Objective To study the suppressing genes of apoptosis, namely Bcl-2, its family genes Bax, Bcl-Xl, and the inducing gene of apoptosis Fas/Apo-1.Methods The techniques of cytoimmuno-histiochemical stains, Western blott...Objective To study the suppressing genes of apoptosis, namely Bcl-2, its family genes Bax, Bcl-Xl, and the inducing gene of apoptosis Fas/Apo-1.Methods The techniques of cytoimmuno-histiochemical stains, Western blotting and Northern blotting were used. Results It was found that the antigens of Bcl-2 in acute myelogenous leukemia (AML) and acute lymphocytic (ALL) was higher than that in the normal (P<0.01). At same time, Bcl-2 was obviously lower expression in complete remission (CR) group than that in non-remission (NR) one by retrospective analysis (P<0.01). Though Bcl-2 was low expression in CR with Western blotting, there was no statistical significance (P>0.05). In CR group the expression of Bcl-2 mRNA was obviously lower than that of NR one (P<0.01). Even though leukemia expression of Bax with cytoimmuno-histiochemical stain was also lower than that in the normal people, there was no difference between CR and NR with cytoimmuno-histiochemical, Western blotting and Northern blotting (P>0.05). There was difference of Bcl-Xl mRNA in two groups (P<0.01).The expression Fas/Apo-1 in leukemia was lower than that in normal people (P<0.01). But in CR and NR, there was no difference with cytoimmuno-histiochemical stain and Western blotting. Conclusions The Changes of genes and their proteins are significant theoretically and clinically. The antigen expression of Bcl-2 and the expression of Bcl-2 mRNA may be considered as a prognostic index for AML.展开更多
To explore the role of bcl-2 and bax genes in the apoptosis of human U937 cells induced by E.coli, flow cytometry assay with annexinⅤ-FITC/PI double staining was used to determine the condition of apoptosis, and the ...To explore the role of bcl-2 and bax genes in the apoptosis of human U937 cells induced by E.coli, flow cytometry assay with annexinⅤ-FITC/PI double staining was used to determine the condition of apoptosis, and the expressions of mRNA of bcl-2 and bax genes were assayed with RT-PCR. It was found that the apoptosis of human U937 cells could be induced by E.coli at various concentration ratios between cells and bacteria for 30 min in a dose-dependent manner. The apoptotic rates at cell/bacteria ratios of 0, 1∶5, 1∶10, 1∶20, 1∶50 and 1∶100 were 3.16%±0.90%, 9.46%±0.84%, 17.90%±1.41%, 35.59%±3.76%, 38.35%±7.12% and 55.07%±5.82% respectively. Also, there was a tendency of alterations in the expression levels of bcl-2 and bax genes with an increased expression level of bax gene and a reduced expression level of bcl-2 gene. It is concluded that E.coli can induce apoptosis in human U937 cells with a down-regulated expression of Bcl-2 and an up-regulated expression of Bax, and this might be related to the induction of apoptosis of the infected cell.展开更多
To evaluate the apoptosis positivity, the expression of Bcl-2, bax proteinsin 30 patients with squamous cell cervix carcinoma before and after radiotherapy. Methods: By usingimmuno-histochemical and TDT-dUTP nick end ...To evaluate the apoptosis positivity, the expression of Bcl-2, bax proteinsin 30 patients with squamous cell cervix carcinoma before and after radiotherapy. Methods: By usingimmuno-histochemical and TDT-dUTP nick end labelling techniques, 30 cases of squamous cell cervicalcarcinoma were analyzed. Results: The apoptosis positivity before and after irradiation was 76.7%and 100% respectively, with the difference being significant (P 【 0.05); The positive rates of Bcl-2protein before and after irradiation were 73.3% and 46.7% respectively, with the difference beingsignificant (P 【 0.05); The positive rates of bax protein before and after irradiation were 86% and100% respectively, with the difference being significant (P 【 0.05). Conclusion: bax and Bcl-2protein play an important role in apoptosis induced by fractionated radiation therapy. Apoptosisinduced by irradiation is contributed to upregulation of bax protein or downregulation of Bcl-2protein.展开更多
BAX and BAK are essential regulators of apoptotic signaling through mitochondria in mammalian development and in response to cytotoxic stimuli. To investigate the role of BAX and BAK in transformation and tumorigenesi...BAX and BAK are essential regulators of apoptotic signaling through mitochondria in mammalian development and in response to cytotoxic stimuli. To investigate the role of BAX and BAK in transformation and tumorigenesis, primary baby mouse kidney epithelial cells (BMKs) from wild-type, BAX, BAK and BAK and BAK deficient mice were transformed by adenovirus E1A and dominant-negative p53 (p53DD). While E1A alone transforms p53 deficient BMKs, transformation of BAX and/or BAK deficient BMKs still required inactivation of p53. Since BAX and BAK are dispensable for p53 to suppress transformation,展开更多
Background:Rubiadin is a type of anthraquinone compound that can be found in Rubiaceae plants,such as Ronas.Nonetheless,only limited research has been done to explore the potential anticancer properties of rubiadin on...Background:Rubiadin is a type of anthraquinone compound that can be found in Rubiaceae plants,such as Ronas.Nonetheless,only limited research has been done to explore the potential anticancer properties of rubiadin on liver cancer cells.Thus,the objective of the present study is to examine how rubiadin affects the viability of liver cancer cells as well as normal cells.Methods:HepG2 and AGO cell lines were assigned into controls(not exposed to rubiadin)and groups with exposure to rubiadin with 12.5,6.25,3.125,1.56,0.78,and 0.39μg/mL concentrations.3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide and reverse transcription-polymerase chain reaction were used to measure cell viability,and one-way analysis of variance was used for data analysis.Results:The viability of liver cancer cells was significantly reduced when exposed to 12.5,6.25,3.125,and 1.56μg/mL concentrations(P<0.01).An IC50 of 44.73μg/mL was reported.Furthermore,the BAX gene’s relative expression(P<0.05)was significantly increased and the BCL2 gene expression(P<0.05)was significantly reduced.The average ratio of BAX gene expression to BCL2 increased significantly(P<0.01).Conclusion:This research showed that rubiadin decreases cell viability by increasing the ratio of BAX gene expression to BCL2.In addition rubiadin has no cytotoxic effect on normal cells.展开更多
