期刊文献+
共找到148,200篇文章
< 1 2 250 >
每页显示 20 50 100
Scanning transmission electron microscopy and atom probe tomography analysis of non-stoichiometry long-period-stacking-ordered structures in Mg-Ni-Y/Sm alloys
1
作者 Yimeng Chen Manuel Legrée +1 位作者 Jean-Louis Bobet Alexander Kvit 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期954-965,共12页
The long-period-stacking-ordered(LPSO)structure affects the mechanical,corrosion and hydrolysis properties of Mg alloys.The current work employs high angle annular dark field-scanning transmission electron microscopy(... The long-period-stacking-ordered(LPSO)structure affects the mechanical,corrosion and hydrolysis properties of Mg alloys.The current work employs high angle annular dark field-scanning transmission electron microscopy(HAADF-STEM)and atom probe tomography(APT)to investigate the structural and local chemical information of LPSO phases formed in Mg-Ni-Y/Sm ternary alloys after extended isothermal annealing.Depending on the alloying elements and their concentrations,Mg-Ni-Y/Sm develops a two-phase LPSO+α-Mg structure in which the LPSO phase contains defects,hybrid LPSO structure,and Mg insertions.HAADF-STEM and APT indicate non-stoichiometric LPSO with incomplete Ni_(6)(Y/Sm)_(8) clusters.In addition,the APT quantitatively determines the local composition of LPSO and confirms the presence of Ni within the Mg bonding layers.These results provide insight into a better understanding of the structure and hydrolysis properties of LPSO-Mg alloys. 展开更多
关键词 Magnesium alloys Long-range ordering Atom probe tomography(APT) STEM HAADF Hydrolysis properties.
在线阅读 下载PDF
A statistical analysis of the Kappa-type energy spectrum distribution of radiation belt electrons observed by Van Allen Probes
2
作者 LuHuai Jiao Xin Ma +3 位作者 YuanNong Zhang TaiFeng Jin Song Fu BinBin Ni 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期368-374,共7页
The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa di... The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa distributions are inadequate for capturing the realistic spectral distributions of radiation belt electrons.Here we adopt the Kappa-type(KT)distribution as the fitting function and perform a statistical analysis to investigate the radiation belt electron flux spectra observed by the Van Allen Probes.By calculating the optimal values of the key KT distribution parameters(i.e.,κandθ2)from the observed spectral shapes,we fit the radiation belt electron fluxes at different L-shells under different geomagnetic conditions.In this manner,we obtain typical values of the KT distribution parameters,which are statistically feasible for modeling the radiation belt electron flux profiles during either geomagnetically quiet or active periods.A comparison of the KT distribution model results with those using the Maxwellian or Kappa distribution reveals the advantage of the KT distribution for studying the overall properties of the radiation belt electron spectral distribution,which has important implications for deepening the current understanding of the radiation belt electron dynamics under evolving geomagnetic conditions. 展开更多
关键词 radiation belt electron Kappa-type distribution fitting geomagnetic storm
在线阅读 下载PDF
Ultrafast photoemission electron microscopy:A multidimensional probe of nonequilibrium physics
3
作者 戴亚南 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期24-57,共34页
Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interact... Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics. 展开更多
关键词 ultrafast photoemission electron microscopy ultrafast momentum microscopy excited state physics
在线阅读 下载PDF
Bioelectronic medicine in modulation of cortical spreading depolarization and beyond
4
作者 Khaled Alok Timothy G.White Chunyan Li 《Neural Regeneration Research》 SCIE CAS 2025年第2期481-482,共2页
