000-grain weight of hybrid rice combinations. [Method] The seed setting rate and 1 000-grain weight of 10 new sterile indica restorer lines planted in pots under enhanced UV-B radiation and fluorescent lamps (control) were respectively measured, and the differences were compared. [Result] The enhanced UV-B radiation significantly reduced the seed setting rate of indica restorer lines, and the differences between that UV-B radiation treatment and control all reached extremely significant level. In addition, the enhanced UV-B radiation reduced the 1 000-grain weight of most indica restorer lines, and compared with that of control the difference achieved significant or very significant level. However, the effect of enhanced UV-B radiation on seed setting rate and 1 000-grain weight differed to different indica restorer lines, and the differences among restorer lines tested were significant or very significant, which indicated the possibility to screen antiUV-B radiation rice materials and combinations. Finally, the indica restorer lines 09R-14, Luhui 37 and 10R-7703 which were strongly resistant to UV-B radiation were screened out. [Conclusion] This study laid foundation for breeding hybrid rice varieties resistance to UV-B radiation.展开更多
Delays in sowing have significant effects on the grain yield,yield components,and grain protein concentrations of winter wheat.However,little is known about how delayed sowing affects these characteristics at differen...Delays in sowing have significant effects on the grain yield,yield components,and grain protein concentrations of winter wheat.However,little is known about how delayed sowing affects these characteristics at different positions in the wheat spikes.In this study,the effects of sowing date were investigated in a winter wheat cultivar,Shannong 30,which was sown in 2019 and 2020 on October 8(normal sowing)and October 22(late sowing)under field conditions.Delayed sowing increased the partitioning of ^(13)C-assimilates to spikes,particularly to florets at the apical section of a spike and those occupying distal positions on the same spikelet.Consequently,the increase in grain number was the greatest for the apical sections,followed by the basal and central sections.No significant differences were observed between sowing dates in the superior grain number in the basal and central sections,while the number in apical sections was significantly different.The number of inferior grains in each section also increased substantially in response to delayed sowing.The average grain weights in all sections remained unchanged under delayed sowing because there were parallel increases in grain number and ^(13)C-assimilate partitioning to grains at specific positions in the spikes.Increases in grain number m^(–2) resulted in reduced grain protein concentrations as the limited nitrogen supply was diluted into more grains.Delayed sowing caused the greatest reduction in grain protein concentration in the basal sections,followed by the central and apical sections.No significant differences in the reduction of the grain protein concentration were observed between the inferior and superior grains under delayed sowing.In conclusion,a 2-week delay in sowing improved grain yield through increased grain number per spike,which originated principally from an increased grain number in the apical sections of spikes and in distal positions on the same spikelet.However,grain protein concentrations declined in each section because of the increased grain number and reduced N uptake.展开更多
The QTL qTGW3-1 was located on chromosome 3 of rice (Oryza sativa L.) and associated with the 1 000-grain weight (TGW) according to the result of our earlier study. With the objective of fine mapping of this locus...The QTL qTGW3-1 was located on chromosome 3 of rice (Oryza sativa L.) and associated with the 1 000-grain weight (TGW) according to the result of our earlier study. With the objective of fine mapping of this locus, we developed a F2 population consisting of 3 428 plants derived from the cross between TGW-related near isogenic line DL017 (BC3F4 generation of GSL 156×Nipponbare) and the recurrent parent Nipponbare. Using six microsatellites, this QTL was delimited between RM5477 and RM6417. Markers MM 1455 and MM 1456 within this region were used for further mapping of this QTL. Finally, qTGW3-1 was fine-mapped into a 89-kb interval between RM5477 and MM1456, which locates in the BAC clone AC107226 harboring five putative candidate genes.展开更多
ADP-glucose pyrophosphorylase(AGPase)influences cereal productivity.There are few reports on the function of cytosolic AGPase small subunit in bread wheat(TaAGPS).In the present study,TaAGPS was preferentially express...ADP-glucose pyrophosphorylase(AGPase)influences cereal productivity.There are few reports on the function of cytosolic AGPase small subunit in bread wheat(TaAGPS).In the present study,TaAGPS was preferentially expressed in developing endosperm during grain-filling stages in bread wheat.TaAGPS allelic variations were characterized in 143 wheat accessions by PacBio RS II sequencing.Two haplotypes(TaAGPS-7A-TG and TaAGPS-7A-CT)of TaAGPS-7A were identified and corresponding functional markers were developed,whereas no variants of TaAGPS-7B and TaAGPS-7D were detected.TaAGPS-7A was associated with thousand-kernel weight(TKW)by haplotype–trait association analysis in two populations.Near-isogenic lines(NILs)with TaAGPS-7A-TG showed higher TKW and total kernel starch content than those with TaAGPS-7A-CT,owing to the higher AGPase activity of TaAGPS-7A-TG than TaAGPS-7A-CT both in vitro and in vivo.Overexpression of TaAGPS-7A-TG in bread wheat doubled the transcription levels of TaAGPS and increased AGPase activity by 55.7%,resulting in a 3.0-g higher TKW than in the wild type(WT).Knockdown of TaAGPS led to reduced expression of TaAGPS,AGPase activity,and TKW than in the WT.Thus,owing to the 218th amino acid change of Ser to Ala in TaAGPS-7A,the favorable haplotype TaAGPS-7A-TG showed higher AGPase activity,resulting in higher kernel starch content and grain weight.This finding could be applied to increasing starch content and grain weight in bread wheat.展开更多
supported by a grant from the National High-Tech R&D Program of China (2014AA10A603, 2014AA10A604);a grant from the Youth Foundation in Sichuan, China (2011JTD0022);the special fund for China Agricultural Researc...supported by a grant from the National High-Tech R&D Program of China (2014AA10A603, 2014AA10A604);a grant from the Youth Foundation in Sichuan, China (2011JTD0022);the special fund for China Agricultural Research System (CARS-01-08);the Provincial Specialized Funds for Innovation Ability Promotion in Sichuan, China (2013GXJS005)展开更多
