Enterotoxigenic E.coli is one of the bacterial pathogens contributing to the global resistance crisis in public health and animal husbandry.The problem of antibiotic resistance is becoming more and more serious,and ph...Enterotoxigenic E.coli is one of the bacterial pathogens contributing to the global resistance crisis in public health and animal husbandry.The problem of antibiotic resistance is becoming more and more serious,and phage is con-sidered one of the potential alternatives to antibiotics that could be utilized to treat bacterial infections.Our study isolated and identified a lytic phage PGX1 against multidrug-resistant enterotoxigenic E.coli EC6 strain from sew-age.The phage lysis profile revealed that PGX1 exhibited a lytic effect on multidrug-resistant enterotoxigenic E.coli strains of serotype O60.Through phage whole genome sequencing and bioinformatics analysis,PGX1 was found to be the class Caudoviricetes,family Autographiviridae,genus Teseptimavirus.The length of the PGX1 genome is about 37,009 bp,containing 54 open reading frames(ORFs).Notably,phage PGX1 lacks any lysogenic-related genes or virulence genes.Furthermore,phage PGX1 demonstrates strong adaptability,tolerance,and stability in various pH(pH4-10)and temperatures(4–40°C).The in vivo and in vitro tests demonstrated that phage PGX1 significantly removes and inhibits the formation of multidrug-resistant EC6 biofilm and effectively controls the Galleria mel-lonella larvae and enterotoxigenic E.coli EC6 during mice infection.In conclusion,the above findings demonstrated that phage PGX1 may be a novel antimicrobial agent to control multidrug-resistant E.coli infections.展开更多
Background Post-weaned piglets suffer from F18+Escherichia coli(E.coli)infections resulting in post-weaning diar-rhoea or oedema disease.Frequently used management strategies,including colistin and zinc oxide,have con...Background Post-weaned piglets suffer from F18+Escherichia coli(E.coli)infections resulting in post-weaning diar-rhoea or oedema disease.Frequently used management strategies,including colistin and zinc oxide,have contrib-uted to the emergence and spread of antimicrobial resistance.Novel antimicrobials capable of directly interacting with pathogens and modulating the host immune responses are being investigated.Lactoferrin has shown promising results against porcine enterotoxigenic E.coli strains,both in vitro and in vivo.Results We investigated the influence of bovine lactoferrin(bLF)on the microbiome of healthy and infected weaned piglets.Additionally,we assessed whether bLF influenced the immune responses upon Shiga toxin-producing E.coli(STEC)infection.Therefore,2 in vivo trials were conducted:a microbiome trial and a challenge infection trial,using an F18+STEC strain.BLF did not affect theα-andβ-diversity.However,bLF groups showed a higher relative abundance(RA)for the Actinobacteria phylum and the Bifidobacterium genus in the ileal mucosa.When analysing the immune response upon infection,the STEC group exhibited a significant increase in F18-specific IgG serum levels,whereas this response was absent in the bLF group.Conclusion Taken together,the oral administration of bLF did not have a notable impact on theα-andβ-diversity of the gut microbiome in weaned piglets.Nevertheless,it did increase the RA of the Actinobacteria phylum and Bifi-dobacterium genus,which have previously been shown to play an important role in maintaining gut homeostasis.Furthermore,bLF administration during STEC infection resulted in the absence of F18-specific serum IgG responses.展开更多
Background Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E.coli(ETEC)F18 in a manner similar to ...Background Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E.coli(ETEC)F18 in a manner similar to carbadox.The objective of this study was to investigate the impacts of oligosaccharide-based polymer or antibiotic on the host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18.Results Multivariate analysis highlighted the differences in the metabolic profiles of serum and colon digesta which were predominantly found between pigs supplemented with oligosaccharide-based polymer and antibiotic.The relative abundance of metabolic markers of immune responses and nutrient metabolisms,such as amino acids and carbohydrates,were significantly differentiated between the oligosaccharide-based polymer and antibiotic groups(q<0.2 and fold change>2.0).In addition,pigs in antibiotic had a reduced(P<0.05)relative abundance of Lachnospiraceae and Lactobacillaceae,whereas had greater(P<0.05)Clostridiaceae and Streptococcaceae in the colon digesta on d 11 post-inoculation(PI)compared with d 5 PI.Conclusions The impact of oligosaccharide-based polymer on the metabolic and microbial profiles of pigs is not fully understood,and further exploration is needed.However,current research suggest that various mechanisms are involved in the enhanced disease resistance and performance in ETEC-challenged pigs by supplementing this polymer.展开更多