Bioelectronic interventions,specifically trigeminal nerve st imulat ion(TNS),have attracted considerable attention in conditions where cortical spreading depolarizations(CSDs)accompanied by compromised cerebral perfus... Bioelectronic interventions,specifically trigeminal nerve st imulat ion(TNS),have attracted considerable attention in conditions where cortical spreading depolarizations(CSDs)accompanied by compromised cerebral perfusion may exacerbate neurological damage.While pharmacological interventions have demonstrated initial potential in addressing CSDs,a standardized treatment approach has not yet been established.The objective of this perspective is to explore emerging bioelectronic methodologies for addressing CSDs,particularly emphasizing TNS,and to underscore TNS’s capacity to enhance neurovascular coupling and cerebral perfusion. 展开更多
关键词 CEREBRAL PERFUSION electronic
在线阅读 下载PDF
Optimizing electronic structure through point defect engineering for enhanced electrocatalytic energy conversion
5
作者 Wei Ma Jiahao Yao +6 位作者 Fang Xie Xinqi Wang Hao Wan Xiangjian Shen Lili Zhang Menggai Jiao Zhen Zhou 《Green Energy & Environment》 SCIE EI CAS 2025年第1期109-131,共23页
Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the e... Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials. 展开更多
关键词 Point defect engineering DOPING VACANCY ELECTROCATALYSIS electronic structure
在线阅读 下载PDF
A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells
6
作者 ZHANG Linfang YIN Wenzhu YIN Gui 《无机化学学报》 北大核心 2025年第3期540-548,共9页
Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether ... Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift. 展开更多
关键词 hydrogen sulfide near⁃infrared fluorescence probe cell imaging
在线阅读 下载PDF
Constructing Donor–Acceptor‑Linked COFs Electrolytes to Regulate Electron Density and Accelerate the Li^(+)Migration in Quasi‑Solid‑State Battery
7
作者 Genfu Zhao Hang Ma +5 位作者 Conghui Zhang Yongxin Yang Shuyuan Yu Haiye Zhu Yongjiang Sun Hong Guo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期456-471,共16页
Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-... Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-performance solid-state electrolyte thorough D–A-linked covalent organic frameworks(COFs)based on intramolecular charge transfer interactions.Unlike other reported COFbased solid-state electrolyte,the developed concept with D–A-linked COFs not only achieves electronic modulation to promote highly-selective Li^(+)migration and inhibit Li dendrite,but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries.The introduced strong electronegativity F-based ligand in COF electrolyte results in highlyselective Li^(+)(transference number 0.83),high ionic conductivity(6.7×10^(-4)S cm^(−1)),excellent cyclic ability(1000 h)in Li metal symmetric cell and high-capacity retention in Li/LiFePO_(4)cell(90.8%for 300 cycles at 5C)than substituted C-and N-based ligands.This is ascribed to outstanding D–A interaction between donor porphyrin and acceptor F atoms,which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li^(+)kinetics.Consequently,we anticipate that this work creates insight into the strategy for accelerating Li^(+)conduction in high-performance solid-state Li metal batteries through D–A system. 展开更多
关键词 electronic modulation engineering Donor-acceptor-linked covalent organic frameworks Quasi-solid-state Li metal battery
在线阅读 下载PDF
Conditionally restricted fluorescent probe for Fe^(3+)and Cu^(2+)based on the naphthalimide structure
8
作者 ZHU Yuan ZHANG Xiaoda +2 位作者 WANG Shasha WEI Peng YI Tao 《无机化学学报》 北大核心 2025年第1期183-192,共10页
To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparat... To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparative analysis of the probe's performance in various buffer systems revealed that buffers with high organic content are unsuitable for evaluating such probes.Furthermore,the pH of the solvent system was found to significantly influence the probe's behavior.Under highly acidic conditions(pH≤2),DHU‑NP‑4 exhibited exceptional specificity for Fe^(3+),while in alkaline conditions,it demonstrated high specificity for Cu^(2+).Leveraging these properties,the probe enabled the quantitative detection of Fe^(3+)and Cu^(2+)in solution. 展开更多
关键词 fluorescent probe NAPHTHALIMIDE copper(Ⅱ)ion iron(Ⅲ)ion buffer solution
在线阅读 下载PDF
Holographic Analysis Determines Proton and Neutron Masses from Electron Mass
9
作者 T. R. Mongan 《Journal of Modern Physics》 2025年第2期341-346,共6页
