期刊文献+
共找到41,428篇文章
< 1 2 250 >
每页显示 20 50 100
DIGNN-A:Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph
1
作者 Jizhao Liu Minghao Guo 《Computers, Materials & Continua》 SCIE EI 2025年第1期817-842,共26页
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr... The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics. 展开更多
关键词 Intrusion detection graph neural networks attention mechanisms line graphs dynamic graph neural networks
在线阅读 下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
2
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
在线阅读 下载PDF
The Generalized Burning Number of Gear Graph and Sun Graph
3
作者 Jiaqing Wu Yinkui Li 《Journal of Applied Mathematics and Physics》 2025年第1期157-165,共9页
Graph burning is a model for describing the spread of influence in social networks and the generalized burning number br(G)of graph Gis a parameter to measure the speed of information spread on network G. In this pape... Graph burning is a model for describing the spread of influence in social networks and the generalized burning number br(G)of graph Gis a parameter to measure the speed of information spread on network G. In this paper, we determined the generalized burning number of gear graph, which is useful model of social network. We also provided properties of the generalized burning number of sun graphs, including characterizations and bounds. 展开更多
关键词 Burning Number Generalized Burning Number Gear graph Sun graph
在线阅读 下载PDF
Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network
4
作者 Yuxiang Zou Ning He +2 位作者 Jiwu Sun Xunrui Huang Wenhua Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1255-1276,共22页
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac... In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods. 展开更多
关键词 KNN interpolation multi-scale temporal convolution suppression graph convolutional network gait emotion recognition human skeleton
在线阅读 下载PDF
Note on “Sharp Isolated Toughness Bound for Fractional ( k,m )-Deleted Graphs”
5
作者 Wei Gao 《Journal of Applied Mathematics and Physics》 2025年第2期365-380,共16页
As an appendix of [Gao et al. Sharp isolated toughness bound for fractional (k,m)-deleted graphs, Acta Mathematicae Applicatae Sinica, English Series, 2025, 41(1): 252-269], the detailed proof of Theorem 4.1 in this w... As an appendix of [Gao et al. Sharp isolated toughness bound for fractional (k,m)-deleted graphs, Acta Mathematicae Applicatae Sinica, English Series, 2025, 41(1): 252-269], the detailed proof of Theorem 4.1 in this work is presented. 展开更多
关键词 graph Isolated Toughness Variant Fractional -Deleted graph
在线阅读 下载PDF
The Design and Practice of an Enhanced Search for Maritime Transportation Knowledge Graph Based on Semi-Schema Constraints
6
作者 Yiwen Gao Shaohan Wang +1 位作者 Feiyang Ren Xinbo Wang 《Journal of Computer and Communications》 2025年第2期94-125,共32页
With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precisio... With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precision and similarity measurement. This study, set against the backdrop of the shipping industry, combines top-down and bottom-up schema design strategies to achieve precise and flexible knowledge representation. The research adopts a semi-structured approach, innovatively constructing an adaptive schema generation mechanism based on reinforcement learning, which models the knowledge graph construction process as a Markov decision process. This method begins with general concepts, defining foundational industry concepts, and then delves into abstracting core concepts specific to the maritime domain through an adaptive pattern generation mechanism that dynamically adjusts the knowledge structure. Specifically, the