1000-grain weight ( TGW) is one ot the three component traits ot the grain yiela in rice (Oryza sativa L). This study was conducted to validate and fine-map qTGWl. 1, a minor QTL for TGW which was previously locat...1000-grain weight ( TGW) is one ot the three component traits ot the grain yiela in rice (Oryza sativa L). This study was conducted to validate and fine-map qTGWl. 1, a minor QTL for TGW which was previously located in a 3.7-Mb region on the long arm of rice chromosome 1. Five sets of near isogenic lines (NILs) were developed from two BC2F4 populations of the indica rice cross Zhenshan 973/Milyang 46 The NIL sets consisted of two homozygous genotypic groups differing in the regions RM11448-RM11522, RM11448-RM11549, RM1232-RM11615, RM11543-RM11554 and RM11569-RM11621, respectively. Four traits, including TGW, grain length, grain width and heading date, were measured. Phenotypic difference between the two genotypic groups in each NIL population was analyzed using SAS procedure GLM. Significant QTL effects were detected on TGW with the Zhenshan 97 allele increasing grain weight by 0.12 g to 0.14 g and explaining 8.30% to 15.19% of the phenotypic variance. Significant effects were also observed for grain length and width, whereas no significant effect was found for heading date. Based on comparison among the five NILs on the segregating regions and the results of QTL analysis, qTGWl. 1 was delimited to a 376.9-kb region flanked by DNA markers Wn28382 and RMl1554. Our results indicate that the effects of minor QTLs could be steadily detected in a highly isogenic background and suggest that such QTLs could be utilized in the breeding of high-yielding rice varieties.展开更多
To provide new experimental materials for QTL analysis of rice yield trait, we constructed a mapping population of 150 1ines (recombination inbred lines, R1L) derived from a cross between rice varieties V20B and CPS...To provide new experimental materials for QTL analysis of rice yield trait, we constructed a mapping population of 150 1ines (recombination inbred lines, R1L) derived from a cross between rice varieties V20B and CPSLO17, and localized QTLs and evaluated the genetic effects in the two parents and 150 RILs for thousand-grain weight trait by using internal mapping method of software MapQTL5 combining thousand-grain weight phenotypic data of the RILs. The results showed that a new QTL (qTGW-3) related to thousand-grain weight trait was detected. Individual QTL (LOD=4.14) explained 11.9% of the observed phenotypic variance. And the QTL alleles came from the parent V20B.展开更多
Grain weight is a key determinant of grain yield in rice. Three sets of rice populations with overlapping segregating regions in isogenic backgrounds were established in the generations of BC2 F5, BC2 F6 and BC2 F7, d...Grain weight is a key determinant of grain yield in rice. Three sets of rice populations with overlapping segregating regions in isogenic backgrounds were established in the generations of BC2 F5, BC2 F6 and BC2 F7, derived from Zhenshan 97 and Milyang 46, and used for dissection of quantitative trait loci(QTL) for grain weight. Two QTL linked in repulsion phase on the long arm of chromosome 1 were separated. One was located between simple sequence repeat(SSR) markers RM11437 and RM11615, having a smaller additive effect with the enhancing allele from the maintainer line Zhenshan 97 and a partially dominant effect for increasing grain weight. The other was located between SSR markers RM11615 and RM11800, having a larger additive effect with the enhancing allele from the restorer line Milyang 46 and a partially dominant effect for increasing grain weight. When the two QTL segregated simultaneously, a residual additive effect with the enhancing allele from Milyang 46 and an over-dominance effect for increasing grain weight were detected. This suggests that dominant QTL linked in repulsion phase might play an important role in heterosis in rice. Our study also indicates that the use of populations with overlapping segregating regions in isogenic backgrounds is helpful for the dissection of minor linked QTL.展开更多
Thousand-grain weight (TGW) is a key component of grain yield in rice. This study was conducted to validate and fine-map qTGW1.2a, a quantitative trait locus for grain weight and grain size previously located in a 933...Thousand-grain weight (TGW) is a key component of grain yield in rice. This study was conducted to validate and fine-map qTGW1.2a, a quantitative trait locus for grain weight and grain size previously located in a 933.6-kb region on the long arm of rice chromosome 1. Firstly, three residual heterozygotes (RHs) were selected from a BC2F11 population of the indica rice cross Zhenshan 97 (ZS97)///ZS97//ZS97/Milyang 46. The heterozygous segments in these RHs were arranged successively in physical positions, forming one set of sequential residual heterozygotes (SeqRHs). In each of the populations derived, non-recombinant homozygotes were identified to produce near isogenic lines (NILs) comprising the two homozygous genotypes. The NILs were tested for grain weight, grain length and grain width. QTL analyses for the three traits were performed. Then, the updated QTL location was followed for a new run of SeqRHs identification-NIL development-QTL mapping. Altogether, 11 NIL populations derived from four sets of SeqRHs were developed and used. qTGW1.2a was finally delimitated into a 77.5-kb region containing 13 annotated genes. In the six populations segregating this QTL, which were in four generations and were tested across four years, the allelic direction of qTGW1.2a remained consistent and the genetic effects were stable. For TGW, the additive effects ranged from 0.23 to 0.38 g and the proportions of phenotypic variance explained ranged from 26.15% to 41.65%. These results provide a good foundation for the cloning and functional analysis of qTGW1.2a.展开更多
Grain weight is one of themost important determinants of grain yield in rice.In this study,QTL analysis for grain weight,grain length,and grainwidthwas performed using populations derived from crosses between major pa...Grain weight is one of themost important determinants of grain yield in rice.In this study,QTL analysis for grain weight,grain length,and grainwidthwas performed using populations derived from crosses between major parental lines of three-line indica hybrid rice.A total of 27 QTL for grain weight were detected using three recombinant inbred line populations derived from the crosses Teqing/IRBB lines,Zhenshan 97/Milyang 46,and Xieqingzao/Milyang 46.Of these,10 were found in only a single population and the other 17 in two or all three populations.Nine of the 17 common QTL were located in regions where no QTL associated with grain weight have been cloned and onewas selected for fine-mapping.Eight populations segregating in an isogenic background were derived from one F7 residual heterozygote of Teqing/IRBB52.The target QTL,qTGW10-20.8 controlling grain weight,grain length,and grain width,was localized to a 70.7-kb region flanked by InDel markers Te20811 and Te20882 on the long arm of chromosome 10.The QTL region contains seven annotated genes,ofwhich six encode proteins with known functional domains and one encodes a hypothetical protein.One of the genes,Os10g0536100 encoding the MIKC-type MADS-box protein OsMADS56,is the most likely candidate for qTGW10-20.8.These results provide a basis for cloning qTGW10-20.8,which has an important contribution to grain weight variation in rice.展开更多