The Standard Model of particle physics assumes that fundamental fermions are point particles with zero radius, no spatial dimensions, and infinite matter density. This alternative model treats the nine charged fundame... The Standard Model of particle physics assumes that fundamental fermions are point particles with zero radius, no spatial dimensions, and infinite matter density. This alternative model treats the nine charged fundamental fermions (three leptons and nine quarks) as spheres with non-zero holographic radius. Holographic analysis (based on quantum mechanics, general relativity, thermodynamics, and Shannon information theory) specifies electron mass by five fundamental constants: Planck’s constant ℏ, gravitational constant G, fine structure constant α, cosmological constant Λ, and vacuum energy fraction ΩΛ. Protons and neutrons are composite systems of up and down quarks. Describing forces between quark constituents confined within nucleons as inverse square attractive forces, this alternative model identifies composition factors Cpand Cnto relate proton and neutron masses to electron mass and thus to fundamental constants. An appendix summarizes holographic analyses characterizing astronomical masses at the opposite end of the mass scale for objects in the universe. 展开更多
关键词 Nucleon Masses electron Mass Fundamental Constants
在线阅读 下载PDF
Non-uniform electron density estimation based on electromagnetic wave attenuation in plasma
10
作者 Zhaoying Wang Lixin Guo +2 位作者 Maixia Fu Shaoshuai Guo Yinsheng Li 《Chinese Physics B》 2025年第1期381-386,共6页
The surface of a high-speed vehicle reentering the atmosphere is surrounded by plasma sheath.Due to the influence of the inhomogeneous flow field around the vehicle,understanding the electromagnetic properties of the ... The surface of a high-speed vehicle reentering the atmosphere is surrounded by plasma sheath.Due to the influence of the inhomogeneous flow field around the vehicle,understanding the electromagnetic properties of the plasma sheath can be challenging.Obtaining the electron density of the plasma sheath is crucial for understanding and achieving plasma stealth of vehicles.In this work,the relationship between electromagnetic wave attenuation and electron density is deduced theoretically.The attenuation distribution along the propagation path is found to be proportional to the integral of the plasma electron density.This result is used to predict the electron density profile.Furthermore,the average electron density is obtained using a back-propagation neural network algorithm.Finally,the spatial distribution of the electron density can be determined from the average electron density and the normalized derivative of attenuation with respect to the propagation depth.Compared to traditional probe measurement methods,the proposed approach not only improves efficiency but also preserves the integrity of the plasma environment. 展开更多
关键词 ATTENUATION electromagnetic propagation PLASMA electron density
在线阅读 下载PDF
The influence ofⅤ/Ⅲratio on electron mobility of the InAs_(x)Sb_(1-x)layers grown on GaAs substrate by molecular beam epitaxy
11
作者 ZHANG Jing YANG Zhi +3 位作者 ZHENG Li-Ming ZHU Xiao-Juan WANG Ping YANG Lin 《红外与毫米波学报》 北大核心 2025年第1期25-32,共8页
This paper discusses the influence of Sb/In ratio on the transport properties and crystal quality of the 200 nm InAs_(x)Sb_(1-x)thin film.The Sb content of InAs_(x)Sb_(1-x)thin film in all samples was verified by HRXR... This paper discusses the influence of Sb/In ratio on the transport properties and crystal quality of the 200 nm InAs_(x)Sb_(1-x)thin film.The Sb content of InAs_(x)Sb_(1-x)thin film in all samples was verified by HRXRD of the symmetrical 004 reflections and asymmetrical 115 reflections.The calculation results show that the Sb component was 0.6 in the InAs_(x)Sb_(1-x)thin film grown under the conditions of Sb/In ratio of 6 and As/In ratio of 3,which has the highest electron mobility(28560 cm^(2)/V·s)at 300 K.At the same time,the influence ofⅤ/Ⅲratio on the transport properties and crystal quality of Al_(0.2)In_(0.8)Sb/InAs_(x)Sb_(1-x)quantum well heterostructures also has been investigated.As a result,the Al_(0.2)In_(0.8)Sb/InAs_(0.4)Sb_(0.6)quantum well heterostructure with a channel thickness of 30 nm grown under the conditions of Sb/In ratio of 6 and As/In ratio of 3 has a maximum electron mobility of 28300 cm^(2)/V·s and a minimum RMS roughness of 0.68 nm.Through optimizing the growth conditions,our samples have higher electron mobility and smoother surface morphology. 展开更多