study designs a four-layer knowledge construction framework, including the data layer, modeling layer, technology layer, and application layer. It draws on a mutual indexing strategy, integrating large language models and traditional information extraction techniques. By leveraging self-attention mechanisms and graph attention networks, it efficiently extracts semantic relationships. The introduction of logic-form-driven solvers and symbolic decomposition techniques for reasoning significantly enhances the model’s ability to understand complex semantic relationships. Additionally, the use of open information extraction and knowledge alignment techniques further improves the efficiency and accuracy of information retrieval. Experimental results demonstrate that the proposed method not only achieves significant performance improvements in knowledge graph retrieval within the shipping domain but also holds important theoretical innovation and practical application value. 展开更多
关键词 Large Language Models Knowledge graphs graph Attention Networks Maritime Transportation
在线阅读 下载PDF
A Maritime Document Knowledge Graph Construction Method Based on Conceptual Proximity Relations
7
作者 Yiwen Lin Tao Yang +3 位作者 Yuqi Shao Meng Yuan Pinghua Hu Chen Li 《Journal of Computer and Communications》 2025年第2期51-67,共17页
The cost and strict input format requirements of GraphRAG make it less efficient for processing large documents. This paper proposes an alternative approach for constructing a knowledge graph (KG) from a PDF document ... The cost and strict input format requirements of GraphRAG make it less efficient for processing large documents. This paper proposes an alternative approach for constructing a knowledge graph (KG) from a PDF document with a focus on simplicity and cost-effectiveness. The process involves splitting the document into chunks, extracting concepts within each chunk using a large language model (LLM), and building relationships based on the proximity of concepts in the same chunk. Unlike traditional named entity recognition (NER), which identifies entities like “Shanghai”, the proposed method identifies concepts, such as “Convenient transportation in Shanghai” which is found to be more meaningful for KG construction. Each edge in the KG represents a relationship between concepts occurring in the same text chunk. The process is computationally inexpensive, leveraging locally set up tools like Mistral 7B openorca instruct and Ollama for model inference, ensuring the entire graph generation process is cost-free. A method of assigning weights to relationships, grouping similar pairs, and summarizing multiple relationships into a single edge with associated weight and relation details is introduced. Additionally, node degrees and communities are calculated for node sizing and coloring. This approach offers a scalable, cost-effective solution for generating meaningful knowledge graphs from large documents, achieving results comparable to GraphRAG while maintaining accessibility for personal machines. 展开更多
关键词 Knowledge graph Large Language Model Concept Extraction Cost-Effective graph Construction
在线阅读 下载PDF
Construction of a Maritime Knowledge Graph Using GraphRAG for Entity and Relationship Extraction from Maritime Documents
8
作者 Yi Han Tao Yang +2 位作者 Meng Yuan Pinghua Hu Chen Li 《Journal of Computer and Communications》 2025年第2期68-93,共26页
In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shippi... In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making. 展开更多
关键词 Maritime Knowledge graph graphRAG Entity and Relationship Extraction Document Management
在线阅读 下载PDF
k-Product Cordial Labeling of Path Graphs