Hexaploid triticale(×Triticosecale,AABBRR)is an important forage crop and a promising energy plant.Transferring D-genome chromosomes or segments from common wheat(Triticum aestivum)into hexaploid triticale is att...Hexaploid triticale(×Triticosecale,AABBRR)is an important forage crop and a promising energy plant.Transferring D-genome chromosomes or segments from common wheat(Triticum aestivum)into hexaploid triticale is attractive in improving its economically important traits.Here,a hexaploid triticale 6D(6A)substitution line Lin 456 derived from the cross between the octoploid triticale line H400 and the hexaploid wheat Lin 56 was identified and analyzed by genomic in situ hybridization(GISH),fluorescence in situ hybridization(FISH),and molecular markers.The GISH analysis showed that Lin 456 is a hexaploid triticalewith 14 rye(Secale cereale)chromosomes and 28 wheat chromosomes,whereas non-denaturing fluorescence in situ hybridization(ND-FISH)and molecular marker analysis revealed that it is a 6D(6A)substitution line.In contrast to previous studies,the signal of Oligo-pSc119.2 was observed at the distal end of 6DL in Lin 456.The wheat chromosome 6D was associatedwith increased grain weight and decreased spikelet number using the genotypic data combined with the phenotypes of the F2 population in the three environments.The thousand-grain weight and grain width in the substitution individuals were significantly higher than those in the non-substitution individuals in the F2 population across the three environments.We propose that the hexaploid triticale 6D(6A)substitution line Lin 456 can be a valuable and promising donor stock for genetic improvement during triticale breeding.展开更多
IDEAL PLANT ARCHITECTURE1(IPA1)is a pivotal gene controlling plant architecture and grain yield.However,little is known about the effects of Triticum aestivum SQUAMOSA PROMOTER‐BINDING‐LIKE 14(TaSPL14),an IPA1 ortho...IDEAL PLANT ARCHITECTURE1(IPA1)is a pivotal gene controlling plant architecture and grain yield.However,little is known about the effects of Triticum aestivum SQUAMOSA PROMOTER‐BINDING‐LIKE 14(TaSPL14),an IPA1 ortholog in wheat,on balancing yield traits and its regulatory mechanism in wheat(T.aestivum L.).Here,we determined that the T.aestivum GRAIN WIDTH2(TaGW2)‐TaSPL14 module influences the balance between tiller number and grain weight in wheat.Overexpression of TaSPL14 resulted in a reduced tiller number and increased grain weight,whereas its knockout had the opposite effect,indicating that TaSPL14 negatively regulates tillering while positively regulating grain weight.We further identified TaGW2 as a novel interacting protein of TaSPL14 and confirmed its ability to mediate the ubiquitination and degradation of TaSPL14.Based on our genetic evidence,TaGW2 acts as a positive regulator of tiller number,in addition to its known role as a negative regulator of grain weight,which is opposite to TaSPL14.Moreover,combinations of TaSPL14‐7A and TaGW2‐6A haplotypes exhibit significantly additive effects on tiller number and grain weight in wheat breeding.Our findings provide insight into how the TaGW2‐TaSPL14 module regulates the trade‐off between tiller number and grain weight and its potential application in improving wheat yield.展开更多
Grain size and grain weight are important determinants for grain yield.In this study,we identify a novel OsMAPK5–OsWRKY72 module that negatively regulates grain length and grain weight in rice.We found that loss-of-f...Grain size and grain weight are important determinants for grain yield.In this study,we identify a novel OsMAPK5–OsWRKY72 module that negatively regulates grain length and grain weight in rice.We found that loss-of-function of OsMAPK5 leads to larger cell size of the rice spikelet hulls and a significant increase in both grain length and grain weight in an indica variety Minghui 86(MH86).OsMAPK5 interacts with OsMAPKK3/4/5 and OsWRKY72 and phosphorylates OsWRKY72 at T86 and S88.Similar to the osmapk5 MH86 mutants,the oswrky72 knockout MH86 mutants exhibited larger size of spikelet hull cells and increased grain length and grain weight,whereas the OsWRKY72-overexpression MH86 plants showed opposite phenotypes.OsWRKY72 targets the W-box motifs in the promoter of OsARF6,an auxin response factor involved in auxin signaling.Dual-luciferase reporter assays demonstrated that OsWRKY72 activates OsARF6 expression.The activation effect of the phosphorylation-mimicking OsWRKY72T86D/S88D on OsARF6 expression was significantly enhanced,whereas the effects of the OsWRKY72 phosphorylation-null mutants were significantly reduced.In addition,auxin levels in young panicles of the osmapk5 and oswrky72 mutants were significantly higher than that in the wild-type MH86.Collectively,our study uncovered novel connections of the OsMAPKK3/4/5-OsMAPK5-mediated MAPK signaling,OsWRKY72-mediated transcription regulation,and OsARF6-mediated auxin signaling pathways in regulating grain length and grain weight in an indica-type rice,providing promising targets for molecular breeding of rice varieties with high yield and quality.展开更多
Grain yield is determined mainly by grain number and grain weight.In this study,we identified and characterized MORE GRAINS1(MOG1),a gene associated with grain number and grain weight in rice(Oryza sativa L.),through ...Grain yield is determined mainly by grain number and grain weight.In this study,we identified and characterized MORE GRAINS1(MOG1),a gene associated with grain number and grain weight in rice(Oryza sativa L.),through map-based cloning.Overexpression of MOG1 increased grain yield by 18.6%-22.3%under field conditions.We determined that MOG1,a bHLH transcription factor,interacts with OsbHLH107 and directly activates the expression of LONELY GUY(LOG),which encodes a cytokinin-activating enzyme and the cell expansion gene EXPANSIN-LIKE1(EXPLA1),positively regulating grain number per panicle and grain weight.Natural variations in the promoter and coding regions of MOG1 between Hap-LNW and Hap-HNW alleles resulted in changes in MOG1 expression level and transcriptional activation,leading to functional differences.Haplotype analysis revealed that Hap-HNW,which results in a greater number and heavier grains,has undergone strong selection but has been poorly utilized in modern lowland rice breeding.In summary,the MOG1-OsbHLH107 complex activates LOG and EXPLA1 expression to promote cell expansion and division of young panicles through the cytokinin pathway,thereby increasing grain number and grain weight.These findings suggest that Hap-HNW could be used in strategies to breed high-yielding temperate japonica lowland rice.展开更多
Grain size is a key factor influencing grain weight in rice.In this study,a chromosome segment substitution line(CSSL9-17)was identified,that exhibits a significant reduction in both grain size and weight compared to ...Grain size is a key factor influencing grain weight in rice.In this study,a chromosome segment substitution line(CSSL9-17)was identified,that exhibits a significant reduction in both grain size and weight compared to its donor parent 93-11.Further investigation identified two quantitative trait loci(QTL)on chromosome 11,designated qGW11a and qGW11b,which contribute to 1000-grain weight with an additive effect.LOC_Os11g05690,encoding the amino acid permease OsCAT8,is the target gene of qGW11a.Overexpression of OsCAT8 resulted in decreased grain weight,while OsCAT8 knockout mutants exhibited increased grain weight.The 287-bp located within the OsCAT8 promoter region of 93-11 negatively regulates its activity,which is subsequently correlated with an increase in grain size and weight.These results suggest that OsCAT8 functions as a negative regulator of grain size and grain weight in rice.展开更多