关键词 molecular beam epitaxy InAs_(x)Sb_(1-x) Ⅴ/Ⅲratio high electron mobility
在线阅读 下载PDF
Modulation of suprathermal electron fluxes by ultra-low-frequency magnetic field fluctuations in the Martian foreshock
12
作者 TaiFeng Jin BinBin Ni +8 位作者 Song Fu XiaoTong Yun ShuYue Pang MinYi Long QiongYue Zhang Nan Wang XinJie Xiong YiBin Zhao FangFei Shi 《Earth and Planetary Physics》 2025年第2期357-365,共9页
Ultra-low-frequency(ULF) waves are ubiquitous in terrestrial and planetary environments, playing a crucial role in energy transfer and dissipation through wave–particle interactions within space plasmas. By performin... Ultra-low-frequency(ULF) waves are ubiquitous in terrestrial and planetary environments, playing a crucial role in energy transfer and dissipation through wave–particle interactions within space plasmas. By performing a detailed event study in terms of particle distribution maps and wave–particle variable correlation maps, we report that ULF waves observed by the Mars Atmosphere and Volatile EvolutioN(MAVEN) spacecraft in the Martian foreshock can effectively modulate the suprathermal electron fluxes by the magnetic field fluctuations. In particular, the variations in electron fluxes at energies of ~10–100 eV are significant in the perpendicular direction, showing good relationships with changes in the wave field strength characterized by a correlation coefficient ~0.8. These findings demonstrate the generality of interactions of ULF waves with electrons, even at these low energies, highlighting the importance of such processes throughout the heliosphere. 展开更多
关键词 Martian foreshock ULF waves electron modulation
在线阅读 下载PDF
Transformation of discarded biomass into value-added flexible electronic materials
13
作者 Sijia Bao Xuenan Yang +2 位作者 Ziqi Yu Yuanbo Shi Yuan Lu 《Green Energy & Environment》 2025年第3期452-470,共19页
The development of electronic products and increased electronic waste have triggered a series of ecological problems on Earth.Meanwhile,amidst energy crises and the pursuit of carbon neutrality,the recycling of discar... The development of electronic products and increased electronic waste have triggered a series of ecological problems on Earth.Meanwhile,amidst energy crises and the pursuit of carbon neutrality,the recycling of discarded biomass has attracted the attention of many researchers.In recent years,the transformation of discarded biomass into value-added electronic products has emerged as a promising endeavor in the field of green and flexible electronics.In this review,the attempts and advancements in biomass conversion into flexible electronic materials and devices are systematically summarized.We focus on reviewing the research progress in biomass conversion into substrates,electrodes,and materials tailored for optical and thermal management.Furthermore,we explore component combinations suitable for applications in environmental monitoring and health management.Finally,we discuss the challenges in techniques and cost-effectiveness currently faced by biomass conversion into flexible electronic devices and propose improvement strategies.Drawing insights from both fundamental research and industrial applications,we offer prospects for future developments in this burgeoning field. 展开更多
关键词 Biomass conversion Flexible electronics Green process Sustainable development
在线阅读 下载PDF
Electronic structure and carrier mobility of BSb nanotubes
14
作者 Lantian Xue Chennan Song +4 位作者 Miaomiao Jian Qiang Xu Yuhao Fu Pengyue Gao Yu Xie 《Chinese Physics B》 2025年第3期183-188,共6页