9
作者 Robinson Santrin Sabibha Kruz Jeya Daisy +1 位作者 Pon Jeyanthi Maged Zakaria Youssef 《Open Journal of Discrete Mathematics》 2025年第1期1-29,共29页
In 2012, Ponraj et al. defined a concept of k-product cordial labeling as follows: Let f be a map from V(G)to { 0,1,⋯,k−1 }where k is an integer, 1≤k≤| V(G) |. For each edge uvassign the label f(u)f(v)(modk). f is c... In 2012, Ponraj et al. defined a concept of k-product cordial labeling as follows: Let f be a map from V(G)to { 0,1,⋯,k−1 }where k is an integer, 1≤k≤| V(G) |. For each edge uvassign the label f(u)f(v)(modk). f is called a k-product cordial labeling if | vf(i)−vf(j) |≤1, and | ef(i)−ef(j) |≤1, i,j∈{ 0,1,⋯,k−1 }, where vf(x)and ef(x)denote the number of vertices and edges respectively labeled with x (x=0,1,⋯,k−1). Motivated by this concept, we further studied and established that several families of graphs admit k-product cordial labeling. In this paper, we show that the path graphs Pnadmit k-product cordial labeling. 展开更多
关键词 Cordial Labeling Product Cordial Labeling k-Product Cordial Labeling Path graph
在线阅读 下载PDF
Aspect-Level Sentiment Analysis of Bi-Graph Convolutional Networks Based on Enhanced Syntactic Structural Information
10
作者 Junpeng Hu Yegang Li 《Journal of Computer and Communications》 2025年第1期72-89,共18页
Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dep... Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter. 展开更多
关键词 Aspect-Level Sentiment Analysis Sentiment Knowledge Multi-Head Attention Mechanism graph Convolutional Networks
在线阅读 下载PDF
Gallai-Ramsey numbers for three graphs on at most five vertices
11
作者 SU Xue-li LIU Yan 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第1期137-148,共12页
A Gallai k-coloring is a k-edge-coloring of a complete graph in which there are no rainbow triangles.For given graphs G_(1),G_(2),G_(3)and nonnegative integers r,s,t with k=r+s+t,the k-colored Gallai-Ramsey number grk... A Gallai k-coloring is a k-edge-coloring of a complete graph in which there are no rainbow triangles.For given graphs G_(1),G_(2),G_(3)and nonnegative integers r,s,t with k=r+s+t,the k-colored Gallai-Ramsey number grk(K_(3):r·G_(1),s·G_(2),t·G_(3))is the minimum integer n such that every Gallai k-colored Kncontains a monochromatic copy of G_(1)colored by one of the first r colors or a monochromatic copy of G_(2)colored by one of the middle s colors or a monochromatic copy of G_(3)colored by one of the last t colors.In this paper,we determine the value of GallaiRamsey number in the case that G_(1)=B_(3)^(+),G_(2)=S_(3)^(+)and G_(3)=K_(3).Then the Gallai-Ramsey numbers grk(K_(3):B_(3)^(+)),grk(K_(3):S_(3)^(+))and grk(K_(3):K_(3))are obtained,respectively.Furthermore,the Gallai-Ramsey numbers grk(K_(3):r·B_(3)^(+),(k-r)·S_(3)^(+)),grk(K_(3):r·B_(3)^(+),(k-r)·K_(3))and grk(K_(3):s·S_(3)^(+),(k-s)·K_(3))are obtained,respectively. 展开更多
关键词 Gallai coloring rainbow triangle monochromatic graph Gallai-Ramsey number
在线阅读 下载PDF
Knowledge Graph Construction and Rule Matching Approach for Aerospace Product Manufacturability Assessment
12
作者 Ziyan Liu Zujie Zheng +1 位作者 Lebao Wu Zuhua Jiang 《Journal of Harbin Institute of Technology(New Series)》 2025年第1期1-14,共14页