Grain weight,a key determinant of yield in rice(Oryza sativa L.),is governed primarily by genetic factors,whereas grain chalkiness,a detriment to grain quality,is intertwined with environmental factors such as mineral...Grain weight,a key determinant of yield in rice(Oryza sativa L.),is governed primarily by genetic factors,whereas grain chalkiness,a detriment to grain quality,is intertwined with environmental factors such as mineral nutrients.Nitrogen(N)is recognized for its effect on grain chalkiness,but the underlying molecular mechanisms remain to be clarified.This study revealed the pivotal role of rice NODULE INCEPTION-LIKE PROTEIN 3(OsNLP3)in simultaneously regulating grain weight and grain chalkiness.Our investigation showed that loss of OsNLP3 leads to a reduction in both grain weight and dimension,in contrast to the enhancement observed with OsNLP3 overexpression.OsNLP3 directly suppresses the expression of OsCEP6.1 and OsNF-YA8,which were identified as negative regulators associated with grain weight.Consequently,two novel regulatory modules,OsNLP3-OsCEP6.1 and OsNLP3-OsNF-YA8,were identified as key players in grain weight regulation.Notably,the OsNLP3-OsNF-YA8 module not only increases grain weight but also mitigates grain chalkiness in response to N.This research clarifies the molecular mechanisms that orchestrate grain weight through the OsNLP3-OsCEP6.1 and OsNLP3-OsNF-YA8 modules,highlighting the pivotal role of the OsNLP3-OsNF-YA8 module in alleviating grain chalkiness.These findings reveal potential targets for simultaneous enhancement of rice yield and quality.展开更多
RNA-binding proteins(RBPs)are components of the post-transcriptional regulatory system,but their regulatory effects on complex traits remain unknown.Using an integrated strategy involving map-based cloning,functional ...RNA-binding proteins(RBPs)are components of the post-transcriptional regulatory system,but their regulatory effects on complex traits remain unknown.Using an integrated strategy involving map-based cloning,functional characterizations,and transcriptomic and population genomic analyses,we revealed that RBP-K(LOC_Os08g23120),RBP-A(LOC_Os11g41890),and RBP-J(LOC_Os10g33230)encode proteins that form an RBP-A-J-K complex that negatively regulates rice yield-related traits.Examinations of the RBP-A-J-K complex indicated RBP-K functions as a relatively non-specific RBP chaperone that enables RBP-A and RBP-J to function normally.Additionally,RBP-J most likely affects GA pathways,resulting in considerable increases in grain and panicle lengths,but decreases in grain width and thickness.In contrast,RBP-A negatively regulates the expression of genes most likely involved in auxin-regulated pathways controlling cell wall elongation and carbohydrate transport,with substantial effects on the rice grain filling process as well as grain length and weight.Evolutionarily,RBP-K is relatively ancient and highly conserved,whereas RBP-J and RBP-A are more diverse.Thus,the RBP-A-J-K complex may represent a typical functional model for many RBPs and protein complexes that function at transcriptional and post-transcriptional levels in plants and animals for increased functional consistency,efficiency,and versatility,as well as increased evolutionary potential.Our results clearly demonstrate the importance of RBP-mediated post-transcriptional regulation for the diversity of complex traits.Furthermore,rice grain yield and quality may be enhanced by introducing various complete or partial loss-of-function mutations to specific RBP genes using clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein 9 technology and by exploiting desirable natural tri-genic allelic combinations at the loci encoding the components of the RBP-A-J-K complex through marker-assisted selection.展开更多
Rice grain size is a primary characteristic essential for artificial domestication and breeding,governed by grain length,width,and thickness.In this study,we cloned Grain Size 10(GS10),a novel gene via mapbased clonin...Rice grain size is a primary characteristic essential for artificial domestication and breeding,governed by grain length,width,and thickness.In this study,we cloned Grain Size 10(GS10),a novel gene via mapbased cloning.Biochemical,molecular,and genetic studies were performed to elucidate the GS10 involved grain size mechanism in rice.Mutant of GS10 lead to reduced grain size due to alterations in cell expansion.Additionally,GS10 is responsible for the formation of notched-belly grains,especially in smaller grain varieties possessing loss-function mutations.Overexpression of GS10 in Nipponbare results in increasing grain length,grain weight and improve the appearance quality of rice.GS10 encodes conserved protein with uncharacterized function.Furthermore,GS10 regulates the grain size by interacting OsBRICK1,a subunit of the WAVE complex that governs actin nucleation and affects the assembly of microfilaments in rice.Together,our study demonstrates that,GS10 positively regulates the grain length and grain weight,which is beneficial for further improvements in yield characteristics.展开更多
基金sponsored by the Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau,China(SBGJXTZX-44)the Fundamental Research Program of Shanxi Province,China(20210302124237)+1 种基金the National Key Research and Development Program of China(2022YFD2300802)the China Agriculture Research System(CARS-3)。
文摘The sink strength of developing ovaries in wheat determines the grain weight potential.The period from booting to the grain setting stage is critical for ovary growth and development and potential sink capacity determination.However,the underlying regulatory mechanism during this period by which the wheat plant balances and coordinates the floret number and ovary/grain weight under water stress has not been clarified.Therefore,we designed two irrigation treatments of W0(no seasonal irrigation)and W1(additional 75 mm of irrigation at the jointing stage)and analyzed the responses of the ovary/grain weight to water stress at the phenotypic,metabolomic,and transcriptomic levels.The results showed that the W0 irrigation treatment reduced the soil water content,plant height,and green area of the flag leaf,thus reducing grain number,especially for the inferior grains.However,it improved the grain weight of the superior and inferior grains as well as average grain weight at maturity,while the average ovary/grain weight and volume during–3 to 10 days after anthesis(DAA)also increased.Transcriptomic analysis indicated that the genes involved in both sucrose metabolism and phytohormone signal transduction were prominently accelerated by the W0 treatment,accompanied by greater enzymatic activities of soluble acid invertase(SAI)and sucrose synthase(Sus)and elevated abscisic acid(ABA)and indole-3-acetic acid(IAA)levels.Thus,the sucrose content decreased,while the glucose and fructose contents increased.In addition,several TaTPP genes(especially TaTPP-6)were down-regulated and the IAA biosynthesis genes TaTAR1 and TaTAR2 were up-regulated under the W0 treatment before anthesis,which further increased the IAA level.Collectively,water stress reduced the growth of vegetative organs and eliminated most of the inferior grains,but increased the ABA and IAA levels of the surviving ovaries/grains,promoting the enzymatic activity of Sus and degrading sucrose into glucose and fructose.As a result,the strong sucrose utilization ability,the enhanced enzymatic activity of SAI and the ABA-and IAA-mediated signaling jointly increased the weight and volume of the surviving ovaries/grains,and ultimately achieved the tradeoff between ovary/grain weight and number in wheat under water stress.