Helicobacter pylori infection represents a widespread chronic condition with varying prevalence influenced by race, ethnicity, and geography. The severity of H. pylori-associated diseases is determined by an array of ...Helicobacter pylori infection represents a widespread chronic condition with varying prevalence influenced by race, ethnicity, and geography. The severity of H. pylori-associated diseases is determined by an array of virulence factors. Although extensive studies have been conducted globally, data on the distribution of Helicobacter pylori virulence genes in Libya remain limited, constraining insights into the pathogenicity of local strains and hindering the development of targeted interventions. This study aimed to evaluate the prevalence of H. pylori infection, characterize essential virulence genes [vacA variants (s1/s2, m1/m2), cagA, and iceA1], and examine their association with gastroduodenal diseases among Libyan patients. Gastric biopsies from 144 participants were analyzed using polymerase chain reaction (PCR) assays, and risk factor data were collected via questionnaires. H. pylori was detected in 63.2% of samples by PCR. The vacA gene was present in 84.6% of cases, cagA in 58.2%, and iceA1 in 29.7%. Among vacA variants, s1 allele was most common (53.2%), followed by m1 (42.9%), m2 (37.7%), and s2 (13%) alleles. Significant associations were identified between specific virulence genes and the development of gastroduodenal diseases, highlighting their role in pathogenicity. This investigation is one of Libya’s first comprehensive assessments of H. pylori virulence factors, addressing a critical epidemiological gap. The high prevalence of virulence genes suggests their potential as disease biomarkers. These findings contribute to a deeper understanding of H. pylori pathogenicity within the Libyan population and establish a basis for future clinical interventions and public health strategies to manage and prevent H. pylori-associated diseases in Libya and comparable regions.展开更多
Asian rice comprises two major subspecies:Xian(X)and Geng(G),and the diverged resistance genes(R)have provided a foundation for breeding improved cultivars to control rice blast disease.After conducting two-phase alle...Asian rice comprises two major subspecies:Xian(X)and Geng(G),and the diverged resistance genes(R)have provided a foundation for breeding improved cultivars to control rice blast disease.After conducting two-phase allele mining using six updated FNP marker systems,the functional haplotypes at Pit,Pib,and Pi63 strictly diverged into the X-populations and were defined as X-R loci,while those at Pi54,Pi37,and Pi36 into the G-populations as G-R loci.The genic diversity at the three X-R loci(16 alleles)was twofold higher than that at the three G-R loci(8 alleles),and the allelic diversity in the Southern region(21 alleles)was nearly double that in the Northeastern region(11 alleles).Both observations reflect a significant difference in genetic diversity between X-and G-populations,and indicate that the effective R-genes mainly originated from X-subspecies.Based on the allelic structures characterized by a set of 10 parameters,8 and 16 alleles were respectively recognized as favorable and promising ones for the regional breeding programs.The genotypic structures of the two regional populations were almost different,indicating that the diverged alleles have been further assembled into two series of regional genotypes through long-term breeding programs,despite the presence of one-third of region-common alleles.The genotypic diversity in the Southern region(55 genotypes)was nearly twice as high as that in the Northeastern region(28),which perfectly reflects the aforementioned differences in both genic and allelic diversities.After analyzing the genotypic structures using a set of 13 parameters,4 and 23 genotypes,respectively,can be recommended as the favorable and promising ones for the regional breeding programs.The case study serves as a concrete sample of how to identify the favorable and promising alleles and genotypes,and beneficial parents based their comprehensive population structures for gene-designed breeding.展开更多
Hypertrophic cardiomyopathy(HCM)is an autosomal dominant inherited cardiomyopathy characterized by left ventricular hypertrophy.It is one of the chief causes of sudden cardiac death in younger people and athletes.Mole...Hypertrophic cardiomyopathy(HCM)is an autosomal dominant inherited cardiomyopathy characterized by left ventricular hypertrophy.It is one of the chief causes of sudden cardiac death in younger people and athletes.Molecular-genetic studies have confirmed that the vast majority of HCM is caused by mutations in genes encoding sarcomere proteins.HCM has a relatively wide phenotypic heterogeneity,varying from asymptomatic to sudden cardiac death,because of the many different mutations and pathogenic genes underlying it.Many studies have explored the clinical symptoms and prognosis of HCM,emphasizing the importance of genotype in evaluating patient prognosis and guiding the clinical management of HCM.To elaborate the main pathogenic genes and phenotypic prognosis in HCM to promote a better understanding of this genetic disease.Retrospective analysis of literature to evaluate the association between underlying gene mutations and clinical phenotypes in HCM patients.As sequencing technology advances,the pathogenic gene mutation spectrum and phenotypic characteristics of HCM are gradually becoming clearer.HCM is a widespread inherited disease with a highly variable clinical phenotype.The precise mechanisms linking known pathogenic gene mutations and the clinical course of this heterogeneous condition remain elusive.展开更多
The use of a stable reference gene is fundamental for achieving reliable quantitative qRT-PCR (qPCR) results. Developing and evaluating the stability of reference genes is necessary for studying the molecular mechanis...The use of a stable reference gene is fundamental for achieving reliable quantitative qRT-PCR (qPCR) results. Developing and evaluating the stability of reference genes is necessary for studying the molecular mechanisms of M. transitoria in response to drought stress. In this study, 18 candidate reference genes were selected from transcriptome sequencing data of M. transitoria according to their FPKM values under different drought stress degrees. Cluster-23533.34641 was identified as the most stable reference gene for M. transitoria under drought stress based on qPCR results and combined analysis of Genorm, NormFinder, BestKeeper, and Delta Ct algorithms. The reference genes identified in this research offer improved accuracy for quantifying target gene expression in both M. transitoria and Malus species under drought stress. This study could provide insights into the drought stress-related functional gene or factor in M. transitoria, even in Malus species.展开更多