After the design of aerospace products is completed,a manufacturability assessment needs to be conducted based on 3D model's features in terms of modeling quality and process design,otherwise the cost of design ch... After the design of aerospace products is completed,a manufacturability assessment needs to be conducted based on 3D model's features in terms of modeling quality and process design,otherwise the cost of design changes will increase.Due to the poor structure and low reusability of product manufacturing feature information and assessment knowledge in the current aerospace product manufacturability assessment process,it is difficult to realize automated manufacturability assessment.To address these issues,a domain ontology model is established for aerospace product manufacturability assessment in this paper.On this basis,a structured representation method of manufacturability assessment knowledge and a knowledge graph data layer construction method are proposed.Based on the semantic information and association information expressed by the knowledge graph,a rule matching method based on subgraph matching is proposed to improve the precision and recall.Finally,applications and experiments based on the software platform verify the effectiveness of the proposed knowledge graph construction and rule matching method. 展开更多
关键词 knowledge graph aerospace product manufacturability assessment rule matching
在线阅读 下载PDF
Research on the Construction of“Same Course with Different Structures”Curriculum Resources Based on Knowledge Graphs
13
作者 Chunsu Zhang 《Journal of Contemporary Educational Research》 2025年第1期129-134,共6页
This paper explores the construction methods of“Same Course with Different Structures”curriculum resources based on knowledge graphs and their applications in the field of education.By reviewing the theoretical foun... This paper explores the construction methods of“Same Course with Different Structures”curriculum resources based on knowledge graphs and their applications in the field of education.By reviewing the theoretical foundations of knowledge graph technology,the“Same Course with Different Structures”teaching model,and curriculum resource construction,and integrating existing literature,the paper analyzes the methods for constructing curriculum resources using knowledge graphs.The research finds that knowledge graphs can effectively integrate multi-source data,support personalized teaching and precision education,and provide both a scientific foundation and technical support for the development of curriculum resources within the“Same Course with Different Structures”framework. 展开更多
关键词 Knowledge graph Same Course with Different Structures Resource construction
在线阅读 下载PDF
基于yEd Graph Editor的矿井通风网络图自动绘制方法研究
14
作者 王少丰 魏宗康 《能源技术与管理》 2025年第1期155-158,共4页
针对矿井通风系统网络图绘制过程中存在的绘制难度大、工作量繁重、易出错等突出问题,提出了一种基于yEd Graph Editor(yEd)软件的自动化绘制方法。详细分析了基于yEd的自动绘制原理、步骤及优势,并通过实例展示了矿井通风网络图的绘制... 针对矿井通风系统网络图绘制过程中存在的绘制难度大、工作量繁重、易出错等突出问题,提出了一种基于yEd Graph Editor(yEd)软件的自动化绘制方法。详细分析了基于yEd的自动绘制原理、步骤及优势,并通过实例展示了矿井通风网络图的绘制效果。同时,还分析了yEd在绘制矿井通风系统网络图时的局限性,并提出了相应的优化建议。研究结果表明,使用yEd可以显著提高绘制的速度、准确性和可靠性,从而为矿井通风系统的设计和安全管理提供了有力的技术支持。 展开更多
关键词 矿井通风 网络图绘制 自动化 yEd graph Editor
在线阅读 下载PDF
Integrating Knowledge Graphs and Causal Inference for AI-Driven Personalized Learning in Education
15
作者 Liangkeyi SUN 《Artificial Intelligence Education Studies》 2025年第1期41-52,共12页
Artificial Intelligence(AI)has revolutionized education by enabling personalized learning experiences through adaptive platforms.However,traditional AI-driven systems primarily rely on correlation-based analytics,lim-... Artificial Intelligence(AI)has revolutionized education by enabling personalized learning experiences through adaptive platforms.However,traditional AI-driven systems primarily rely on correlation-based analytics,lim-iting their ability to uncover the causal mechanisms behind learning outcomes.This study explores the in-tegration of Knowledge Graphs(KGs)and Causal Inference(CI)as a novel approach to enhance AI-driven educational systems.KGs provide a structured representation of educational knowledge,facilitating intelligent content