基金Supported by Special Fund for S&R in the Public Interest(200903007)Special Fund in the Public Interest(201203013)Henan Key Project(102101110200)~~
文摘In order to explore the effect of spraying fertilizers after flowering on grain weight and nutritional quality of different winter wheat cultivars, twenty wheat culti- vars in wheat zones along Yellow River and Huai River, were used to investigate the change of thousand kernel weight (TKW), phytic acid content (PAC), contents of Fe, Zn and Mg and bioavailability by spraying zinc and nitrogen fertilizers after flowering. The results showed that both of TKW and protein content in grains in- creased by spraying Zn and N fertilizers, and the effect of N fertilizer proved more significant. The PAC decreased significantly after Zn treatment, for example, PAC of "955159", a wheat cultivar, decreased by 27.95%. However, PAC was in- significantly influenced by N fertilizer. On the other hand, Zn content in wheat grains were improved after spraying Zn fertilizer and the increase aveaged 54.38%. Furthermore, Fe and Zn contents grew significantly after spraying N fertilizer, and the increase averaged 36.88% and 11.25% respectively. However, Mg content in grains declined by N fertilizer. Still, the bioavailability of zinc in grains was enhanced after spraying Zn fertilizer, and of Fe was also increased greatly after spraying N fertilizer. In conclusion, grain weight, and content and effectiveness of mineral ele-ments can be improved simultaneously by rational spraying of N and Zn fertilizers to improve quality of grains.
基金Supported by the Financial Genetic Engineering Program of Sichuan Province during the 12th Five-Year Plan Period(2011JYGC11-029)Sichuan Innovation Team Program of China Agriculture Research System+1 种基金Key Rice Breeding Technology Research and Development Program of Sichuan Province during the 12th Five-Year Plan Period(2011NZ0098-1)Key Science and Technology Program of Luzhou City(2011-N-09)~~
文摘[Objective] This study was to investigate the effect of enhanced UV-B radiation on seed setting rate and 1 000-grain weight of hybrid rice combinations. [Method] The seed setting rate and 1 000-grain weight of 10 new sterile indica restorer lines planted in pots under enhanced UV-B radiation and fluorescent lamps (control) were respectively measured, and the differences were compared. [Result] The enhanced UV-B radiation significantly reduced the seed setting rate of indica restorer lines, and the differences between that UV-B radiation treatment and control all reached extremely significant level. In addition, the enhanced UV-B radiation reduced the 1 000-grain weight of most indica restorer lines, and compared with that of control the difference achieved significant or very significant level. However, the effect of enhanced UV-B radiation on seed setting rate and 1 000-grain weight differed to different indica restorer lines, and the differences among restorer lines tested were significant or very significant, which indicated the possibility to screen antiUV-B radiation rice materials and combinations. Finally, the indica restorer lines 09R-14, Luhui 37 and 10R-7703 which were strongly resistant to UV-B radiation were screened out. [Conclusion] This study laid foundation for breeding hybrid rice varieties resistance to UV-B radiation.
基金Financial support was received from the National Key Research and Development Program of China(2016YFD0300403 and 2017YFD0201705)。
文摘Delays in sowing have significant effects on the grain yield,yield components,and grain protein concentrations of winter wheat.However,little is known about how delayed sowing affects these characteristics at different positions in the wheat spikes.In this study,the effects of sowing date were investigated in a winter wheat cultivar,Shannong 30,which was sown in 2019 and 2020 on October 8(normal sowing)and October 22(late sowing)under field conditions.Delayed sowing increased the partitioning of ^(13)C-assimilates to spikes,particularly to florets at the apical section of a spike and those occupying distal positions on the same spikelet.Consequently,the increase in grain number was the greatest for the apical sections,followed by the basal and central sections.No significant differences were observed between sowing dates in the superior grain number in the basal and central sections,while the number in apical sections was significantly different.The number of inferior grains in each section also increased substantially in response to delayed sowing.The average grain weights in all sections remained unchanged under delayed sowing because there were parallel increases in grain number and ^(13)C-assimilate partitioning to grains at specific positions in the spikes.Increases in grain number m^(–2) resulted in reduced grain protein concentrations as the limited nitrogen supply was diluted into more grains.Delayed sowing caused the greatest reduction in grain protein concentration in the basal sections,followed by the central and apical sections.No significant differences in the reduction of the grain protein concentration were observed between the inferior and superior grains under delayed sowing.In conclusion,a 2-week delay in sowing improved grain yield through increased grain number per spike,which originated principally from an increased grain number in the apical sections of spikes and in distal positions on the same spikelet.However,grain protein concentrations declined in each section because of the increased grain number and reduced N uptake.
基金supported by the National Basic Research Program of China (2010CB129504)the National Key Technologies R&D Program of China (2009BADA2B01)the 948 Project of MOA, China (2011-G2B)
文摘The QTL qTGW3-1 was located on chromosome 3 of rice (Oryza sativa L.) and associated with the 1 000-grain weight (TGW) according to the result of our earlier study. With the objective of fine mapping of this locus, we developed a F2 population consisting of 3 428 plants derived from the cross between TGW-related near isogenic line DL017 (BC3F4 generation of GSL 156×Nipponbare) and the recurrent parent Nipponbare. Using six microsatellites, this QTL was delimited between RM5477 and RM6417. Markers MM 1455 and MM 1456 within this region were used for further mapping of this QTL. Finally, qTGW3-1 was fine-mapped into a 89-kb interval between RM5477 and MM1456, which locates in the BAC clone AC107226 harboring five putative candidate genes.
基金financially supported by the National Natural Science Foundation of China(31871617,32172066)the Education Department of Hunan Province(20B615)。
文摘ADP-glucose pyrophosphorylase(AGPase)influences cereal productivity.There are few reports on the function of cytosolic AGPase small subunit in bread wheat(TaAGPS).In the present study,TaAGPS was preferentially expressed in developing endosperm during grain-filling stages in bread wheat.TaAGPS allelic variations were characterized in 143 wheat accessions by PacBio RS II sequencing.Two haplotypes(TaAGPS-7A-TG and TaAGPS-7A-CT)of TaAGPS-7A were identified and corresponding functional markers were developed,whereas no variants of TaAGPS-7B and TaAGPS-7D were detected.TaAGPS-7A was associated with thousand-kernel weight(TKW)by haplotype–trait association analysis in two populations.Near-isogenic lines(NILs)with TaAGPS-7A-TG showed higher TKW and total kernel starch content than those with TaAGPS-7A-CT,owing to the higher AGPase activity of TaAGPS-7A-TG than TaAGPS-7A-CT both in vitro and in vivo.Overexpression of TaAGPS-7A-TG in bread wheat doubled the transcription levels of TaAGPS and increased AGPase activity by 55.7%,resulting in a 3.0-g higher TKW than in the wild type(WT).Knockdown of TaAGPS led to reduced expression of TaAGPS,AGPase activity,and TKW than in the WT.Thus,owing to the 218th amino acid change of Ser to Ala in TaAGPS-7A,the favorable haplotype TaAGPS-7A-TG showed higher AGPase activity,resulting in higher kernel starch content and grain weight.This finding could be applied to increasing starch content and grain weight in bread wheat.