Magnetic absorbers with high permeability have significant advantages in lowfrequency and broadband electromagnetic wave(EMW)absorption.However,the insufficient magnetic loss and inherent high conductivity of existing...Magnetic absorbers with high permeability have significant advantages in lowfrequency and broadband electromagnetic wave(EMW)absorption.However,the insufficient magnetic loss and inherent high conductivity of existing magnetic absorbers limit the further expansion of EMW absorption bandwidth.Herein,the spinel(FeCoNiCrCu)_(3)O_(4) high-entropy oxides(HEO)are successfully constructed on the surface of FeCoNiCr_(0.4)Cu_(0.2) high-entropy alloys(HEA)through low-temperature oxygen bath treatment.On the one hand,HEO and HEA have different magnetocrystalline anisotropies,which is conducive to achieving continuous natural resonance to improve magnetic loss.On the other hand,HEO with low conductivity can serve as an impedance matching layer,achieving magneto-electric co-modulation.When the thickness is 5 mm,the minimum reflection loss(RL)value and absorption bandwidth(RL<−5 dB)of bi-phase high-entropy composites(BPHEC)can reach−12.8 dB and 633 MHz,respectively.The RCS reduction value of multilayer sample with impedance gradient characteristic can reach 18.34 dB m^(2).In addition,the BPHEC also exhibits temperaturestable EMW absorption performance,high Curie temperature,and oxidation resistance.The absorption bandwidth maintains between 593 and 691 MHz from−50 to 150℃.This work offers a new and tunable strategy toward modulating the electromagnetic genes for temperature-stable ultra-broadband megahertz EMW absorption.展开更多
In this paper,a standardized analysis method is established for identifying meat quality-related genes in Ordos finewool sheep using transcriptome sequencing data.A meticulously standardized approach is utilized to in...In this paper,a standardized analysis method is established for identifying meat quality-related genes in Ordos finewool sheep using transcriptome sequencing data.A meticulously standardized approach is utilized to investigate the genetic determinants of meat quality in Ordos fine-wool sheep through transcriptome sequencing analysis.Muscle samples from the longissimus dorsi of one-year-old sheep are collected under controlled conditions,and key texture properties—hardness,elasticity,and chewiness—are measured to categorize samples into high-and low-textural-value groups.Genes significantly associated with meat quality traits are identified through standardized RNA extraction,high-throughput sequencing,and differential gene expression analysis.Functional enrichment analysis reveals their involvement in biological processes such as extracellular matrix organization and metabolic pathways.The findings underscore the pivotal role of standardization in meat quality research,laying a solid scientific foundation for future research on meat quality improvement and molecular breeding.展开更多
Ulcerative colitis(UC)and Crohn’s disease(CD)are chronic inflammatory bowel diseases(IBDs)with largely unclear etiologies and complex pathogeneses.The pathogenesis of UC has been linked to an imbalance in the gut mic...Ulcerative colitis(UC)and Crohn’s disease(CD)are chronic inflammatory bowel diseases(IBDs)with largely unclear etiologies and complex pathogeneses.The pathogenesis of UC has been linked to an imbalance in the gut microbiota,including in the prevalence of Enterobacteriaceae,especially pathogenic Escherichia coli(E.coli).[1]The UC diagnosis and assessment primarily rely on colonoscopy and mucosal biopsy pathology,which are limited by their invasiveness,constraints on medical resources,and potential risks and complications.Several biomarkers,such as serum C-reactive protein(CRP),fecal calprotectin,and fecal lactoferrin,are currently recommended for assessing UC disease activity.However,these markers are primarily inflammation-related factors produced by the host,not specific to IBD,and are influenced by other inflammatory states.Microbiome-related biomarkers are used as direct indicators of the gut microecosystem and have considerable potential for disease assessment and therapeutic guidance in IBD.However,current analyses of gut microbiota,such as 16S rRNA or metagenomic sequencing,are often time-consuming and costly.Siderophore,a low-molecularweight protein secreted extracellularly to chelate ferric iron,is a crucial virulence factor in iron acquisition of bacteria and fungi.The presence of siderophores can indirectly reflect bacterial abundance and activity.[2]展开更多
BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the preval...BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies.展开更多
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorec...BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorectal cancer,aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid(FA)import into cell.METHODS A gene expression analysis of FASN,CD36,SLC27A1,SLC27A2,SLC27A3,SLC27A4,SLC27A5,ACSL1,and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection.The genes were considered significantly dysregulated between the groups when the p value was<0.05 and the fold change(FC)was≤0.5 and≥2.RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue:SLC27A2(FC=5.66;P=0.033),SLC27A3(FC=2.68;P=0.040),SLC27A4(FC=3.13;P=0.033),ACSL1(FC=4.10;P<0.001),and ACSL3(FC=2.67;P=0.012).We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors,including the anatomic location,the lymph node involvement,and the presence of metastasis.A significant difference in the expression of SLC27A3(FC=3.28;P=0.040)was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.CONCLUSION Despite the low number of patients analyzed,these preliminary results seem to be promising.Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy.Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.展开更多
Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in...Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in cucumber have been identified.Here,the heat injury indices of 88 cucumber accessions representing diverse ecotypes were collected in two open-field environments,with naturally occurring high temperatures over two years.Seventeen of the 88 accessions were identified as highly heat-tolerant.Using a genome-wide association study,five loci(gHII3.1,gHII3.2,gHII3.3,gHII4.1 and gHII6.1)on three chromosomes associated with heat tolerance were detected.Pairwise linkage disequilibrium correlation,sequence polymorphisms,and qRT-PCR analyses at these loci,identified five candidate genes predicted to be casual for heat stress response in cucumber.CsaV3_3G04883,CsaV3_4G029050 and CsaV3_6G005370 each had nonsynonymous SNPs,and were significantly up-regulated by heat stress in the heat-tolerant genotypes.CsaV3_3G031890 was also induced by heat stress,but in the heatsensitive genotypes,and sequence polymorphism was only found in the promoter region.Identifying these candidate genes lays a foundation for understanding cucumber thermotolerance mechanisms.Our study is one of the few to examine heat stress in adult cucumber plants and it therefore fills a critical gap in knowledge.It is also an important first-step towards accelerating the breeding of robust heat-tolerant varieties.展开更多
BACKGROUND Lotus plumule and its active components have demonstrated inhibitory effects on gastric cancer(GC).However,the molecular mechanism of lotus plumule against GC remains unclear and requires further investigat...BACKGROUND Lotus plumule and its active components have demonstrated inhibitory effects on gastric cancer(GC).However,the molecular mechanism of lotus plumule against GC remains unclear and requires further investigation.AIM To identify the key hub genes associated with the anti-GC effects of lotus plumule.METHODS This study investigated the potential targets of traditional Chinese medicine for inhibiting GC using weighted gene co-expression network analysis and bio-informatics.Initially,the active components and targets of the lotus plumule and the differentially expressed genes associated with GC were identified.Sub-sequently,a protein-protein interaction network was constructed to elucidate the interactions between drug targets and disease-related genes,facilitating the identification of hub genes within the network.The clinical significance of these hub genes was evaluated,and their upstream transcription factors and down-stream targets were identified.The binding ability of a hub gene with its down-stream targets was verified using molecular docking technology.Finally,molecular docking was performed to evaluate the binding affinity between the active ingredients of lotus plumule and the hub gene.RESULTS This study identified 26 genes closely associated with GC.Machine learning analysis and external validation narrowed the list to four genes:Aldo-keto reductase family 1 member B10,fructose-bisphosphatase 1,protein arginine methyltransferase 1,and carbonic anhydrase 9.These genes indicated a strong correlation with anti-GC activity.CONCLUSION Lotus plumule exhibits anti-GC effects.This study identified four hub genes with potential as novel targets for diagnosing and treating GC,providing innovative perspectives for its clinical management.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unkn...BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.展开更多
AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE1024...AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.展开更多
Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of nov...Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of novel prognostic and pathogenesis biomarkers plays a key role in the management of hypertension. Methods: The GSE7483 and GSE75815 datasets from the gene expression omnibus (GEO) database were used to identify the genes associated with hypertension that were differentially expressed genes (DEGs). The functional role of the DEGs was elucidated by gene body (GO) enrichment analysis. In addition, we performed an immune infiltration assay and GSEA on the DEGs of hypertensive patients and verified the expression of novel DEGs in the blood of hypertensive patients by RT-qPCR. Results: A total of 267 DEGs were identified from the GEO database. GO analysis revealed that these genes were associated mainly with biological processes such as fibroblast proliferation, cell structural organization, extracellular matrix organization, vasculature development regulation, and angiogenesis. We identified five possible biomarkers, Ecm1, Sparc, Sphk1, Thbsl, and Mecp2, which correlate with vascular development and angiogenesis characteristic of hypertension by bioinformatics, and explored the clinical expression levels of these genes by RT-qPCR, and found that Sparc, Sphk1, and Thbs1 showed significant up-regulation, in agreement with the results of the bioinformatics analysis. Conclusion: Our study suggested that Sparc, Sphk1 and Thbs1 may be potential novel biomarkers for the diagnosis, treatment and prognosis of hypertension and that they are involved in the regulation of vascular development and angiogenesis in hypertension.展开更多
Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton ...Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.展开更多
文摘Objective To study the suppressing genes of apoptosis, namely Bcl-2, its family genes Bax, Bcl-Xl, and the inducing gene of apoptosis Fas/Apo-1.Methods The techniques of cytoimmuno-histiochemical stains, Western blotting and Northern blotting were used. Results It was found that the antigens of Bcl-2 in acute myelogenous leukemia (AML) and acute lymphocytic (ALL) was higher than that in the normal (P<0.01). At same time, Bcl-2 was obviously lower expression in complete remission (CR) group than that in non-remission (NR) one by retrospective analysis (P<0.01). Though Bcl-2 was low expression in CR with Western blotting, there was no statistical significance (P>0.05). In CR group the expression of Bcl-2 mRNA was obviously lower than that of NR one (P<0.01). Even though leukemia expression of Bax with cytoimmuno-histiochemical stain was also lower than that in the normal people, there was no difference between CR and NR with cytoimmuno-histiochemical, Western blotting and Northern blotting (P>0.05). There was difference of Bcl-Xl mRNA in two groups (P<0.01).The expression Fas/Apo-1 in leukemia was lower than that in normal people (P<0.01). But in CR and NR, there was no difference with cytoimmuno-histiochemical stain and Western blotting. Conclusions The Changes of genes and their proteins are significant theoretically and clinically. The antigen expression of Bcl-2 and the expression of Bcl-2 mRNA may be considered as a prognostic index for AML.