High-mobility semiconductor nanotubes have demonstrated great potential for applications in high-speed transistors,single-charge detection,and memory devices.Here we systematically investigated the electronic properti... High-mobility semiconductor nanotubes have demonstrated great potential for applications in high-speed transistors,single-charge detection,and memory devices.Here we systematically investigated the electronic properties of single-walled boron antimonide(BSb)nanotubes using first-principles calculations.We observed that rolling the hexagonal boron antimonide monolayer into armchair(ANT)and zigzag(ZNT)nanotubes induces compression and wrinkling effects,significantly modifying the band structures and carrier mobilities through band folding andπ^(*)-σ^(*)hybridization.As the chiral index increases,the band gap and carrier mobility of ANTs decrease monotonically,where electron mobility consistently exceeds hole mobility.In contrast,ZNTs exhibit a more complex trend:the band gap first increases and then decreases,and the carrier mobility displays oscillatory behavior.In particular,both ANTs and ZNTs could exhibit significantly higher carrier mobilities compared to hexagonal monolayer and zinc-blende BSb,reaching 10^(-3)-10^(-7) cm^(-2)·V^(-1)·s^(-1).Our findings highlight strong curvature-induced modifications in the electronic properties of single-walled BSb nanotubes,demonstrating the latter as a promising candidate for high-performance electronic devices. 展开更多
关键词 ab initio calculations NANOTUBES electronic structure carrier mobility
在线阅读 下载PDF
Interfacial electron rearrangement of 3D Fe_(3)O_(4)/h-YFeO_(3)composites for efficient electromagnetic wave absorption
15
作者 Yi Sui Yingde Zhang +4 位作者 Guang Liu Lei Ji Junyu Yue Chen Wu Mi Yan 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期609-618,共10页
Interface modulation is an important pathway for highly efficient electromagnetic wave absorption.Herein,tailored interfaces between Fe_(3)O_(4)particles and the hexagonal-YFeO_(3)(h-YFeO_(3))framework were constructe... Interface modulation is an important pathway for highly efficient electromagnetic wave absorption.Herein,tailored interfaces between Fe_(3)O_(4)particles and the hexagonal-YFeO_(3)(h-YFeO_(3))framework were constructed via facile self-assembly.The resulting interfa-cial electron rearrangement at the heterojunction led to enhanced dielectric and magnetic loss synergy.Experimental results and density function theory(DFT)simulations demonstrate a transition in electrical properties from a half-metallic monophase to metallic Fe_(3)O_(4)/h-YFeO_(3)composites,emphasizing the advantages of the formed heterointerface.The transformation of electron behavior is also accompan-ied by a redistribution of electrons at the Fe_(3)O_(4)/h-YFeO_(3)heterojunction,leading to the accumulation of localized electrons around the Y-O-Fe band bridge,consequently enhancing the polarization.A minimum reflection loss of-34.0 dB can be achieved at 12.0 GHz and 2.0 mm thickness with an effective bandwidth of 3.3 GHz due to the abundant interfaces,enhanced polarization,and rational impedance.Thus,the synergistic effects endow the Fe_(3)O_(4)/h-YFeO_(3)composites with high performance and tunable functional properties for efficient electromagnetic absorption. 展开更多
关键词 SELF-ASSEMBLING HETEROJUNCTION electron rearrangement interface modulation electromagnetic wave absorption
在线阅读 下载PDF
The Theory of the Extended Electron (Anti-Particles of Dirac and Majorana)
16
作者 Hoa van Nguyen 《Journal of High Energy Physics, Gravitation and Cosmology》 2025年第1期183-202,共20页
This theory proposes an extended model of the electron based on the image of the screened electron in the concept of vacuum polarization of QED. The extended electron consists of a negatively charged core −q0which is ... This theory proposes an extended model of the electron based on the image of the screened electron in the concept of vacuum polarization of QED. The extended electron consists of a negatively charged core −q0which is surrounded by an assembly (an aggregation) of tiny static electric dipoles −q,+q. When subjected to an external field, electromagnetic forces are produced on these point charges to give rise to various properties of the electron. Three major properties of the electron that will be explored in this theory are: 1) the effective electric charge of the electron;2) the mechanism of the spin of the electron;3) the mechanism of radiation of the electron. The investigation of these properties leads to various innovative explanations for the generation of anti-particle, the orbital of the electron, the strong nuclear forces between nucleons … Other topics are also listed in the following content. 展开更多