基金supported by a grant from the National High-Tech R&D Program of China (2014AA10A603, 2014AA10A604)a grant from the Youth Foundation in Sichuan, China (2011JTD0022)+1 种基金the special fund for China Agricultural Research System (CARS-01-08)the Provincial Specialized Funds for Innovation Ability Promotion in Sichuan, China (2013GXJS005)
文摘supported by a grant from the National High-Tech R&D Program of China (2014AA10A603, 2014AA10A604);a grant from the Youth Foundation in Sichuan, China (2011JTD0022);the special fund for China Agricultural Research System (CARS-01-08);the Provincial Specialized Funds for Innovation Ability Promotion in Sichuan, China (2013GXJS005)
基金supported by the National Science Foundation of China (Grant No. 31221004)a research grant of the China National Rice Research Institute (Grant No. 2012RG002-3)
文摘1000-grain weight ( TGW) is one ot the three component traits ot the grain yiela in rice (Oryza sativa L). This study was conducted to validate and fine-map qTGWl. 1, a minor QTL for TGW which was previously located in a 3.7-Mb region on the long arm of rice chromosome 1. Five sets of near isogenic lines (NILs) were developed from two BC2F4 populations of the indica rice cross Zhenshan 973/Milyang 46 The NIL sets consisted of two homozygous genotypic groups differing in the regions RM11448-RM11522, RM11448-RM11549, RM1232-RM11615, RM11543-RM11554 and RM11569-RM11621, respectively. Four traits, including TGW, grain length, grain width and heading date, were measured. Phenotypic difference between the two genotypic groups in each NIL population was analyzed using SAS procedure GLM. Significant QTL effects were detected on TGW with the Zhenshan 97 allele increasing grain weight by 0.12 g to 0.14 g and explaining 8.30% to 15.19% of the phenotypic variance. Significant effects were also observed for grain length and width, whereas no significant effect was found for heading date. Based on comparison among the five NILs on the segregating regions and the results of QTL analysis, qTGWl. 1 was delimited to a 376.9-kb region flanked by DNA markers Wn28382 and RMl1554. Our results indicate that the effects of minor QTLs could be steadily detected in a highly isogenic background and suggest that such QTLs could be utilized in the breeding of high-yielding rice varieties.
基金Supported by Sub-project of the 2017 National Key Research and Development Program(2017YFD0100402,2017YFD0100204)Guizhou Science and Technology Major Project[QKHZDZXZ(2012)6005]+2 种基金Program for Research Institutions to Serve Enterprises in Guizhou Province[QKHPTRC(2017)5719]Guizhou Modern Agriculture Technology System(GZCYTX2018-06)Guizhou Science and Technology Major Project(GZCYTX2018-06)
文摘To provide new experimental materials for QTL analysis of rice yield trait, we constructed a mapping population of 150 1ines (recombination inbred lines, R1L) derived from a cross between rice varieties V20B and CPSLO17, and localized QTLs and evaluated the genetic effects in the two parents and 150 RILs for thousand-grain weight trait by using internal mapping method of software MapQTL5 combining thousand-grain weight phenotypic data of the RILs. The results showed that a new QTL (qTGW-3) related to thousand-grain weight trait was detected. Individual QTL (LOD=4.14) explained 11.9% of the observed phenotypic variance. And the QTL alleles came from the parent V20B.
基金funded in part by the National High-Tech Research and Development Program (2012AA101102)the Chinese Highyielding Transgenic Program (2011ZX08001-004)the Research Funding of the China National Rice Research Institute (2012RG002-3)
文摘Grain weight is a key determinant of grain yield in rice. Three sets of rice populations with overlapping segregating regions in isogenic backgrounds were established in the generations of BC2 F5, BC2 F6 and BC2 F7, derived from Zhenshan 97 and Milyang 46, and used for dissection of quantitative trait loci(QTL) for grain weight. Two QTL linked in repulsion phase on the long arm of chromosome 1 were separated. One was located between simple sequence repeat(SSR) markers RM11437 and RM11615, having a smaller additive effect with the enhancing allele from the maintainer line Zhenshan 97 and a partially dominant effect for increasing grain weight. The other was located between SSR markers RM11615 and RM11800, having a larger additive effect with the enhancing allele from the restorer line Milyang 46 and a partially dominant effect for increasing grain weight. When the two QTL segregated simultaneously, a residual additive effect with the enhancing allele from Milyang 46 and an over-dominance effect for increasing grain weight were detected. This suggests that dominant QTL linked in repulsion phase might play an important role in heterosis in rice. Our study also indicates that the use of populations with overlapping segregating regions in isogenic backgrounds is helpful for the dissection of minor linked QTL.
基金funded by the National Key R&D Program of China (Grant No. 2017YFD0100305)the National Natural Science Foundation of China (Grant No. 31521064)a project of the China National Rice Research Institute (Grant No. 2017RG001-2)
文摘Thousand-grain weight (TGW) is a key component of grain yield in rice. This study was conducted to validate and fine-map qTGW1.2a, a quantitative trait locus for grain weight and grain size previously located in a 933.6-kb region on the long arm of rice chromosome 1. Firstly, three residual heterozygotes (RHs) were selected from a BC2F11 population of the indica rice cross Zhenshan 97 (ZS97)///ZS97//ZS97/Milyang 46. The heterozygous segments in these RHs were arranged successively in physical positions, forming one set of sequential residual heterozygotes (SeqRHs). In each of the populations derived, non-recombinant homozygotes were identified to produce near isogenic lines (NILs) comprising the two homozygous genotypes. The NILs were tested for grain weight, grain length and grain width. QTL analyses for the three traits were performed. Then, the updated QTL location was followed for a new run of SeqRHs identification-NIL development-QTL mapping. Altogether, 11 NIL populations derived from four sets of SeqRHs were developed and used. qTGW1.2a was finally delimitated into a 77.5-kb region containing 13 annotated genes. In the six populations segregating this QTL, which were in four generations and were tested across four years, the allelic direction of qTGW1.2a remained consistent and the genetic effects were stable. For TGW, the additive effects ranged from 0.23 to 0.38 g and the proportions of phenotypic variance explained ranged from 26.15% to 41.65%. These results provide a good foundation for the cloning and functional analysis of qTGW1.2a.
基金supported by the National Key Research and Development Program of China (2016YFD0101104)the National Natural Science Foundation of China (31521064)project of the China National Rice Research Institute (2017RG001-2)
文摘Grain weight is one of themost important determinants of grain yield in rice.In this study,QTL analysis for grain weight,grain length,and grainwidthwas performed using populations derived from crosses between major parental lines of three-line indica hybrid rice.A total of 27 QTL for grain weight were detected using three recombinant inbred line populations derived from the crosses Teqing/IRBB lines,Zhenshan 97/Milyang 46,and Xieqingzao/Milyang 46.Of these,10 were found in only a single population and the other 17 in two or all three populations.Nine of the 17 common QTL were located in regions where no QTL associated with grain weight have been cloned and onewas selected for fine-mapping.Eight populations segregating in an isogenic background were derived from one F7 residual heterozygote of Teqing/IRBB52.The target QTL,qTGW10-20.8 controlling grain weight,grain length,and grain width,was localized to a 70.7-kb region flanked by InDel markers Te20811 and Te20882 on the long arm of chromosome 10.The QTL region contains seven annotated genes,ofwhich six encode proteins with known functional domains and one encodes a hypothetical protein.One of the genes,Os10g0536100 encoding the MIKC-type MADS-box protein OsMADS56,is the most likely candidate for qTGW10-20.8.These results provide a basis for cloning qTGW10-20.8,which has an important contribution to grain weight variation in rice.
