The precision of dynamic reserve calculations in gas reservoirs is crucial for the rational and efficient development of oil and gas fields and the formulation of gas well production plans.The Shaximiao gas reservoir ...The precision of dynamic reserve calculations in gas reservoirs is crucial for the rational and efficient development of oil and gas fields and the formulation of gas well production plans.The Shaximiao gas reservoir in the ZT block of northwestern Sichuan is densely packed and highly heterogeneous,featuring complex gas-water distribution,substantial variations in test production among gas wells,and a rapid decline rate.To precisely determine the dynamic reserves of these tight water-bearing gas wells,this study focuses on the water-tight gas reservoirs in the ZT block of northwestern Sichuan,conducting core X-ray diffraction,constant-rate mercury injection,and reservoir rock stress sensitivity experiments.Utilizing the experimental findings,the porosity and permeability of the rock samples under effective stress conditions are adjusted via binary linear regression.These adjusted parameters are then incorporated into the water-sealed gas material balance method,thereby establishing a novel approach for calculating dynamic reserves in water-tight gas reservoirs under stress sensitivity conditions.The results show that:(1)the rock porosity ranges from 6.08%to 10.22%,permeability ranges from 0.035 mD to 0.547 mD,clay mineral content ranges from 6.58%to 19.14%,pore radius distribution ranges from 90μm to 180μm,throat radius distribution ranges from 0.61μm to 3.41μm,with significant differences in throat distribution,indicating poor reservoir fluid flow capacity and strong tightness;(2)after aging experiments,rock samples exhibit plastic deformation,with porosity and permeability unable to fully recover after pressure relief.The stress sensitivity curve of rock samples shows a two-stage characteristic,with moderate to strong stress sensitivity;(3)porosity stress sensitivity is mainly influenced by pore radius and mineral composition-larger pore radius and higher clay content lead to stronger stress sensitivity,with porosity loss rates ranging from 8.26%to 23.69%.Permeability stress sensitivity is mainly influenced by throat radius and mineral composition-smaller throat radius and higher clay content result in stronger stress sensitivity,with permeability loss rates ranging from 47.91%to 62.03%;(4)a comparative analysis between the traditional dynamic reserve calculation method for gas wells and the new method considering stress sensitivity shows a relative error between 0.90%and 2.41%,with the new method demonstrating better accuracy.This study combines physical experimental results with an effective stress model of reservoir rocks to develop a new method for calculating dynamic reserves of water-bearing tight gas reservoirs under effective stress conditions,providing experimental data and example calculation results to support subsequent dynamic evaluation of gas reservoirs and the establishment of rational well allocation plans.展开更多
According to low earth orbit(LEO) satellite systems with users of different levels, a dynamic channel reservation scheme based on priorities is proposed. Dynamic calculation of the thresholds for reserved channels i...According to low earth orbit(LEO) satellite systems with users of different levels, a dynamic channel reservation scheme based on priorities is proposed. Dynamic calculation of the thresholds for reserved channels is the key of this strategy. In order to obtain the optimal thresholds, the traffic is predicted based on the high-speed deterministic movement property of LEO satellites firstly. Then, a channel allocation model based on Markov is established. Finally, the solution of the model is obtained based on the genetic algorithm. Without user location, this strategy effectively reduces handover failures and improves channel utilization by adjusting dynamically the thresholds according to traffic conditions. The simulation results show that the system's overall quality of service can be improved by this strategy.展开更多
Demand assignment MAC protocols have been used widely in wireless networks. It can effectively utilize wireless bandwidth. Some strategies can he used by demand assignment MAC protocols to further improve their effici...Demand assignment MAC protocols have been used widely in wireless networks. It can effectively utilize wireless bandwidth. Some strategies can he used by demand assignment MAC protocols to further improve their efficiency. The concept of transmit probability is introduced. This concept allows a request slot to be assigned to many different traffic classes at the same time. Based on it, the dynamic random channel reservation (DRCR) protocol is proposed. The DRCR protocol operates dynamically by observing the traffic conditions. It uses information about the recent traffic conditions to assign transmit probability with which an mobile station can select request slots with lower traffic. The performance of DRCR is evaluated and compared with RSCA. The results show that DRCR is more stable than RSCA, it offers shorter delays of requests than RSCA and can relieve heavily stressed traffic classes faster than RSCA.展开更多