文摘To explore the role of bcl-2 and bax genes in the apoptosis of human U937 cells induced by E.coli, flow cytometry assay with annexinⅤ-FITC/PI double staining was used to determine the condition of apoptosis, and the expressions of mRNA of bcl-2 and bax genes were assayed with RT-PCR. It was found that the apoptosis of human U937 cells could be induced by E.coli at various concentration ratios between cells and bacteria for 30 min in a dose-dependent manner. The apoptotic rates at cell/bacteria ratios of 0, 1∶5, 1∶10, 1∶20, 1∶50 and 1∶100 were 3.16%±0.90%, 9.46%±0.84%, 17.90%±1.41%, 35.59%±3.76%, 38.35%±7.12% and 55.07%±5.82% respectively. Also, there was a tendency of alterations in the expression levels of bcl-2 and bax genes with an increased expression level of bax gene and a reduced expression level of bcl-2 gene. It is concluded that E.coli can induce apoptosis in human U937 cells with a down-regulated expression of Bcl-2 and an up-regulated expression of Bax, and this might be related to the induction of apoptosis of the infected cell.
文摘To evaluate the apoptosis positivity, the expression of Bcl-2, bax proteinsin 30 patients with squamous cell cervix carcinoma before and after radiotherapy. Methods: By usingimmuno-histochemical and TDT-dUTP nick end labelling techniques, 30 cases of squamous cell cervicalcarcinoma were analyzed. Results: The apoptosis positivity before and after irradiation was 76.7%and 100% respectively, with the difference being significant (P 【 0.05); The positive rates of Bcl-2protein before and after irradiation were 73.3% and 46.7% respectively, with the difference beingsignificant (P 【 0.05); The positive rates of bax protein before and after irradiation were 86% and100% respectively, with the difference being significant (P 【 0.05). Conclusion: bax and Bcl-2protein play an important role in apoptosis induced by fractionated radiation therapy. Apoptosisinduced by irradiation is contributed to upregulation of bax protein or downregulation of Bcl-2protein.
文摘BAX and BAK are essential regulators of apoptotic signaling through mitochondria in mammalian development and in response to cytotoxic stimuli. To investigate the role of BAX and BAK in transformation and tumorigenesis, primary baby mouse kidney epithelial cells (BMKs) from wild-type, BAX, BAK and BAK and BAK deficient mice were transformed by adenovirus E1A and dominant-negative p53 (p53DD). While E1A alone transforms p53 deficient BMKs, transformation of BAX and/or BAK deficient BMKs still required inactivation of p53. Since BAX and BAK are dispensable for p53 to suppress transformation,
文摘Background:Rubiadin is a type of anthraquinone compound that can be found in Rubiaceae plants,such as Ronas.Nonetheless,only limited research has been done to explore the potential anticancer properties of rubiadin on liver cancer cells.Thus,the objective of the present study is to examine how rubiadin affects the viability of liver cancer cells as well as normal cells.Methods:HepG2 and AGO cell lines were assigned into controls(not exposed to rubiadin)and groups with exposure to rubiadin with 12.5,6.25,3.125,1.56,0.78,and 0.39μg/mL concentrations.3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide and reverse transcription-polymerase chain reaction were used to measure cell viability,and one-way analysis of variance was used for data analysis.Results:The viability of liver cancer cells was significantly reduced when exposed to 12.5,6.25,3.125,and 1.56μg/mL concentrations(P<0.01).An IC50 of 44.73μg/mL was reported.Furthermore,the BAX gene’s relative expression(P<0.05)was significantly increased and the BCL2 gene expression(P<0.05)was significantly reduced.The average ratio of BAX gene expression to BCL2 increased significantly(P<0.01).Conclusion:This research showed that rubiadin decreases cell viability by increasing the ratio of BAX gene expression to BCL2.In addition rubiadin has no cytotoxic effect on normal cells.