基金supported by the National Key Research and Development Program of China (2017YFD0101004)the National Natural Science Foundation of China (91435204)the Science and Technology Independent Innovation Ability Upgrading Project of Shanxi Academy of Agricultural Sciences (2017ZZCX-23)
文摘Hexaploid triticale(×Triticosecale,AABBRR)is an important forage crop and a promising energy plant.Transferring D-genome chromosomes or segments from common wheat(Triticum aestivum)into hexaploid triticale is attractive in improving its economically important traits.Here,a hexaploid triticale 6D(6A)substitution line Lin 456 derived from the cross between the octoploid triticale line H400 and the hexaploid wheat Lin 56 was identified and analyzed by genomic in situ hybridization(GISH),fluorescence in situ hybridization(FISH),and molecular markers.The GISH analysis showed that Lin 456 is a hexaploid triticalewith 14 rye(Secale cereale)chromosomes and 28 wheat chromosomes,whereas non-denaturing fluorescence in situ hybridization(ND-FISH)and molecular marker analysis revealed that it is a 6D(6A)substitution line.In contrast to previous studies,the signal of Oligo-pSc119.2 was observed at the distal end of 6DL in Lin 456.The wheat chromosome 6D was associatedwith increased grain weight and decreased spikelet number using the genotypic data combined with the phenotypes of the F2 population in the three environments.The thousand-grain weight and grain width in the substitution individuals were significantly higher than those in the non-substitution individuals in the F2 population across the three environments.We propose that the hexaploid triticale 6D(6A)substitution line Lin 456 can be a valuable and promising donor stock for genetic improvement during triticale breeding.
基金financially supported by Beijing Natural Science Foundation (6242032)the Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-CSCB-202401)the Natural Science Foundation of Ningxia Province (2022AAC02056)
文摘IDEAL PLANT ARCHITECTURE1(IPA1)is a pivotal gene controlling plant architecture and grain yield.However,little is known about the effects of Triticum aestivum SQUAMOSA PROMOTER‐BINDING‐LIKE 14(TaSPL14),an IPA1 ortholog in wheat,on balancing yield traits and its regulatory mechanism in wheat(T.aestivum L.).Here,we determined that the T.aestivum GRAIN WIDTH2(TaGW2)‐TaSPL14 module influences the balance between tiller number and grain weight in wheat.Overexpression of TaSPL14 resulted in a reduced tiller number and increased grain weight,whereas its knockout had the opposite effect,indicating that TaSPL14 negatively regulates tillering while positively regulating grain weight.We further identified TaGW2 as a novel interacting protein of TaSPL14 and confirmed its ability to mediate the ubiquitination and degradation of TaSPL14.Based on our genetic evidence,TaGW2 acts as a positive regulator of tiller number,in addition to its known role as a negative regulator of grain weight,which is opposite to TaSPL14.Moreover,combinations of TaSPL14‐7A and TaGW2‐6A haplotypes exhibit significantly additive effects on tiller number and grain weight in wheat breeding.Our findings provide insight into how the TaGW2‐TaSPL14 module regulates the trade‐off between tiller number and grain weight and its potential application in improving wheat yield.
基金funded by grants from Fujian Provincial Science and Technology Key Project(2022NZ030014)National Natural Science Foundation of China(32071941)+1 种基金Natural Science Foundation of Fujian Province(2023J011418)Minjiang University(MJY22023).
文摘Grain size and grain weight are important determinants for grain yield.In this study,we identify a novel OsMAPK5–OsWRKY72 module that negatively regulates grain length and grain weight in rice.We found that loss-of-function of OsMAPK5 leads to larger cell size of the rice spikelet hulls and a significant increase in both grain length and grain weight in an indica variety Minghui 86(MH86).OsMAPK5 interacts with OsMAPKK3/4/5 and OsWRKY72 and phosphorylates OsWRKY72 at T86 and S88.Similar to the osmapk5 MH86 mutants,the oswrky72 knockout MH86 mutants exhibited larger size of spikelet hull cells and increased grain length and grain weight,whereas the OsWRKY72-overexpression MH86 plants showed opposite phenotypes.OsWRKY72 targets the W-box motifs in the promoter of OsARF6,an auxin response factor involved in auxin signaling.Dual-luciferase reporter assays demonstrated that OsWRKY72 activates OsARF6 expression.The activation effect of the phosphorylation-mimicking OsWRKY72T86D/S88D on OsARF6 expression was significantly enhanced,whereas the effects of the OsWRKY72 phosphorylation-null mutants were significantly reduced.In addition,auxin levels in young panicles of the osmapk5 and oswrky72 mutants were significantly higher than that in the wild-type MH86.Collectively,our study uncovered novel connections of the OsMAPKK3/4/5-OsMAPK5-mediated MAPK signaling,OsWRKY72-mediated transcription regulation,and OsARF6-mediated auxin signaling pathways in regulating grain length and grain weight in an indica-type rice,providing promising targets for molecular breeding of rice varieties with high yield and quality.
基金supported by grants from the STI2030 Major Projects(2023ZD0406803)Agro ST Project(NK2022050103)+5 种基金the National Natural Science Foundation of China(32372094,32272123,and 32072036)the Modern Agricultural Industry Technology System Projects of Henan,China(HARS-22-03-G3)the Key R&D projects of Henan(231111110500)the Key Laboratory of Functional Agriculture,Guizhou Province([2023]007)the Key Laboratory of Molecular Breeding for Grain and Oil crops,Guizhou Province([2023]008)the China Postdoctoral Science Foundation(2021M701108).
文摘Grain yield is determined mainly by grain number and grain weight.In this study,we identified and characterized MORE GRAINS1(MOG1),a gene associated with grain number and grain weight in rice(Oryza sativa L.),through map-based cloning.Overexpression of MOG1 increased grain yield by 18.6%-22.3%under field conditions.We determined that MOG1,a bHLH transcription factor,interacts with OsbHLH107 and directly activates the expression of LONELY GUY(LOG),which encodes a cytokinin-activating enzyme and the cell expansion gene EXPANSIN-LIKE1(EXPLA1),positively regulating grain number per panicle and grain weight.Natural variations in the promoter and coding regions of MOG1 between Hap-LNW and Hap-HNW alleles resulted in changes in MOG1 expression level and transcriptional activation,leading to functional differences.Haplotype analysis revealed that Hap-HNW,which results in a greater number and heavier grains,has undergone strong selection but has been poorly utilized in modern lowland rice breeding.In summary,the MOG1-OsbHLH107 complex activates LOG and EXPLA1 expression to promote cell expansion and division of young panicles through the cytokinin pathway,thereby increasing grain number and grain weight.These findings suggest that Hap-HNW could be used in strategies to breed high-yielding temperate japonica lowland rice.