关键词 The Extended Model of the electron The Core (-q0) Static Electric Dipoles (-q +q) The Effective Electric Charge Q the Permittivity ε The Permeability μ
在线阅读 下载PDF
Electronic structure,elasticity,magnetism of Mn_(2)XIn(X=Fe,Co)full Heusler compounds under biaxial strain:First-principles calculations
17
作者 Shiran Gao Chengyang Zhao +4 位作者 Xinzhuo Zhang Wen Qiao Shiming Yan Ru Bai Tiejun Zhou 《Chinese Physics B》 2025年第1期438-449,共12页
The electronic structure,elasticity,and magnetic properties of the Mn_(2)XIn(X=Fe,Co)full-Heusler compounds are comprehensively investigated via first-principles calculations.The calculated elastic constants indicate ... The electronic structure,elasticity,and magnetic properties of the Mn_(2)XIn(X=Fe,Co)full-Heusler compounds are comprehensively investigated via first-principles calculations.The calculated elastic constants indicate that both Mn_(2)FeIn and Mn_(2)Co In possess ductility.At the optimal lattice constants,the magnetic moments are found to be 1.40μB/f.u.for Mn_(2)FeIn and 1.69μB/f.u.for Mn_(2)CoIn.Under the biaxial strain ranging from-2%to 5%,Mn_(2)FeIn demonstrates a remarkable variation in the spin polarization,spanning from-2%to 74%,positioning it as a promising candidate for applications in spintronic devices.Analysis of the electronic structure reveals that the change in spin polarization under strain is due to the shift of the spin-down states at the Fermi surface.Additionally,under biaxial strain,the magnetic anisotropy of Mn_(2)FeIn undergoes a transition of easy-axis direction.Utilizing second-order perturbation theory and electronic structure analysis,the variation in magnetic anisotropy with strain can be attributed to changes of d-orbital states near the Fermi surface. 展开更多
关键词 magnetic anisotropy biaxial strain electronic band structure mechanical properties
在线阅读 下载PDF
Application of Electronic Pathology Reading Library in Standardized Practical Skill Training of Clinical Pathology Residents
18
作者 Qiushuang Ma Bingjuan Zhou +3 位作者 Ying Chang Minghan Yang Ling Yin Jinku Zhang 《Journal of Contemporary Educational Research》 2025年第2期39-45,共7页
Objective:To enhance the reading skills of clinical pathology residents,it is essential to establish a well-structured electronic pathology reading library.Methods:In accordance with the Resident Standardization Train... Objective:To enhance the reading skills of clinical pathology residents,it is essential to establish a well-structured electronic pathology reading library.Methods:In accordance with the Resident Standardization Training Content and Standards(2022 Edition),clinical pathology residents are required to master pathological diagnoses across 11 systems:skin,head and neck,mediastinum and respiratory,digestive,urinary and male reproductive,female reproductive and breast,lymphatic and hematopoietic,bone and soft tissue,cardiovascular,central nervous,and endocrine diseases.Senior pathologists specializing in each subspecialty selected classic pathological slides,which were systematically scanned and compiled into an electronic pathology library.Results:A questionnaire survey was conducted to gather feedback on the electronic pathology reading library.Residents generally found it to be convenient,efficient,and conducive to learning.Conclusion:Training in clinical pathology diagnosis is a core component of standardized resident training.The electronic pathology reading library has been well-received and recognized by resident doctors.However,further efforts are needed to explore diverse teaching methods that align with modern educational approaches,ultimately contributing to the development of highly skilled resident doctors. 展开更多