recommendations and adaptive learning pathways,while CI enables AI systems to move beyond pattern recognition to identify cause-and-effect relationships in student learning.By combining these methods,this research aims to optimize personalized learning path recommendations,improve educational decision-making,and ensure AI-driven interventions are both data-informed and causally validated.Case studies from real-world applications,including intelligent tutoring systems and MOOC platforms,illustrate the practical impact of this approach.The findings contribute to advancing AI-driven education by fostering a balance between knowledge modeling,adaptability,and empirical rigor. 展开更多
关键词 Artificial Intelligence in Education Knowledge graphs Causal Inference Personalized Learning Adap-tive Learning Systems
在线阅读 下载PDF
Graph Transformers研究进展综述 被引量:1
16
作者 周诚辰 于千城 +2 位作者 张丽丝 胡智勇 赵明智 《计算机工程与应用》 CSCD 北大核心 2024年第14期37-49,共13页
随着图结构数据在各种实际场景中的广泛应用,对其进行有效建模和处理的需求日益增加。Graph Transformers(GTs)作为一类使用Transformers处理图数据的模型,能够有效缓解传统图神经网络(GNN)中存在的过平滑和过挤压等问题,因此可以学习... 随着图结构数据在各种实际场景中的广泛应用,对其进行有效建模和处理的需求日益增加。Graph Transformers(GTs)作为一类使用Transformers处理图数据的模型,能够有效缓解传统图神经网络(GNN)中存在的过平滑和过挤压等问题,因此可以学习到更好的特征表示。根据对近年来GTs相关文献的研究,将现有的模型架构分为两类:第一类通过绝对编码和相对编码向Transformers中加入图的位置和结构信息,以增强Transformers对图结构数据的理解和处理能力;第二类根据不同的方式(串行、交替、并行)将GNN与Transformers进行结合,以充分利用两者的优势。介绍了GTs在信息安全、药物发现和知识图谱等领域的应用,对比总结了不同用途的模型及其优缺点。最后,从可扩展性、复杂图、更好的结合方式等方面分析了GTs未来研究面临的挑战。 展开更多
关键词 graph Transformers(GTs) 图神经网络 图表示学习 异构图
在线阅读 下载PDF
GraphMLP-Mixer:基于图-多层感知机架构的高效多行为序列推荐方法 被引量:1
17
作者 卢晓凯 封军 +2 位作者 韩永强 王皓 陈恩红 《计算机研究与发展》 EI CSCD 北大核心 2024年第8期1917-1929,共13页
在多行为序列推荐领域,图神经网络(GNNs)虽被广泛应用,但存在局限性,如对序列间协同信号建模不足和处理长距离依赖性等问题.针对这些问题,提出了一种新的解决框架GraphMLP-Mixer.该框架首先构造全局物品图来增强模型对序列间协同信号的... 在多行为序列推荐领域,图神经网络(GNNs)虽被广泛应用,但存在局限性,如对序列间协同信号建模不足和处理长距离依赖性等问题.针对这些问题,提出了一种新的解决框架GraphMLP-Mixer.该框架首先构造全局物品图来增强模型对序列间协同信号的建模,然后将感知机-混合器架构与图神经网络结合,得到图-感知机混合器模型对用户兴趣进行充分挖掘.GraphMLP-Mixer具有2个显著优势:一是能够有效捕捉用户行为的全局依赖性,同时减轻信息过压缩问题;二是其时间与空间效率显著提高,其复杂度与用户交互行为的数量成线性关系,优于现有基于GNN多行为序列推荐模型.在3个真实的公开数据集上进行实验,大量的实验结果验证了GraphMLP-Mixer在处理多行为序列推荐问题时的有效性和高效性. 展开更多
关键词 多行为建模 序列推荐 图神经网络 MLP架构 全局物品图
在线阅读 下载PDF
基于Graph Transformer的半监督异配图表示学习模型
18
作者 黎施彬 龚俊 汤圣君 《计算机应用》 CSCD 北大核心 2024年第6期1816-1823,共8页
现有的图卷积网络(GCN)模型基于同配性假设,无法直接应用于异配图的表示学习,且许多异配图表示学习的研究工作受消息传递机制的限制,导致节点特征混淆和特征过度挤压而出现过平滑问题。针对这些问题,提出一种基于Graph Transformer的半... 现有的图卷积网络(GCN)模型基于同配性假设,无法直接应用于异配图的表示学习,且许多异配图表示学习的研究工作受消息传递机制的限制,导致节点特征混淆和特征过度挤压而出现过平滑问题。针对这些问题,提出一种基于Graph Transformer的半监督异配图表示学习模型HPGT(HeteroPhilic Graph Transformer)。首先,使用度连接概率矩阵采样节点的路径邻域,再通过自注意力机制自适应地聚合路径上的节点异配连接模式,编码得到节点的结构信息,用节点的原始属性信息和结构信息构建Transformer层的自注意力模块;其次,将每个节点自身的隐层表示与它的邻域节点的隐层表示分离更新以避免节点通过自注意力模块聚合过量的自身信息,再把每个节点表示与它的邻域表示连接,得到单个Transformer层的输出,另外,将所有的Transformer层的输出跳连到最终的节点隐层表示以防止中间层信息丢失;最后,使用线性层和Softmax层将节点的隐层表示映射到节点的预测标签。实验结果表明,与无结构编码(SE)的模型相比,基于度连接概率的SE能为Transformer层的自注意力模块提供有效的偏差信息,HPGT平均准确率提升0.99%~11.98%;与对比模型相比,在异配数据集(Texas、Cornell、Wisconsin和Actor)上,模型节点分类准确率提升0.21%~1.69%,在同配数据集(Cora、CiteSeer和PubMed)上,节点分类准确率分别达到了0.8379、0.7467和0.8862。以上结果验证了HPGT具有较强的异配图表示学习能力,尤其适用于强异配图节点分类任务。 展开更多
关键词 图卷积网络 异配图 图表示学习 graph Transformer 节点分类
在线阅读 下载PDF
An Intelligent Quality Control Method for Manufacturing Processes Based on a Human–Cyber–Physical Knowledge Graph 被引量:1
19
作者 Shilong Wang Jinhan Yang +2 位作者 Bo Yang Dong Li Ling Kang 《Engineering》 SCIE EI CAS CSCD 2024年第10期242-260,共19页