The virulent factors of Escherichia coil (E.cofi) play an important role in the process of pathopoiesis. The study aimed to compare drug-resistant genes and virulence genes between extended spectrum β-1actamases (...The virulent factors of Escherichia coil (E.cofi) play an important role in the process of pathopoiesis. The study aimed to compare drug-resistant genes and virulence genes between extended spectrum β-1actamases (ESBLs)-producing E.coli and non-ESBLs-producing E.cofi to provide a reference for physicians in management of hospital infection. From October 2010 to August 2011,96 drug-resistant strains of E. coli isolated were collected from the specimens in Qingdao Municipal Hospital, Qingdao, China. These bacteria strains were divided into a ESBLs-producing group and a non-ESBLs-producing group. Drug sensitivity tests were performed using the Kirby-Bauer (K-B) method. Disinfectant gene, qacEAl-sull and 8 virulence genes (CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1) were tested by polymerase chain reaction (PCR). Among the 96 E.coli isolates, the ESBLs-producing E.coli comprised 46 (47.9%) strains and the non-ESBLs-producing E.cofi consisted of 50 (52.1%) strains. The detection rates of multiple drug-resistant strain, qacEAl-sull, CNF2, hlyA, eaeA,VT1, est, bfpA, elt, and CNF1 in 46 ESBLs-producing E.coli isolates were 89.1%, 76.1%, 6.5%, 69.6%, 69.6%, 89.1%, 10.9%, 26.1%, 8.7%, and 19.6%, respectively. In the non-ESBLs-producing E.cofi strains, the positive rates of multiple drug-resistant strain, qacEAl-sull, CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1 were 62.0%, 80.0%, 16.0%, 28.0%, 64.0%, 38.0%, 6.0%, 34.0%, 10.0%, and 24.0%, respectively. The difference in the detection rates of multiple drug-resistant strain, hlyA and VT1 between the ESBLs-producing E.cofi strains and the non-ESBLs-producing E.cofi strains was statistically significant (P〈0.05). The positive rate of multiple drug-resistant strains is higher in the ESBLs-producing strains than in the non-ESBLs-producing strains. The expression of some virulence genes hlyA and VT1 varies between the ESBLs-producing strains and the non-ESBLs-producing strains. Increased awareness of clinicians and enhanced testing by laboratories are required to reduce treatment failures and prevent the spread of multiple drug-resistant strains.展开更多
Fecal coliform bacteria such as Escherichia coli (E. coli) are one of the main sources of groundwater pollution. An assessment of the transport and Persistence of E. coli in poultry litter amended Decatur silty Clay s...Fecal coliform bacteria such as Escherichia coli (E. coli) are one of the main sources of groundwater pollution. An assessment of the transport and Persistence of E. coli in poultry litter amended Decatur silty Clay soil and Hartsells Sandy soil was conducted using soil columns and simulated groundwater leaching. Enumeration of initial E. coli was determined to range from 2.851 × 10<sup>3</sup> to 3.044 × 10<sup>3</sup> CFU per gram of soil. These results have been used in a batch study to determine the persistence rate of E. coli in Decatur silty Clay soil and Hartsells Sandy soil. Results prove that E. coli survival growth rate increases for clay soil later than and at a higher rate than sandy soil. The column study has determined that E. coli was transported at a rate of 3.7 × 10<sup>6</sup><sup> </sup>CFU for Decatur silty loam and 6.3 × 10<sup>6</sup><sup> </sup>CFU for Hartsells sandy per gram of soil. Further, linear regression analysis predictions show higher porosity and soil moisture content affect transport, and Hartsells sandy soil has higher transport of E. coli due to its higher porosity and lower volumetric water content.展开更多