文摘Helicobacter pylori infection represents a widespread chronic condition with varying prevalence influenced by race, ethnicity, and geography. The severity of H. pylori-associated diseases is determined by an array of virulence factors. Although extensive studies have been conducted globally, data on the distribution of Helicobacter pylori virulence genes in Libya remain limited, constraining insights into the pathogenicity of local strains and hindering the development of targeted interventions. This study aimed to evaluate the prevalence of H. pylori infection, characterize essential virulence genes [vacA variants (s1/s2, m1/m2), cagA, and iceA1], and examine their association with gastroduodenal diseases among Libyan patients. Gastric biopsies from 144 participants were analyzed using polymerase chain reaction (PCR) assays, and risk factor data were collected via questionnaires. H. pylori was detected in 63.2% of samples by PCR. The vacA gene was present in 84.6% of cases, cagA in 58.2%, and iceA1 in 29.7%. Among vacA variants, s1 allele was most common (53.2%), followed by m1 (42.9%), m2 (37.7%), and s2 (13%) alleles. Significant associations were identified between specific virulence genes and the development of gastroduodenal diseases, highlighting their role in pathogenicity. This investigation is one of Libya’s first comprehensive assessments of H. pylori virulence factors, addressing a critical epidemiological gap. The high prevalence of virulence genes suggests their potential as disease biomarkers. These findings contribute to a deeper understanding of H. pylori pathogenicity within the Libyan population and establish a basis for future clinical interventions and public health strategies to manage and prevent H. pylori-associated diseases in Libya and comparable regions.
基金funded by grants from the National Key R&D Project(2023YFD1400201-02,2023YFD1400203-02)the National Natural Science Foundation of China(31870137)+1 种基金the National Transgenic Research Project(2015ZX08001-002)the Key R&D Project of Guangdong Province(2022B0202060005).
文摘Asian rice comprises two major subspecies:Xian(X)and Geng(G),and the diverged resistance genes(R)have provided a foundation for breeding improved cultivars to control rice blast disease.After conducting two-phase allele mining using six updated FNP marker systems,the functional haplotypes at Pit,Pib,and Pi63 strictly diverged into the X-populations and were defined as X-R loci,while those at Pi54,Pi37,and Pi36 into the G-populations as G-R loci.The genic diversity at the three X-R loci(16 alleles)was twofold higher than that at the three G-R loci(8 alleles),and the allelic diversity in the Southern region(21 alleles)was nearly double that in the Northeastern region(11 alleles).Both observations reflect a significant difference in genetic diversity between X-and G-populations,and indicate that the effective R-genes mainly originated from X-subspecies.Based on the allelic structures characterized by a set of 10 parameters,8 and 16 alleles were respectively recognized as favorable and promising ones for the regional breeding programs.The genotypic structures of the two regional populations were almost different,indicating that the diverged alleles have been further assembled into two series of regional genotypes through long-term breeding programs,despite the presence of one-third of region-common alleles.The genotypic diversity in the Southern region(55 genotypes)was nearly twice as high as that in the Northeastern region(28),which perfectly reflects the aforementioned differences in both genic and allelic diversities.After analyzing the genotypic structures using a set of 13 parameters,4 and 23 genotypes,respectively,can be recommended as the favorable and promising ones for the regional breeding programs.The case study serves as a concrete sample of how to identify the favorable and promising alleles and genotypes,and beneficial parents based their comprehensive population structures for gene-designed breeding.
基金Supported by National Natural Science Foundation of China,No.81770379 and 81470521.
文摘Hypertrophic cardiomyopathy(HCM)is an autosomal dominant inherited cardiomyopathy characterized by left ventricular hypertrophy.It is one of the chief causes of sudden cardiac death in younger people and athletes.Molecular-genetic studies have confirmed that the vast majority of HCM is caused by mutations in genes encoding sarcomere proteins.HCM has a relatively wide phenotypic heterogeneity,varying from asymptomatic to sudden cardiac death,because of the many different mutations and pathogenic genes underlying it.Many studies have explored the clinical symptoms and prognosis of HCM,emphasizing the importance of genotype in evaluating patient prognosis and guiding the clinical management of HCM.To elaborate the main pathogenic genes and phenotypic prognosis in HCM to promote a better understanding of this genetic disease.Retrospective analysis of literature to evaluate the association between underlying gene mutations and clinical phenotypes in HCM patients.As sequencing technology advances,the pathogenic gene mutation spectrum and phenotypic characteristics of HCM are gradually becoming clearer.HCM is a widespread inherited disease with a highly variable clinical phenotype.The precise mechanisms linking known pathogenic gene mutations and the clinical course of this heterogeneous condition remain elusive.
基金supported by the Natural Science Foundation of Qinghai Province(2022-ZJ-902).
文摘The use of a stable reference gene is fundamental for achieving reliable quantitative qRT-PCR (qPCR) results. Developing and evaluating the stability of reference genes is necessary for studying the molecular mechanisms of M. transitoria in response to drought stress. In this study, 18 candidate reference genes were selected from transcriptome sequencing data of M. transitoria according to their FPKM values under different drought stress degrees. Cluster-23533.34641 was identified as the most stable reference gene for M. transitoria under drought stress based on qPCR results and combined analysis of Genorm, NormFinder, BestKeeper, and Delta Ct algorithms. The reference genes identified in this research offer improved accuracy for quantifying target gene expression in both M. transitoria and Malus species under drought stress. This study could provide insights into the drought stress-related functional gene or factor in M. transitoria, even in Malus species.