关键词 electronic pathology reading library Clinical pathology Standardized resident training Practical skills
在线阅读 下载PDF
SlPGR5/SlPGRL1 pathway-dependent cyclic electron transport regulates photoprotection and chloroplast quality in tomato plants
19
作者 Xiaolong Yang Yumeng Zhang +5 位作者 Ting Liu Jiali Shi Mingfang Qi Riyuan Chen Yufeng Liu Tianlai Li 《Horticultural Plant Journal》 2025年第1期211-226,共16页
The essential photoprotective role of proton gradient regulation 5(PGR5)-dependent cyclic electron flow(CEF)has been reported in Arabidopsis,rice,and algae.However,its functional assessment has not been performed in t... The essential photoprotective role of proton gradient regulation 5(PGR5)-dependent cyclic electron flow(CEF)has been reported in Arabidopsis,rice,and algae.However,its functional assessment has not been performed in tomato yet.In this study,we focused on elucidate the function of SlPGR5 and SlPGR5-like photosynthetic phenotype 1(PGRL1)in tomato.We performed RNA interference and found that SlPGR5/SlPGRL1-suppressed transformants exhibited extremely low CO_(2)assimilation capacity,their photosystem I(PSI)and PSII were severely photoinhibited and chloroplasts were obviously damaged.The SlPGR5/SlPGRL1-suppressed plants almost completely inhibited CEF and Y(ND),and PSII photoinhibition may be directly related to the inability to produce sufficient proton motive force to induce NPQ.The transgenic plants overexpressing SlPGR5 and SlPGRL1 driven by 35S promoter capable alleviate photoinhibition of plants under low night temperature.The transcriptomic and proteomic analyses suggested that the nuclear gene transcription and turnover of chloroplast proteins,including the plastoglobule-related proteins,were closely related to SlPGR5/SlPGRL1 pathway dependent CEF.The bridge relationship between CEF and chloroplast quality maintenance was a novel report to our knowledge.In conclusion,these results revealed the regulatory mechanism of the SlPGR5/SlPGRL1 pathway in photoprotection and maintenance of chloroplast function in tomato,which is crucial for reduce yield loss,especially under adverse environmental conditions. 展开更多
关键词 TOMATO Cyclic electron transport SlPGR5/SlPGRL1 PHOTOPROTECTION Chloroplast quality Plastoglobulus
在线阅读 下载PDF
Semiconductor-cocatalyst interfacial electron transfer in actual photocatalytic reaction
20
作者 Jiazang Chen 《Chinese Journal of Catalysis》 2025年第1期213-222,共10页
Semiconductor-cocatalyst interfacial electron transfer has widely been considered as a fast step occurring on picosecond-microsecond timescale in photocatalytic reaction.However,the formed potential barriers severely ... Semiconductor-cocatalyst interfacial electron transfer has widely been considered as a fast step occurring on picosecond-microsecond timescale in photocatalytic reaction.However,the formed potential barriers severely slow this interfacial electronic process by thermionic emission.Although trap-assisted charge recombination can transfer electrons from semiconductor to cocatalyst and can even be evident under weak illumination,the parallel connection with thermionic emission makes the photocatalytic photon utilization encounter a minimum along the variation of light intensity.By this cognition,the light-intensity-dependent photocatalytic behaviors can be predicted by simulating the photoinduced semiconductor-cocatalyst interfacial electron transfer that mainly determines the reaction rate.We then propose a(photo)electrochemical method to evaluate the time constants for occurring this interfacial electronic process in actual photocatalytic reaction without relying on extremely high photon flux that is required to generate discernible optical signal in common instrumental methods based on ultrafast pulse laser.The evaluated decisecond-second timescale can accurately guide us to develop certain strategies to facilitate this rate-determining step to improve photon utilization. 展开更多
关键词 Semiconductor-cocatalyst interfacial electron transfer Trap-assisted charge recombination Thermionic emission Photocatalyticphoton utilization Actual photocatalytic reaction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部