Honey has long been considered a wound treatment used to keep cuts and other epidermal injuries clean. This study tested that claim by comparing manuka honey used in medicine today, local unprocessed honey taken strai...Honey has long been considered a wound treatment used to keep cuts and other epidermal injuries clean. This study tested that claim by comparing manuka honey used in medicine today, local unprocessed honey taken straight from a hive, and pasteurized honey found at a store, on strains of E. coli and S. epidermidis. The study evaluated the effects these honeys had on bacterial growth to determine which had the greatest inhibition of bacterial growth. To determine this, plates streaked with strains of E. coli or S. epidermidis bacteria and agar wells filled with one of the honeys were incubated and subsequently the diameter of the zone of inhibition was measured. After 20 trials using each honey and bacteria type, manuka and unprocessed were shown to have a statistically significant advantage over the pasteurized honey at inhibiting the growth of E. coli and S. epidermidis, though it was variable whether manuka had an advantage over the unprocessed honey.展开更多
This study was designed to find the susceptibility of Nitrofurantoin and Fosfomycin among urinary isolates of Escherichia.coli.Four hundred(400)urine samples were collected for susceptibility of nitrofurantoin and fos...This study was designed to find the susceptibility of Nitrofurantoin and Fosfomycin among urinary isolates of Escherichia.coli.Four hundred(400)urine samples were collected for susceptibility of nitrofurantoin and fosfomycin among urinary isolates of E.coli.All indoor and outdoor patients'urinary samples yielded growth of E.coli.Mid-stream urine specimens were inoculated on blood agar and CLED agar and incubated at 35±2°C.Growth was observed,and Escherichia coli was identified by Gram staining,Catalase,Motility test and API 20E(Bio murex)as per standard procedure.Antimicrobial susceptibility testing of isolates for nitrofurantoin and fosfomycin was carried out by the modified Kirby-Bauer disc diffusion method according to CLSI guidelines ATCC 25922.E.coli was used as a quality control strain.A total of 400 samples were tested susceptibility of nitrofurantoin and fosfomycin among urinary isolates of E.coli during this period.A total of 400 samples yielded the growth of E.coli,out of which 178(44.5%)were male and 222(55.5%)were female samples.Among males,18(10%)were tolerant to nitrofurantoin,and 2(1.1%)were tolerant to fosfomycin.Among females,9(4.09%)were susceptible to nitrofurantoin while 6(2.72%)were susceptible to fosfomycin.Among age groups below 45 years old,6(4.76%)were tolerant to nitrofurantoin,and 2(1.58%)were sensitive to fosfomycin.Between 46-66 years old,4(2.81%)were sensitive to nitrofurantoin,and 3(2.11%)were sensitive to fosfomycin.Between 67-90 years old,17(12.87%)were sensitive to nitrofurantoin,and 4(3.03%)were tolerant to fosfomycin.Fosfomycin and nitrofurantoin showed good susceptibility in urinary isolates of E.coli and can be used empirically in our setup.展开更多
Escherichia coli MLB(MG1655ΔpflBΔldhA),which can hardly grow on glucose with little succinate accumulation under anaerobic conditions.Two-stage fermentation is a fermentation in which the first stage is used for cel...Escherichia coli MLB(MG1655ΔpflBΔldhA),which can hardly grow on glucose with little succinate accumulation under anaerobic conditions.Two-stage fermentation is a fermentation in which the first stage is used for cell growth and the second stage is used for product production.The ability of glucose consumption and succinate production of MLB under anaerobic conditions can be improved significantly by using acetate as the solo carbon source under aerobic condition during the two-stage fermentation.Then,the adaptive laboratory evolution(ALE)of growing on acetate was applied here.We assumed that the activities of succinate production related enzymes might be further improved in this study.E.coli MLB46-05 evolved from MLB and it had an improved growth phenotype on acetate.Interestingly,in MLB46-05,the yield and tolerance of succinic acid in the anaerobic condition of two-stage fermentation were improved significantly.According to transcriptome analysis,upregulation of the glyoxylate cycle and the activity of stress regulatory factors are the possible reasons for the elevated yield.And the increased tolerance to acetate made it more tolerant to high concentrations of glucose and succinate.Finally,strain MLB46-05 produced 111 g/L of succinic acid with a product yield of 0.74 g/g glucose.展开更多