This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the e...This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the emergency, using the coordinated action of fast and slow reserves, for secure operation with minimum overall cost. It considers the reserves supplied by the conventional thermal generators (spinning reserves), hydro power units and load demands (demand-side reserves). The optimal backing down of costly/fast reserves and bringing up of slow reserves in each sub-interval in an integrated manner is proposed. The proposed reserve activation approaches are solved using the genetic algorithm, and some of the simulation results are also compared using the Matlab optimization toolbox and the general algebraic modeling system (GAMS) software. The simulation studies are performed on the IEEE 30, 57 and 300 bus test systems. These results demonstrate the advantage of the proposed integrated/dynamic reserve activation plan over the conventional/sequential approach.展开更多
Satellite communications has been regarded as an indispensable technology for future mobile networks to provide extremely high data rates,ultra-reliability,and ubiquitous coverage.However,the high dynamics caused by t...Satellite communications has been regarded as an indispensable technology for future mobile networks to provide extremely high data rates,ultra-reliability,and ubiquitous coverage.However,the high dynamics caused by the fast movement of low-earth-orbit(LEO)satellites bring huge challenges in designing and optimizing satellite communication systems.Especially,admission control,deciding which users with diversified service requirements are allowed to access the network with limited resources,is of paramount importance to improve network resource utilization and meet the service quality requirements of users.In this paper,we propose a dynamic channel reservation strategy based on the Actor-Critic algorithm(AC-DCRS)to perform intelligent admission control in satellite networks.By carefully designing the longterm reward function and dynamically adjusting the reserved channel threshold,AC-DCRS reaches a long-run optimal access policy for both new calls and handover calls with different service priorities.Numerical results show that our proposed AC-DCRS outperforms traditional channel reservation strategies in terms of overall access failure probability,the average call success rate,and channel utilization under various dynamic traffic conditions.展开更多
基金supported by CNPC Southwest Oil and Gas Field Branch's 2023 Scientific Research Program Project(20230303-14).
文摘The precision of dynamic reserve calculations in gas reservoirs is crucial for the rational and efficient development of oil and gas fields and the formulation of gas well production plans.The Shaximiao gas reservoir in the ZT block of northwestern Sichuan is densely packed and highly heterogeneous,featuring complex gas-water distribution,substantial variations in test production among gas wells,and a rapid decline rate.To precisely determine the dynamic reserves of these tight water-bearing gas wells,this study focuses on the water-tight gas reservoirs in the ZT block of northwestern Sichuan,conducting core X-ray diffraction,constant-rate mercury injection,and reservoir rock stress sensitivity experiments.Utilizing the experimental findings,the porosity and permeability of the rock samples under effective stress conditions are adjusted via binary linear regression.These adjusted parameters are then incorporated into the water-sealed gas material balance method,thereby establishing a novel approach for calculating dynamic reserves in water-tight gas reservoirs under stress sensitivity conditions.The results show that:(1)the rock porosity ranges from 6.08%to 10.22%,permeability ranges from 0.035 mD to 0.547 mD,clay mineral content ranges from 6.58%to 19.14%,pore radius distribution ranges from 90μm to 180μm,throat radius distribution ranges from 0.61μm to 3.41μm,with significant differences in throat distribution,indicating poor reservoir fluid flow capacity and strong tightness;(2)after aging experiments,rock samples exhibit plastic deformation,with porosity and permeability unable to fully recover after pressure relief.The stress sensitivity curve of rock samples shows a two-stage characteristic,with moderate to strong stress sensitivity;(3)porosity stress sensitivity is mainly influenced by pore radius and mineral composition-larger pore radius and higher clay content lead to stronger stress sensitivity,with porosity loss rates ranging from 8.26%to 23.69%.Permeability stress sensitivity is mainly influenced by throat radius and mineral composition-smaller throat radius and higher clay content result in stronger stress sensitivity,with permeability loss rates ranging from 47.91%to 62.03%;(4)a comparative analysis between the traditional dynamic reserve calculation method for gas wells and the new method considering stress sensitivity shows a relative error between 0.90%and 2.41%,with the new method demonstrating better accuracy.This study combines physical experimental results with an effective stress model of reservoir rocks to develop a new method for calculating dynamic reserves of water-bearing tight gas reservoirs under effective stress conditions,providing experimental data and example calculation results to support subsequent dynamic evaluation of gas reservoirs and the establishment of rational well allocation plans.