Quality management is a constant and significant concern in enterprises.Effective determination of correct solutions for comprehensive problems helps avoid increased backtesting costs.This study proposes an intelligen... Quality management is a constant and significant concern in enterprises.Effective determination of correct solutions for comprehensive problems helps avoid increased backtesting costs.This study proposes an intelligent quality control method for manufacturing processes based on a human–cyber–physical(HCP)knowledge graph,which is a systematic method that encompasses the following elements:data management and classification based on HCP ternary data,HCP ontology construction,knowledge extraction for constructing an HCP knowledge graph,and comprehensive application of quality control based on HCP knowledge.The proposed method implements case retrieval,automatic analysis,and assisted decision making based on an HCP knowledge graph,enabling quality monitoring,inspection,diagnosis,and maintenance strategies for quality control.In practical applications,the proposed modular and hierarchical HCP ontology exhibits significant superiority in terms of shareability and reusability of the acquired knowledge.Moreover,the HCP knowledge graph deeply integrates the provided HCP data and effectively supports comprehensive decision making.The proposed method was implemented in cases involving an automotive production line and a gear manufacturing process,and the effectiveness of the method was verified by the application system deployed.Furthermore,the proposed method can be extended to other manufacturing process quality control tasks. 展开更多
关键词 Quality control Human-cyber-physical ternary data Knowledge graph
在线阅读 下载PDF
Survey and Prospect for Applying Knowledge Graph in Enterprise Risk Management 被引量:1
20
作者 Pengjun Li Qixin Zhao +3 位作者 Yingmin Liu Chao Zhong Jinlong Wang Zhihan Lyu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3825-3865,共41页
Enterprise risk management holds significant importance in fostering sustainable growth of businesses and in serving as a critical element for regulatory bodies to uphold market order.Amidst the challenges posed by in... Enterprise risk management holds significant importance in fostering sustainable growth of businesses and in serving as a critical element for regulatory bodies to uphold market order.Amidst the challenges posed by intricate and unpredictable risk factors,knowledge graph technology is effectively driving risk management,leveraging its ability to associate and infer knowledge from diverse sources.This review aims to comprehensively summarize the construction techniques of enterprise risk knowledge graphs and their prominent applications across various business scenarios.Firstly,employing bibliometric methods,the aim is to uncover the developmental trends and current research hotspots within the domain of enterprise risk knowledge graphs.In the succeeding section,systematically delineate the technical methods for knowledge extraction and fusion in the standardized construction process of enterprise risk knowledge graphs.Objectively comparing and summarizing the strengths and weaknesses of each method,we provide recommendations for addressing the existing challenges in the construction process.Subsequently,categorizing the applied research of enterprise risk knowledge graphs based on research hotspots and risk category standards,and furnishing a detailed exposition on the applicability of technical routes and methods.Finally,the future research directions that still need to be explored in enterprise risk knowledge graphs were discussed,and relevant improvement suggestions were proposed.Practitioners and researchers can gain insights into the construction of technical theories and practical guidance of enterprise risk knowledge graphs based on this foundation. 展开更多
关键词 Knowledge graph enterprise risk risk identification risk management review
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部