Defining suitable enzymes for reaction steps in novel synthetic pathways is crucial for developing microbial cell factories for non-natural products.Here,we developed a computational workflow to identify C12 alcohol-a...Defining suitable enzymes for reaction steps in novel synthetic pathways is crucial for developing microbial cell factories for non-natural products.Here,we developed a computational workflow to identify C12 alcohol-active UDP-glycosyltransferases.The workflow involved three steps:(1)assembling initial candidates of putative UDP-glycosyltransferases,(2)refining selection by examining conserved regions,and(3)3D structure prediction and molecular docking.Genomic sequences from Candida,Pichia,Rhizopus,and Thermotoga,known for lauryl glucoside synthesis via whole-cell biocatalysis,were screened.Out of 240 predicted glycosyltransferases,8 candidates annotated as glycosyltransferases were selected after filtering out those with signal peptides and identifying conserved UDP-glycosyltransferase regions.These proteins underwent 3D structure prediction and molecular docking with 1-dodecanol.RO3G,a candidate from Rhizopus delemar RA 99-880 with a relatively high ChemPLP fitness score,was selected and expressed in Escherichia coli BL21(DE3).It was further characterized using a feeding experiment with 1-dodecanol.Results confirmed that the RO3G-expressing strain could convert 1-dodecanol to lauryl glucoside,as quantified by HPLC and identified by targeted LC-MS.Monitoring the growth and fermentation profiles of the engineered strain revealed that RO3G expression did not affect cell growth.Interestingly,acetate,a major fermentation product,was reduced in the RO3G-expressing strain compared to the GFP-expressing strain,suggesting a redirection of flux from acetate to other pathways.Overall,this work presents a successful workflow for discovering UDP-glycosyltransferase enzymes with confirmed activity toward 1-dodecanol for lauryl glucoside production.展开更多
The genome of the enterohemorrhagic Escherichia coli O157∶H7 EDL933 contains 177 “O”-islands (OIs). To study their potential contribution to the O157-specific pathogenicity, we surveyed the distribution of 22 OIs b...The genome of the enterohemorrhagic Escherichia coli O157∶H7 EDL933 contains 177 “O”-islands (OIs). To study their potential contribution to the O157-specific pathogenicity, we surveyed the distribution of 22 OIs by PCR and DNA hybridization in 17 isolates of Shiga toxin producing (Stx-positive) E.coli O157∶H7, and compared with their distribution in 21 isolates of Stx-negative E.coli O157 and 21 isolates of non-O157 enteric pathogens. Fourteen of 22 OIs were present in non-O157 entericpathogens analyzed. Eight of 22 OIs were found only in the 17 Shiga toxin- (Stx) positive E.coli O157∶H7 isolates, but they were absent from the 21 Stx-negative E.coli O157∶NM and O157︰Hund isolates tested. Among the 8 OIs, only OI43 or OI48 were exclusively detected in Stx-positive E.coli O157∶H7, absent from neither of Stx-negative E.coli O157 and non-O157 enteric pathogens, such as Salmonella, Shigella, Citrobacter, Vibrio cholera, enteropathogenic E.coli (EPEC), enteroadherent E.coli (EAEC), enteroinvasive E.coli (EIEC) and enterotoxingenic E.coli (ETEC). The OI43 and OI48 are 83 kb in size and identical in DNA sequences, which encode genes for urease, tellurite resistance and adherence. By analyzing their junction genes with PCR and DNA hybridization, we found that 21 Chinese isolates have OI48 only. However, for 7 Japanese patient isolates, 4 have OI43 and 3 have OI48; for American isolates, 2 have both of OI43 and OI48, 2 have OI48 only. These data confirmed the highly plasticity of the pathogenic E.coli genome. The unique presence of OI43/OI48 in Stx-positive E.coli O157∶H7 denotes its critical role in the pathogenicity specific to this pathogen.展开更多
Several technical parameters were studied during the fermentation of recombinant E.coli for the production of collagen-like biopolymer.The effects of dissolved oxygen as well as glucose concentration on fermentation w...Several technical parameters were studied during the fermentation of recombinant E.coli for the production of collagen-like biopolymer.The effects of dissolved oxygen as well as glucose concentration on fermentation were observed.The OD 600 value could reach 98 when dissolved oxygen was controlled at 50% and glucose around 1%.The production of human-like collagen with a yield of 29.4% was obtained.展开更多
基金supported by grants from the National Program on Key Research Project of China[2022YFD1800800,2021YFD1800300]the Yingzi Tech&Huazhong Agricultural University Intelligent Research Institute of Food Health[No.IRIFH202209,No.IRIFH202301]The National Program on Key Research Project of China,2022YFD1800800,Ping Qian,2021YFD1800300,Ping Qian,The Yingzi Tech&Huazhong Agricultural University Intelligent Research Institute of Food Health,IRIFH202209,Ping Qian,IRIFH202301,Ping Qian.