基金Supported by Program for the National Natural Science Foundation of China(No.52071053,U1704253,52103334)the Fundamental Research Funds for the Central Universities(DUT24GF102)the Shandong Province Natural Science Youth Fund(ZR2024QA134)。
文摘Magnetic absorbers with high permeability have significant advantages in lowfrequency and broadband electromagnetic wave(EMW)absorption.However,the insufficient magnetic loss and inherent high conductivity of existing magnetic absorbers limit the further expansion of EMW absorption bandwidth.Herein,the spinel(FeCoNiCrCu)_(3)O_(4) high-entropy oxides(HEO)are successfully constructed on the surface of FeCoNiCr_(0.4)Cu_(0.2) high-entropy alloys(HEA)through low-temperature oxygen bath treatment.On the one hand,HEO and HEA have different magnetocrystalline anisotropies,which is conducive to achieving continuous natural resonance to improve magnetic loss.On the other hand,HEO with low conductivity can serve as an impedance matching layer,achieving magneto-electric co-modulation.When the thickness is 5 mm,the minimum reflection loss(RL)value and absorption bandwidth(RL<−5 dB)of bi-phase high-entropy composites(BPHEC)can reach−12.8 dB and 633 MHz,respectively.The RCS reduction value of multilayer sample with impedance gradient characteristic can reach 18.34 dB m^(2).In addition,the BPHEC also exhibits temperaturestable EMW absorption performance,high Curie temperature,and oxidation resistance.The absorption bandwidth maintains between 593 and 691 MHz from−50 to 150℃.This work offers a new and tunable strategy toward modulating the electromagnetic genes for temperature-stable ultra-broadband megahertz EMW absorption.
基金funded by the 2023 Inner Mongolia Public Institution High-Level Talent Introduction Scientific Research Support Project,and the Ordos Municipal Science and Technology Major Special Project(Grant No.2022EEDSKJZDZX021).
文摘In this paper,a standardized analysis method is established for identifying meat quality-related genes in Ordos finewool sheep using transcriptome sequencing data.A meticulously standardized approach is utilized to investigate the genetic determinants of meat quality in Ordos fine-wool sheep through transcriptome sequencing analysis.Muscle samples from the longissimus dorsi of one-year-old sheep are collected under controlled conditions,and key texture properties—hardness,elasticity,and chewiness—are measured to categorize samples into high-and low-textural-value groups.Genes significantly associated with meat quality traits are identified through standardized RNA extraction,high-throughput sequencing,and differential gene expression analysis.Functional enrichment analysis reveals their involvement in biological processes such as extracellular matrix organization and metabolic pathways.The findings underscore the pivotal role of standardization in meat quality research,laying a solid scientific foundation for future research on meat quality improvement and molecular breeding.
文摘Ulcerative colitis(UC)and Crohn’s disease(CD)are chronic inflammatory bowel diseases(IBDs)with largely unclear etiologies and complex pathogeneses.The pathogenesis of UC has been linked to an imbalance in the gut microbiota,including in the prevalence of Enterobacteriaceae,especially pathogenic Escherichia coli(E.coli).[1]The UC diagnosis and assessment primarily rely on colonoscopy and mucosal biopsy pathology,which are limited by their invasiveness,constraints on medical resources,and potential risks and complications.Several biomarkers,such as serum C-reactive protein(CRP),fecal calprotectin,and fecal lactoferrin,are currently recommended for assessing UC disease activity.However,these markers are primarily inflammation-related factors produced by the host,not specific to IBD,and are influenced by other inflammatory states.Microbiome-related biomarkers are used as direct indicators of the gut microecosystem and have considerable potential for disease assessment and therapeutic guidance in IBD.However,current analyses of gut microbiota,such as 16S rRNA or metagenomic sequencing,are often time-consuming and costly.Siderophore,a low-molecularweight protein secreted extracellularly to chelate ferric iron,is a crucial virulence factor in iron acquisition of bacteria and fungi.The presence of siderophores can indirectly reflect bacterial abundance and activity.[2]
文摘BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies.
基金Supported by Romanian Ministry of Research,Innovation and Digitization,No.PN23.16.02.04 and No.31PFE/30.12.2021.
文摘BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorectal cancer,aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid(FA)import into cell.METHODS A gene expression analysis of FASN,CD36,SLC27A1,SLC27A2,SLC27A3,SLC27A4,SLC27A5,ACSL1,and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection.The genes were considered significantly dysregulated between the groups when the p value was<0.05 and the fold change(FC)was≤0.5 and≥2.RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue:SLC27A2(FC=5.66;P=0.033),SLC27A3(FC=2.68;P=0.040),SLC27A4(FC=3.13;P=0.033),ACSL1(FC=4.10;P<0.001),and ACSL3(FC=2.67;P=0.012).We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors,including the anatomic location,the lymph node involvement,and the presence of metastasis.A significant difference in the expression of SLC27A3(FC=3.28;P=0.040)was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.CONCLUSION Despite the low number of patients analyzed,these preliminary results seem to be promising.Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy.Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.