基金supported by grants from the National Natural Science Foundation of China(32325038)the Postdoctoral Fellowship Program of CPSF(GZB20230499)+1 种基金the Sichuan Science and Technology Program(24NSFSC4494)the Open Project Program(SKL-ZY202212)of State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China.We thank the High-Performance Computing Platform of Sichuan Agricultural University for its support for the analysis of substitution segments in CSSL9-17.
文摘Grain size is a key factor influencing grain weight in rice.In this study,a chromosome segment substitution line(CSSL9-17)was identified,that exhibits a significant reduction in both grain size and weight compared to its donor parent 93-11.Further investigation identified two quantitative trait loci(QTL)on chromosome 11,designated qGW11a and qGW11b,which contribute to 1000-grain weight with an additive effect.LOC_Os11g05690,encoding the amino acid permease OsCAT8,is the target gene of qGW11a.Overexpression of OsCAT8 resulted in decreased grain weight,while OsCAT8 knockout mutants exhibited increased grain weight.The 287-bp located within the OsCAT8 promoter region of 93-11 negatively regulates its activity,which is subsequently correlated with an increase in grain size and weight.These results suggest that OsCAT8 functions as a negative regulator of grain size and grain weight in rice.
基金supported by grants from the National Natural Science Foundation of China(32321001 to Z.Z.and C.-B.X.and 32100208 to J.W.)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA24010303)+1 种基金the Anhui Provincial Natural Science Foundation(2108085QC103)the Fundamental Research Funds for the Central Universities(WK9100000023).
文摘Grain weight,a key determinant of yield in rice(Oryza sativa L.),is governed primarily by genetic factors,whereas grain chalkiness,a detriment to grain quality,is intertwined with environmental factors such as mineral nutrients.Nitrogen(N)is recognized for its effect on grain chalkiness,but the underlying molecular mechanisms remain to be clarified.This study revealed the pivotal role of rice NODULE INCEPTION-LIKE PROTEIN 3(OsNLP3)in simultaneously regulating grain weight and grain chalkiness.Our investigation showed that loss of OsNLP3 leads to a reduction in both grain weight and dimension,in contrast to the enhancement observed with OsNLP3 overexpression.OsNLP3 directly suppresses the expression of OsCEP6.1 and OsNF-YA8,which were identified as negative regulators associated with grain weight.Consequently,two novel regulatory modules,OsNLP3-OsCEP6.1 and OsNLP3-OsNF-YA8,were identified as key players in grain weight regulation.Notably,the OsNLP3-OsNF-YA8 module not only increases grain weight but also mitigates grain chalkiness in response to N.This research clarifies the molecular mechanisms that orchestrate grain weight through the OsNLP3-OsCEP6.1 and OsNLP3-OsNF-YA8 modules,highlighting the pivotal role of the OsNLP3-OsNF-YA8 module in alleviating grain chalkiness.These findings reveal potential targets for simultaneous enhancement of rice yield and quality.
基金supported by the Innovation Program of Shanghai Municipal Education Commission(2023ZKZD05)the National Natural Science Foundation of China(32172043,31971918 and 32170356)+2 种基金the Shanghai Science and Technology Innovation Action Plan Project(22N11900200)the Innovation Program of Chinese Academy of Agricultural Sciencesthe grant from the National Key Research and Development Program of China(2021YFA1300401).
文摘RNA-binding proteins(RBPs)are components of the post-transcriptional regulatory system,but their regulatory effects on complex traits remain unknown.Using an integrated strategy involving map-based cloning,functional characterizations,and transcriptomic and population genomic analyses,we revealed that RBP-K(LOC_Os08g23120),RBP-A(LOC_Os11g41890),and RBP-J(LOC_Os10g33230)encode proteins that form an RBP-A-J-K complex that negatively regulates rice yield-related traits.Examinations of the RBP-A-J-K complex indicated RBP-K functions as a relatively non-specific RBP chaperone that enables RBP-A and RBP-J to function normally.Additionally,RBP-J most likely affects GA pathways,resulting in considerable increases in grain and panicle lengths,but decreases in grain width and thickness.In contrast,RBP-A negatively regulates the expression of genes most likely involved in auxin-regulated pathways controlling cell wall elongation and carbohydrate transport,with substantial effects on the rice grain filling process as well as grain length and weight.Evolutionarily,RBP-K is relatively ancient and highly conserved,whereas RBP-J and RBP-A are more diverse.Thus,the RBP-A-J-K complex may represent a typical functional model for many RBPs and protein complexes that function at transcriptional and post-transcriptional levels in plants and animals for increased functional consistency,efficiency,and versatility,as well as increased evolutionary potential.Our results clearly demonstrate the importance of RBP-mediated post-transcriptional regulation for the diversity of complex traits.Furthermore,rice grain yield and quality may be enhanced by introducing various complete or partial loss-of-function mutations to specific RBP genes using clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein 9 technology and by exploiting desirable natural tri-genic allelic combinations at the loci encoding the components of the RBP-A-J-K complex through marker-assisted selection.
基金supported by Projects of International Cooperation NSFC(31961143016,31101203)Guizhou Provincial Science and Technology Projects(QKHJC-ZK[2022]YB537)+4 种基金the Fundamental Research Funds of Central Public Welfare Research Institutions(CPSIBRF-CNRRI-202102,Y2020YJ17)Independent Project of State Key Laboratory of Rice Biology(2020Z2KT10201)High-quality and Resistant Hybrid Rice Germplasm Creation and New Varieties Development with International Competitiveness(2022KJCX45,YBXM2437)Zhejiang Provincial Science and Technology Projects(2022R51009)Inner Mongolia Breeding Joint Research Project(YZ2023004).
文摘Rice grain size is a primary characteristic essential for artificial domestication and breeding,governed by grain length,width,and thickness.In this study,we cloned Grain Size 10(GS10),a novel gene via mapbased cloning.Biochemical,molecular,and genetic studies were performed to elucidate the GS10 involved grain size mechanism in rice.Mutant of GS10 lead to reduced grain size due to alterations in cell expansion.Additionally,GS10 is responsible for the formation of notched-belly grains,especially in smaller grain varieties possessing loss-function mutations.Overexpression of GS10 in Nipponbare results in increasing grain length,grain weight and improve the appearance quality of rice.GS10 encodes conserved protein with uncharacterized function.Furthermore,GS10 regulates the grain size by interacting OsBRICK1,a subunit of the WAVE complex that governs actin nucleation and affects the assembly of microfilaments in rice.Together,our study demonstrates that,GS10 positively regulates the grain length and grain weight,which is beneficial for further improvements in yield characteristics.