文摘Enterotoxigenic E.coli is one of the bacterial pathogens contributing to the global resistance crisis in public health and animal husbandry.The problem of antibiotic resistance is becoming more and more serious,and phage is con-sidered one of the potential alternatives to antibiotics that could be utilized to treat bacterial infections.Our study isolated and identified a lytic phage PGX1 against multidrug-resistant enterotoxigenic E.coli EC6 strain from sew-age.The phage lysis profile revealed that PGX1 exhibited a lytic effect on multidrug-resistant enterotoxigenic E.coli strains of serotype O60.Through phage whole genome sequencing and bioinformatics analysis,PGX1 was found to be the class Caudoviricetes,family Autographiviridae,genus Teseptimavirus.The length of the PGX1 genome is about 37,009 bp,containing 54 open reading frames(ORFs).Notably,phage PGX1 lacks any lysogenic-related genes or virulence genes.Furthermore,phage PGX1 demonstrates strong adaptability,tolerance,and stability in various pH(pH4-10)and temperatures(4–40°C).The in vivo and in vitro tests demonstrated that phage PGX1 significantly removes and inhibits the formation of multidrug-resistant EC6 biofilm and effectively controls the Galleria mel-lonella larvae and enterotoxigenic E.coli EC6 during mice infection.In conclusion,the above findings demonstrated that phage PGX1 may be a novel antimicrobial agent to control multidrug-resistant E.coli infections.
基金The research that yielded these results,was funded by the Belgian Federal Public Service of Health,Food Chain Safety and Environment through the contract RF 17/6314 LactoPigHealthMatthias Dierick is supported by the Flemish fund for scientific research(FWO3S036319).
文摘Background Post-weaned piglets suffer from F18+Escherichia coli(E.coli)infections resulting in post-weaning diar-rhoea or oedema disease.Frequently used management strategies,including colistin and zinc oxide,have contrib-uted to the emergence and spread of antimicrobial resistance.Novel antimicrobials capable of directly interacting with pathogens and modulating the host immune responses are being investigated.Lactoferrin has shown promising results against porcine enterotoxigenic E.coli strains,both in vitro and in vivo.Results We investigated the influence of bovine lactoferrin(bLF)on the microbiome of healthy and infected weaned piglets.Additionally,we assessed whether bLF influenced the immune responses upon Shiga toxin-producing E.coli(STEC)infection.Therefore,2 in vivo trials were conducted:a microbiome trial and a challenge infection trial,using an F18+STEC strain.BLF did not affect theα-andβ-diversity.However,bLF groups showed a higher relative abundance(RA)for the Actinobacteria phylum and the Bifidobacterium genus in the ileal mucosa.When analysing the immune response upon infection,the STEC group exhibited a significant increase in F18-specific IgG serum levels,whereas this response was absent in the bLF group.Conclusion Taken together,the oral administration of bLF did not have a notable impact on theα-andβ-diversity of the gut microbiome in weaned piglets.Nevertheless,it did increase the RA of the Actinobacteria phylum and Bifi-dobacterium genus,which have previously been shown to play an important role in maintaining gut homeostasis.Furthermore,bLF administration during STEC infection resulted in the absence of F18-specific serum IgG responses.