基金supported by Beijing Joint Research Program for Germplasm Innovation and New Variety Breeding(Grant No.G20220628003-03)Chongqing Municipal People's Government and Chinese Academy of Agricultural Sciences strategic cooperation project,Key-Area Research and Development Program of Guangdong Province(Grant No.2020B020220001)+3 种基金the Earmarked Fund for Modern Agro-industry Technology Research System(Grant No.CARS-23)Science and Technology Innovation Program of the Chinese Academy of Agricultural Science(Grant No.CAAS-ASTIP-IVFCAAS)Central public-interest Scientific Institution Basal Research Fund(Grant No.Y2017PT52)the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture,P.R.China。
文摘Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in cucumber have been identified.Here,the heat injury indices of 88 cucumber accessions representing diverse ecotypes were collected in two open-field environments,with naturally occurring high temperatures over two years.Seventeen of the 88 accessions were identified as highly heat-tolerant.Using a genome-wide association study,five loci(gHII3.1,gHII3.2,gHII3.3,gHII4.1 and gHII6.1)on three chromosomes associated with heat tolerance were detected.Pairwise linkage disequilibrium correlation,sequence polymorphisms,and qRT-PCR analyses at these loci,identified five candidate genes predicted to be casual for heat stress response in cucumber.CsaV3_3G04883,CsaV3_4G029050 and CsaV3_6G005370 each had nonsynonymous SNPs,and were significantly up-regulated by heat stress in the heat-tolerant genotypes.CsaV3_3G031890 was also induced by heat stress,but in the heatsensitive genotypes,and sequence polymorphism was only found in the promoter region.Identifying these candidate genes lays a foundation for understanding cucumber thermotolerance mechanisms.Our study is one of the few to examine heat stress in adult cucumber plants and it therefore fills a critical gap in knowledge.It is also an important first-step towards accelerating the breeding of robust heat-tolerant varieties.
基金Supported by Ningxia Key Research and Development Program,No.2023BEG02015Talent Development Projects of Young Qihuang of National Administration of Traditional Chinese Medicine(2020).
文摘BACKGROUND Lotus plumule and its active components have demonstrated inhibitory effects on gastric cancer(GC).However,the molecular mechanism of lotus plumule against GC remains unclear and requires further investigation.AIM To identify the key hub genes associated with the anti-GC effects of lotus plumule.METHODS This study investigated the potential targets of traditional Chinese medicine for inhibiting GC using weighted gene co-expression network analysis and bio-informatics.Initially,the active components and targets of the lotus plumule and the differentially expressed genes associated with GC were identified.Sub-sequently,a protein-protein interaction network was constructed to elucidate the interactions between drug targets and disease-related genes,facilitating the identification of hub genes within the network.The clinical significance of these hub genes was evaluated,and their upstream transcription factors and down-stream targets were identified.The binding ability of a hub gene with its down-stream targets was verified using molecular docking technology.Finally,molecular docking was performed to evaluate the binding affinity between the active ingredients of lotus plumule and the hub gene.RESULTS This study identified 26 genes closely associated with GC.Machine learning analysis and external validation narrowed the list to four genes:Aldo-keto reductase family 1 member B10,fructose-bisphosphatase 1,protein arginine methyltransferase 1,and carbonic anhydrase 9.These genes indicated a strong correlation with anti-GC activity.CONCLUSION Lotus plumule exhibits anti-GC effects.This study identified four hub genes with potential as novel targets for diagnosing and treating GC,providing innovative perspectives for its clinical management.
基金Supported by National Natural Science Foundation of China,No.82100594.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.
基金Supported by Scientific Research Project of Xianning Central Hospital in 2022 (No.2022XYB020)Science and Technology Plan Project of Xianning Municipal in 2022 (No.2022SFYF014).
文摘AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.
文摘Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of novel prognostic and pathogenesis biomarkers plays a key role in the management of hypertension. Methods: The GSE7483 and GSE75815 datasets from the gene expression omnibus (GEO) database were used to identify the genes associated with hypertension that were differentially expressed genes (DEGs). The functional role of the DEGs was elucidated by gene body (GO) enrichment analysis. In addition, we performed an immune infiltration assay and GSEA on the DEGs of hypertensive patients and verified the expression of novel DEGs in the blood of hypertensive patients by RT-qPCR. Results: A total of 267 DEGs were identified from the GEO database. GO analysis revealed that these genes were associated mainly with biological processes such as fibroblast proliferation, cell structural organization, extracellular matrix organization, vasculature development regulation, and angiogenesis. We identified five possible biomarkers, Ecm1, Sparc, Sphk1, Thbsl, and Mecp2, which correlate with vascular development and angiogenesis characteristic of hypertension by bioinformatics, and explored the clinical expression levels of these genes by RT-qPCR, and found that Sparc, Sphk1, and Thbs1 showed significant up-regulation, in agreement with the results of the bioinformatics analysis. Conclusion: Our study suggested that Sparc, Sphk1 and Thbs1 may be potential novel biomarkers for the diagnosis, treatment and prognosis of hypertension and that they are involved in the regulation of vascular development and angiogenesis in hypertension.
基金supported by the Jiangsu Natural Science Foundation,China(BK20231468)the Fundamental Research Funds for the Central Universities,China(ZJ24195012)+3 种基金the National Natural Science Foundation in China(31871668)the Jiangsu Key R&D Program,China(BE2022384)the Xinjiang Uygur Autonomous Region Science and Technology Support Program,China(2021E02003)the Jiangsu Collaborative Innovation Center for Modern Crop Production Project,China(No.10)。
文摘Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.