基金supported by the National Natural Science Foundation of China(7130108161373137)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20130877BK2012833)
文摘According to low earth orbit(LEO) satellite systems with users of different levels, a dynamic channel reservation scheme based on priorities is proposed. Dynamic calculation of the thresholds for reserved channels is the key of this strategy. In order to obtain the optimal thresholds, the traffic is predicted based on the high-speed deterministic movement property of LEO satellites firstly. Then, a channel allocation model based on Markov is established. Finally, the solution of the model is obtained based on the genetic algorithm. Without user location, this strategy effectively reduces handover failures and improves channel utilization by adjusting dynamically the thresholds according to traffic conditions. The simulation results show that the system's overall quality of service can be improved by this strategy.
文摘Demand assignment MAC protocols have been used widely in wireless networks. It can effectively utilize wireless bandwidth. Some strategies can he used by demand assignment MAC protocols to further improve their efficiency. The concept of transmit probability is introduced. This concept allows a request slot to be assigned to many different traffic classes at the same time. Based on it, the dynamic random channel reservation (DRCR) protocol is proposed. The DRCR protocol operates dynamically by observing the traffic conditions. It uses information about the recent traffic conditions to assign transmit probability with which an mobile station can select request slots with lower traffic. The performance of DRCR is evaluated and compared with RSCA. The results show that DRCR is more stable than RSCA, it offers shorter delays of requests than RSCA and can relieve heavily stressed traffic classes faster than RSCA.
文摘This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the emergency, using the coordinated action of fast and slow reserves, for secure operation with minimum overall cost. It considers the reserves supplied by the conventional thermal generators (spinning reserves), hydro power units and load demands (demand-side reserves). The optimal backing down of costly/fast reserves and bringing up of slow reserves in each sub-interval in an integrated manner is proposed. The proposed reserve activation approaches are solved using the genetic algorithm, and some of the simulation results are also compared using the Matlab optimization toolbox and the general algebraic modeling system (GAMS) software. The simulation studies are performed on the IEEE 30, 57 and 300 bus test systems. These results demonstrate the advantage of the proposed integrated/dynamic reserve activation plan over the conventional/sequential approach.
基金supported by the ZTE Industry⁃University⁃Institute Cooperation Funds.
文摘Satellite communications has been regarded as an indispensable technology for future mobile networks to provide extremely high data rates,ultra-reliability,and ubiquitous coverage.However,the high dynamics caused by the fast movement of low-earth-orbit(LEO)satellites bring huge challenges in designing and optimizing satellite communication systems.Especially,admission control,deciding which users with diversified service requirements are allowed to access the network with limited resources,is of paramount importance to improve network resource utilization and meet the service quality requirements of users.In this paper,we propose a dynamic channel reservation strategy based on the Actor-Critic algorithm(AC-DCRS)to perform intelligent admission control in satellite networks.By carefully designing the longterm reward function and dynamically adjusting the reserved channel threshold,AC-DCRS reaches a long-run optimal access policy for both new calls and handover calls with different service priorities.Numerical results show that our proposed AC-DCRS outperforms traditional channel reservation strategies in terms of overall access failure probability,the average call success rate,and channel utilization under various dynamic traffic conditions.