基金supported by Pancosma SA,Geneva,Switzerland,Jastro & Shields Graduate Research Awardthe United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA),multistate projects W4002 and NC1202
文摘Background Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E.coli(ETEC)F18 in a manner similar to carbadox.The objective of this study was to investigate the impacts of oligosaccharide-based polymer or antibiotic on the host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18.Results Multivariate analysis highlighted the differences in the metabolic profiles of serum and colon digesta which were predominantly found between pigs supplemented with oligosaccharide-based polymer and antibiotic.The relative abundance of metabolic markers of immune responses and nutrient metabolisms,such as amino acids and carbohydrates,were significantly differentiated between the oligosaccharide-based polymer and antibiotic groups(q<0.2 and fold change>2.0).In addition,pigs in antibiotic had a reduced(P<0.05)relative abundance of Lachnospiraceae and Lactobacillaceae,whereas had greater(P<0.05)Clostridiaceae and Streptococcaceae in the colon digesta on d 11 post-inoculation(PI)compared with d 5 PI.Conclusions The impact of oligosaccharide-based polymer on the metabolic and microbial profiles of pigs is not fully understood,and further exploration is needed.However,current research suggest that various mechanisms are involved in the enhanced disease resistance and performance in ETEC-challenged pigs by supplementing this polymer.
文摘The virulent factors of Escherichia coil (E.cofi) play an important role in the process of pathopoiesis. The study aimed to compare drug-resistant genes and virulence genes between extended spectrum β-1actamases (ESBLs)-producing E.coli and non-ESBLs-producing E.cofi to provide a reference for physicians in management of hospital infection. From October 2010 to August 2011,96 drug-resistant strains of E. coli isolated were collected from the specimens in Qingdao Municipal Hospital, Qingdao, China. These bacteria strains were divided into a ESBLs-producing group and a non-ESBLs-producing group. Drug sensitivity tests were performed using the Kirby-Bauer (K-B) method. Disinfectant gene, qacEAl-sull and 8 virulence genes (CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1) were tested by polymerase chain reaction (PCR). Among the 96 E.coli isolates, the ESBLs-producing E.coli comprised 46 (47.9%) strains and the non-ESBLs-producing E.cofi consisted of 50 (52.1%) strains. The detection rates of multiple drug-resistant strain, qacEAl-sull, CNF2, hlyA, eaeA,VT1, est, bfpA, elt, and CNF1 in 46 ESBLs-producing E.coli isolates were 89.1%, 76.1%, 6.5%, 69.6%, 69.6%, 89.1%, 10.9%, 26.1%, 8.7%, and 19.6%, respectively. In the non-ESBLs-producing E.cofi strains, the positive rates of multiple drug-resistant strain, qacEAl-sull, CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1 were 62.0%, 80.0%, 16.0%, 28.0%, 64.0%, 38.0%, 6.0%, 34.0%, 10.0%, and 24.0%, respectively. The difference in the detection rates of multiple drug-resistant strain, hlyA and VT1 between the ESBLs-producing E.cofi strains and the non-ESBLs-producing E.cofi strains was statistically significant (P〈0.05). The positive rate of multiple drug-resistant strains is higher in the ESBLs-producing strains than in the non-ESBLs-producing strains. The expression of some virulence genes hlyA and VT1 varies between the ESBLs-producing strains and the non-ESBLs-producing strains. Increased awareness of clinicians and enhanced testing by laboratories are required to reduce treatment failures and prevent the spread of multiple drug-resistant strains.
文摘Fecal coliform bacteria such as Escherichia coli (E. coli) are one of the main sources of groundwater pollution. An assessment of the transport and Persistence of E. coli in poultry litter amended Decatur silty Clay soil and Hartsells Sandy soil was conducted using soil columns and simulated groundwater leaching. Enumeration of initial E. coli was determined to range from 2.851 × 10<sup>3</sup> to 3.044 × 10<sup>3</sup> CFU per gram of soil. These results have been used in a batch study to determine the persistence rate of E. coli in Decatur silty Clay soil and Hartsells Sandy soil. Results prove that E. coli survival growth rate increases for clay soil later than and at a higher rate than sandy soil. The column study has determined that E. coli was transported at a rate of 3.7 × 10<sup>6</sup><sup> </sup>CFU for Decatur silty loam and 6.3 × 10<sup>6</sup><sup> </sup>CFU for Hartsells sandy per gram of soil. Further, linear regression analysis predictions show higher porosity and soil moisture content affect transport, and Hartsells sandy soil has higher transport of E. coli due to its higher porosity and lower volumetric water content.
文摘Honey has long been considered a wound treatment used to keep cuts and other epidermal injuries clean. This study tested that claim by comparing manuka honey used in medicine today, local unprocessed honey taken straight from a hive, and pasteurized honey found at a store, on strains of E. coli and S. epidermidis. The study evaluated the effects these honeys had on bacterial growth to determine which had the greatest inhibition of bacterial growth. To determine this, plates streaked with strains of E. coli or S. epidermidis bacteria and agar wells filled with one of the honeys were incubated and subsequently the diameter of the zone of inhibition was measured. After 20 trials using each honey and bacteria type, manuka and unprocessed were shown to have a statistically significant advantage over the pasteurized honey at inhibiting the growth of E. coli and S. epidermidis, though it was variable whether manuka had an advantage over the unprocessed honey.
文摘This study was designed to find the susceptibility of Nitrofurantoin and Fosfomycin among urinary isolates of Escherichia.coli.Four hundred(400)urine samples were collected for susceptibility of nitrofurantoin and fosfomycin among urinary isolates of E.coli.All indoor and outdoor patients'urinary samples yielded growth of E.coli.Mid-stream urine specimens were inoculated on blood agar and CLED agar and incubated at 35±2°C.Growth was observed,and Escherichia coli was identified by Gram staining,Catalase,Motility test and API 20E(Bio murex)as per standard procedure.Antimicrobial susceptibility testing of isolates for nitrofurantoin and fosfomycin was carried out by the modified Kirby-Bauer disc diffusion method according to CLSI guidelines ATCC 25922.E.coli was used as a quality control strain.A total of 400 samples were tested susceptibility of nitrofurantoin and fosfomycin among urinary isolates of E.coli during this period.A total of 400 samples yielded the growth of E.coli,out of which 178(44.5%)were male and 222(55.5%)were female samples.Among males,18(10%)were tolerant to nitrofurantoin,and 2(1.1%)were tolerant to fosfomycin.Among females,9(4.09%)were susceptible to nitrofurantoin while 6(2.72%)were susceptible to fosfomycin.Among age groups below 45 years old,6(4.76%)were tolerant to nitrofurantoin,and 2(1.58%)were sensitive to fosfomycin.Between 46-66 years old,4(2.81%)were sensitive to nitrofurantoin,and 3(2.11%)were sensitive to fosfomycin.Between 67-90 years old,17(12.87%)were sensitive to nitrofurantoin,and 4(3.03%)were tolerant to fosfomycin.Fosfomycin and nitrofurantoin showed good susceptibility in urinary isolates of E.coli and can be used empirically in our setup.
基金supported by the National Key R&D Program of China(2021YFC2101300)Science and Technology Commission of Shanghai Municipality(21DZ1209100)Partially supported by Open Funding Project of the State Key Laboratory of Bioreactor Engineering.
文摘Escherichia coli MLB(MG1655ΔpflBΔldhA),which can hardly grow on glucose with little succinate accumulation under anaerobic conditions.Two-stage fermentation is a fermentation in which the first stage is used for cell growth and the second stage is used for product production.The ability of glucose consumption and succinate production of MLB under anaerobic conditions can be improved significantly by using acetate as the solo carbon source under aerobic condition during the two-stage fermentation.Then,the adaptive laboratory evolution(ALE)of growing on acetate was applied here.We assumed that the activities of succinate production related enzymes might be further improved in this study.E.coli MLB46-05 evolved from MLB and it had an improved growth phenotype on acetate.Interestingly,in MLB46-05,the yield and tolerance of succinic acid in the anaerobic condition of two-stage fermentation were improved significantly.According to transcriptome analysis,upregulation of the glyoxylate cycle and the activity of stress regulatory factors are the possible reasons for the elevated yield.And the increased tolerance to acetate made it more tolerant to high concentrations of glucose and succinate.Finally,strain MLB46-05 produced 111 g/L of succinic acid with a product yield of 0.74 g/g glucose.
基金This work(Grant No.RGNS 64-069)was financially supported by Office of the Permanent Secretary,Ministry of Higher Education,Science,Research and Innovationpartially supported by Chiang Mai University.
文摘Defining suitable enzymes for reaction steps in novel synthetic pathways is crucial for developing microbial cell factories for non-natural products.Here,we developed a computational workflow to identify C12 alcohol-active UDP-glycosyltransferases.The workflow involved three steps:(1)assembling initial candidates of putative UDP-glycosyltransferases,(2)refining selection by examining conserved regions,and(3)3D structure prediction and molecular docking.Genomic sequences from Candida,Pichia,Rhizopus,and Thermotoga,known for lauryl glucoside synthesis via whole-cell biocatalysis,were screened.Out of 240 predicted glycosyltransferases,8 candidates annotated as glycosyltransferases were selected after filtering out those with signal peptides and identifying conserved UDP-glycosyltransferase regions.These proteins underwent 3D structure prediction and molecular docking with 1-dodecanol.RO3G,a candidate from Rhizopus delemar RA 99-880 with a relatively high ChemPLP fitness score,was selected and expressed in Escherichia coli BL21(DE3).It was further characterized using a feeding experiment with 1-dodecanol.Results confirmed that the RO3G-expressing strain could convert 1-dodecanol to lauryl glucoside,as quantified by HPLC and identified by targeted LC-MS.Monitoring the growth and fermentation profiles of the engineered strain revealed that RO3G expression did not affect cell growth.Interestingly,acetate,a major fermentation product,was reduced in the RO3G-expressing strain compared to the GFP-expressing strain,suggesting a redirection of flux from acetate to other pathways.Overall,this work presents a successful workflow for discovering UDP-glycosyltransferase enzymes with confirmed activity toward 1-dodecanol for lauryl glucoside production.
基金This work was supported by the Basic Research Program from Ministry of Science and Technology,China (G1999054101 to J.Xu.) and PRA program from AFCRST (B99 03) to LFW
文摘The genome of the enterohemorrhagic Escherichia coli O157∶H7 EDL933 contains 177 “O”-islands (OIs). To study their potential contribution to the O157-specific pathogenicity, we surveyed the distribution of 22 OIs by PCR and DNA hybridization in 17 isolates of Shiga toxin producing (Stx-positive) E.coli O157∶H7, and compared with their distribution in 21 isolates of Stx-negative E.coli O157 and 21 isolates of non-O157 enteric pathogens. Fourteen of 22 OIs were present in non-O157 entericpathogens analyzed. Eight of 22 OIs were found only in the 17 Shiga toxin- (Stx) positive E.coli O157∶H7 isolates, but they were absent from the 21 Stx-negative E.coli O157∶NM and O157︰Hund isolates tested. Among the 8 OIs, only OI43 or OI48 were exclusively detected in Stx-positive E.coli O157∶H7, absent from neither of Stx-negative E.coli O157 and non-O157 enteric pathogens, such as Salmonella, Shigella, Citrobacter, Vibrio cholera, enteropathogenic E.coli (EPEC), enteroadherent E.coli (EAEC), enteroinvasive E.coli (EIEC) and enterotoxingenic E.coli (ETEC). The OI43 and OI48 are 83 kb in size and identical in DNA sequences, which encode genes for urease, tellurite resistance and adherence. By analyzing their junction genes with PCR and DNA hybridization, we found that 21 Chinese isolates have OI48 only. However, for 7 Japanese patient isolates, 4 have OI43 and 3 have OI48; for American isolates, 2 have both of OI43 and OI48, 2 have OI48 only. These data confirmed the highly plasticity of the pathogenic E.coli genome. The unique presence of OI43/OI48 in Stx-positive E.coli O157∶H7 denotes its critical role in the pathogenicity specific to this pathogen.
文摘Several technical parameters were studied during the fermentation of recombinant E.coli for the production of collagen-like biopolymer.The effects of dissolved oxygen as well as glucose concentration on fermentation were observed.The OD 600 value could reach 98 when dissolved oxygen was controlled at 50% and glucose around 1%.The production of human-like collagen with a yield of 29.4% was obtained.